MATH 772 FALL 2011 HOMEWORK 5

Due Friday, December 16, 2011.

1. (5 pt) Show that if \mathbb{F} is a field such that $\operatorname{char}(\mathbb{F}) \neq 2$, then there is a one to one correspondence between the set of quadratic extensions of \mathbb{F} and the nontrivial elements of the group $\mathbb{F}^*/(\mathbb{F}^*)^2$.

2. For the following list of fields, find the number of quadratic extensions.

- a) (5 pt) K where K is any algebraic number field.
- b) (5 pt) \mathbb{F} where \mathbb{F} is any finite field.
- c) (5 pt) \mathbb{R} .
- d) (5 pt) \mathbb{C} .
- e) (5 pt) \mathbb{Q}_p where p is an odd prime.
- f) (5 pt) \mathbb{Q}_2 .

3. (5 pt) Is there a countable field of characteristic 0 that possesses a unique quadratic extension (if so, give an example and if not prove that one cannot exist)?

4. (5 pt) Show that the integers \mathbb{Z} form a dense subset (with respect to the p-adic metric) of \mathbb{Z}_p . What is $\overline{\mathbb{Z}} \cap \mathbb{Q}$ (where $\overline{\mathbb{Z}}$ is the closure of \mathbb{Z} with respect to the p-adic metric)?