MATH 772
 SUMMER 2006
 HOMEWORK 5

Due Wednesday, August 2, 2006 (HA HA).

1. (5 pt) Show that if \mathbb{F} is a field such that $\operatorname{char}(\mathbb{F}) \neq 2$, then there is a one to one correspondence between the set of quadratic extensions of \mathbb{F} and the nontrivial elements of the group $\mathbb{F}^{*} /\left(\mathbb{F}^{*}\right)^{2}$.
2. For the following list of fields, find the number of quadratic extensions.
a) (5 pt) K where K is any algebraic number field.
b) $(5 \mathrm{pt}) \mathbb{F}$ where \mathbb{F} is any finite field.
c) $(5 \mathrm{pt}) \mathbb{R}$.
d) $(5 \mathrm{pt}) \mathbb{C}$.
e) $(5 \mathrm{pt}) \mathbb{Q}_{p}$ where p is an odd prime.
f) $(5 \mathrm{pt}) \mathbb{Q}_{2}$.
3. (5 pt) Is there a countable field of characteristic 0 that possesses a unique quadratic extension (if so, give an example and if not prove that one cannot exist)?
4. (5 pt) Show that the integers \mathbb{Z} form a dense subset (with respect to the p-adic metric) of \mathbb{Z}_{p}. What is $\overline{\mathbb{Z}} \bigcap \mathbb{Q}$ (where $\overline{\mathbb{Z}}$ is the closure of \mathbb{Z} with respect to the p-adic metric)?

My summer begins when this homework ends...-C. Hashbarger

