\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 772\\Summer 2006\\Homework 5} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Wednesday, August 2, 2006 (HA HA).} \centerline{} \noindent 1. (5 pt) Show that if $\mathbb{F}$ is a field such that $\text{char}(\mathbb{F})\neq 2$, then there is a one to one correspondence between the set of quadratic extensions of $\mathbb{F}$ and the nontrivial elements of the group $\mathbb{F}^*/(\mathbb{F}^*)^2$. \centerline{} \noindent 2. For the following list of fields, find the number of quadratic extensions. \begin{itemize} \item[a)] (5 pt) $K$ where $K$ is any algebraic number field. \item[b)] (5 pt) $\mathbb{F}$ where $\mathbb{F}$ is any finite field. \item[c)] (5 pt) $\mathbb{R}$. \item[d)] (5 pt) $\mathbb{C}$. \item[e)] (5 pt) $\mathbb{Q}_p$ where $p$ is an odd prime. \item[f)] (5 pt) $\mathbb{Q}_2$. \end{itemize} \centerline{} \noindent 3. (5 pt) Is there a countable field of characteristic $0$ that possesses a unique quadratic extension (if so, give an example and if not prove that one cannot exist)? \centerline{} \noindent 4. (5 pt) Show that the integers $\mathbb{Z}$ form a dense subset (with respect to the $p-$adic metric) of $\mathbb{Z}_p$. What is $\overline{\mathbb{Z}}\bigcap\mathbb{Q}$ (where $\overline{\mathbb{Z}}$ is the closure of $\mathbb{Z}$ with respect to the $p-$adic metric)? \centerline{} {\it My summer begins when this homework ends...}-C. Hashbarger \end{document}