Notes. \(\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \) and \(\mathbb{C} \) are the integers, the rational numbers, the real numbers, and the complex numbers respectively. All rings have identity unless specifically indicated otherwise, and all \(R \)-modules are unitary.

1. Let \(p \in \mathbb{N} \) be prime. Show that any group of order \(p^2 \) is abelian.
2. Show that any group of order 280 is not simple.
3. Let a finite group \(G \) acts transitively on a finite set \(\Omega \) of cardinality greater than one. Show that there is an element of \(G \) that fixes no element of \(\Omega \).
4. Let \(R \) be a commutative ring with 1 and \(I \) an injective \(R \)-module. Show that if the sequence
 \[
 0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
 \]
 is exact, then the sequence
 \[
 0 \rightarrow \text{Hom}_R(C, I) \xrightarrow{f^*} \text{Hom}_R(B, I) \xrightarrow{g^*} \text{Hom}_R(A, I) \rightarrow 0
 \]
 is also exact.
5. Let \(R \) be a commutative ring with 1 and let \(J \) be the intersection of all maximal ideals of \(R \).
 (a) Show that if \(x \in J \) and \(r \in R \) then \(1 + rx \) is a unit in \(R \).
 (b) Show that if \(M \) is a finitely generated \(R \)-module with \(M = JM \) then \(M = 0 \).
6. Let \(M \) be a simple left \(R \)-module. Show that a homomorphism \(f: M \rightarrow M \) is either an isomorphism or the zero homomorphism and hence \(\text{End}_R(M) \) is a division ring.
7. Suppose \(I \) is a proper ideal of a domain \(R \) that is injective as a \(R \)-module, show \(I = 0 \).
8. Show that if \(R \) is an integral domain with the property that \(R/I \) is a finite ring for any nonzero ideal \(I \), then every nonzero prime ideal of \(R \) is maximal.
9. Find the minimal polynomial over \(\mathbb{Q} \) of the element \(\sqrt{2} + \sqrt{3} \in \overline{\mathbb{Q}} \) and find the Galois group of the Galois closure of \(\mathbb{Q}[\sqrt{2} + \sqrt{3}] \) over \(\mathbb{Q} \).
10. Show for a field \(K \) of characteristic \(p > 0 \) that the following are equivalent:
 (a) Every finite field extension of \(K \) is separable.
 (b) The Frobenius homomorphism \(F: K \rightarrow K \) given by \(F: x \mapsto x^p \) is an epimorphism.