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Chapter 1

Need to Know Ring Theory

1.1 Basics and Definitions

Unless otherwise indicated we will consider all rings to be commutative with
identity 1R 6= 0. But before we get the carried away, we consider the following
definition.

Definition 1.1.1. A ring is a set equipped with two binary operations (+, ·)
such that for all r, s, t ∈ R we have the following.

a) r+(s+t)=(r+s)+t.

b) r+s=s+r.

c) There exists an element 0 ∈ R such that 0 + r = r for all r ∈ R.

d) For all r ∈ R there exists an element s ∈ R such that s+ r = 0.

e) r(st)=(rs)t.

f) r(s+t)=rs+rt.

Additionally if

g) rs=sr for all r, s ∈ R

we say that R is commutative. And if we have the following condition.

h) There exists 1R ∈ R such that 1Rr = r = r1R for all r ∈ R.

Then we say that R has an identity.

Example 1.1.2. Z is a ring with identity and 2Z is a ring without identity.
M2(Z) is a noncommutative ring. For commutative examples, consider ⊕Z,∏

Z, C(0, 1) (continuous functions on (0, 1)), R,Q,C, and Zn.
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Very loosely speaking, a ring is a mathematical structure where one can add
and multiply. Still loosely, but a bit more precisely, a ring is an abelian group
under addition with an extra multiplicative structure (that is compatible with
the multiplicative structure via the distributive property).

From one point of view here is a “best case scenario” (or perhaps a worst
case scenario).

Definition 1.1.3. A ring, R, is a division ring if every nonzero element of
R has a multiplicative inverse (if x 6= 0 then there exists y ∈ R such that
xy = yx = 1R).

We remark here that if xy = yx = 1 we often write x−1 instead of y. We
also point out that a commutative division ring is referred to as a field.

A number of the examples previously listed (e.g. Q,R,C) are fields. The
study of factorization is the study of the multiplicative structure of a ring. The
“more interesting” rings from a factorization point of view are the rings which
are not fields.

This course will be devoted to the theory of factorization, that is, we will be
studying rings via their the multiplicative structure. We will begin by covering
some basic concepts; we close this section with a final definition.

Definition 1.1.4. Let R be a commutative ring with identity. An element a ∈ R
is said to be a zero-divisor if there is a nonzero b ∈ R such that ab = 0. R is
said to be an integral domain if 0 is the only zero-divisor in R.

Most of this course will concentrate on factorization in integral domains.

1.2 Ideals and Their Flavors

Ideals are central in the study of the structure of rings. Ideals are the analog of
the “normal subgroup” concept in group theory.

Definition 1.2.1. Let R be a ring. A nonempty subset I ⊆ R is said to be an
ideal if for all x, y ∈ I and r ∈ R

a) x− y ∈ I, and

b) rx ∈ I.

Example 1.2.2. Prove that in Z, every ideal is generated by a single element
(that is, any ideal is of the form nZ for some n ∈ Z.

Definition 1.2.3. Let I ⊆ R be an ideal. If I = 〈S〉 = {
∑n
i=0 risi|ri ∈ R, si ∈

S}, we say that I is generated by S.

We remark here that

〈S〉 =
⋂
I⊇S

S

that is, the ideal generated by S is the intersection of all ideals that contain the
set S.
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Definition 1.2.4. Let I ⊆ R be an ideal and I = 〈S〉.

a) If ab ∈ I =⇒ a ∈ I or b ∈ I then we say that I is prime.

b) If I is a proper ideal and I ⊆ J ⊆ R =⇒ I = J or I = R then we say that
I is maximal.

c) If an ∈ I =⇒ a ∈ I then we say that I is a radical ideal.

d) If ab ∈ I and a /∈ I =⇒ bn ∈ I then we say that I is primary.

e) If |S| = 1 we say that I is principal.

Example 1.2.5. Characterize the prime, primary, radical, and maximal ideals
in Z. Attempt the same for Q[x] and Q[x, y]. Give examples that show these
concepts are distinct.

We recall the quotient ring structure. The next theorem is given without
proof, but the reader should go through the straightforward proof.

Theorem 1.2.6. If I ⊆ R is an ideal, then the abelian group R/I is a ring with
multiplication given by

(r1 + I)(r2 + I) = r1r2 + I.

Here is a useful result showing the interplay between ideal structure and the
structure of the resulting quotient ring.

Theorem 1.2.7. Let I ⊆ R be an ideal.

a) I is maximal if and only if R/I is a field.

b) I is prime if and only if R/I is an integral domain.

c) I is radical if and only if R/I is a reduced (that is, R possesses no non-
trivial nilpotents).

d) I is primary if and only if every zero divisor in R/I is nilpotent.

Proof. For a) Suppose that I is maximal and consider a nonzero element of
r + I ∈ R/I. Since r /∈ I, we have that (I, r) = R and hence there is an x ∈ R
and α ∈ I such that rx+ α = 1. This means that in R/I the cosets r + I and
x + I are inverses. For the converse, suppose that R/I is a field and suppose
that I ( J . Select x ∈ J \I Since R/I is a field, x+I has an inverse (say y+I).
Since xy + I = 1 + I we have that (I, x) = R. Since (I, x) ⊆ J , we must have
that J = R and this establishes part a).

For b) Suppose that I is prime and consider nonzero elements of r+I, s+I ∈
R/I. We suppose that (r+ I)(s+ I) = 0+ I. Equivalently, we have that rs ∈ I,
and since I is prime, we have that r ∈ I without loss of generality. Hence the
coset r + I = 0 + I and R/I is an integral domain. For the converse, suppose
that R/I is an integral domain and suppose ab ∈ I. Hence in R/I we have that
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(a + I)(b + I) = 0 + I; since R/I is a domain, it is immediate that a ∈ I or
b ∈ I. This establishes part b).

For c) Suppose that I is radical and suppose that r + I ∈ R/I is nilpotent.
Since rn + I = 0 + I, we have that rn ∈ I. Because I is radical, we have that
r ∈ I and hence r + I = 0 + I. For the converse, suppose that R/I is reduced
and that rn ∈ I. In R/I we have that rn + I = 0 + I. Since R/I is reduced,
r + I = 0 + I implying that r ∈ I. This establishes part c).

For d) Suppose that I is primary and suppose that r + I ∈ R/I is a zero
divisor. Let x + I be a nonzero coset such that rx + I = 0 + I. Since x /∈ I
it must be the case that rn ∈ I and so r + I is nilpotent. For the converse,
suppose that in R/I every zero divisor is nilpotent. Let ab ∈ I and assume that
a /∈ I. In the quotient ring this means that b + I is a zero divisor. Since b + I
is nilpotent, we have that bn ∈ I. This establishes part d).

Here is a useful corollary.

Corollary 1.2.8. Let I ⊆ R be an ideal. If I is maximal, then I is prime. If
I is prime, then I is radical. If I is both radical and primary, then I is prime.

Proof. Any field is an integral domain; any integral domain is reduced. Addi-
tionally, a reduced ring where every zero-divisor is nilpotent is a domain.

For the next result (and a number of others) we will need the following
formulation of the axiom of choice known as Zorn’s Lemma.

Zorn’s Lemma: Let S be a partially ordered set with the property that
every chain in S has an upper bound in S. Then S has a maximal element.

Proof. Don’t even try.

Theorem 1.2.9. If R is commutative with identity, and I is a proper ideal
of R, then there is a maximal ideal of R containing I. In particular, every
commutative ring with identity has a maximal ideal.

Proof. Let I ( R be a proper ideal. We consider the set

S = {J |I ⊆ J ( R}

of proper ideals containing I. The set S is partially ordered by inclusion. To
apply Zorn’s Lemma, we need to show that any chain in S has an upper bound.
Let C be a chain (linearly ordered subset) in S. Note that for all Iα, Iβ ∈ C
either Iα ⊆ Iβ or Iβ ⊆ Iα.

Consider the ideal

L =
⋃
I∈C

I.

Since the chain is linearly ordered, L is an ideal. Additionally L is clearly an
upper bound for the chain if it remains proper. But if L is not proper, then
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1 ∈ L and hence 1 ∈ I for some I ∈ C. But this contradicts the fact that each
I ∈ C ⊆ S is proper.

Our upper bound is established; we apply Zorn’s Lemma and the proof is
complete.

1.3 Irreducible and prime elements

Irreducible elements (or atoms) are the basic building blocks of factorization
theory. The notion of prime is a specialization of irreducible (for integral do-
mains). In the familiar case of of UFDs (e.g. the rational integers, Z) the
notions of prime and irreducible coincide.

Definition 1.3.1. Let R be an integral domain. An element x ∈ R is said to
be

a) a unit if x|1 (that is, xy = 1 for some y ∈ R),

b) irreducible (or an atom) if x = ab implies that a or b is a unit in R,

c) prime if x|ab implies that x|a or x|b.

We remark here that in the general setting, 0 is a prime if and only if R is
an integral domain. Additionally note that 0 is not an irreducible. Below we
give an ideal theoretic characterization of the above.

Proposition 1.3.2. Let R be an integral domain and x ∈ R.

a) x is a unit ⇐⇒ (x) = R.

b) x is a prime ⇐⇒ (x) is a prime ideal.

c) x is an irreducible ⇐⇒ (x) is maximal among the set of principal ideals
of R.

Proof. Exercise.

Theorem 1.3.3. Let R be a domain. If x ∈ R is a nonzero prime element,
then x is irreducible.

Proof. Suppose that x = ab with a, b ∈ R. Since x|ab we must have that x|a
(without loss of generality). Write a = xr and substitute to obtain x = xrb.
Hence we have that 1 = rb and b is a unit. This establishes thte irreducibility
of x.

Example 1.3.4. In the ring Q[x2, x3] = {
∑n
i=0 αix

i|αi ∈ Q, α1 = 0}, the
elements x2 and x3 are nonprime irreducibles. The same is true of the element
x ∈ R + xC[x] and 2 ∈ Z[

√
−5].

Example 1.3.5. Note in the ring Z = {z ∈ C|p(z) = 0 for some p(x) ∈ Z[x]}
there are no irredcubles. To see this, just note that if z ∈ Z then

√
z ∈ Z and

hence we have the factorization z =
√
z
√
z and hence z is not irreducible.
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1.4 Multiplicatively closed sets and localizations

The multiplicative subsets of an integral domain, R, reveal much about its mul-
tiplicative (factorization) structure. Additionally the multiplicative sets of a
domain determine the various rings of fractions of the domain, where the fac-
torization structure is often “easier.” These rings of fractions often give insights
into the factorization behavior of the original domain.

We will record a brief review of localizations in this section. Of course this
may be done in a much more general setting.

Definition 1.4.1. Let R be a domain. A nonempty subset S ⊆ R (not contain-
ing 0) is said to be multiplicatively closed if s, t ∈ S =⇒ st ∈ S. A multiplica-
tively closed set S is said to be saturated if st ∈ S =⇒ s ∈ S.

Examples of multiplicatively closed sets abound (even in the relatively tame
playground of the integers). As an exercise for the reader, see if you can show
that the saturated, multiplicatively closed sets in R correspond to the comple-
ments of set theoretic unions of prime ideals.

We introduce a theorem that we will use later a number of times. The theo-
rem itself is rather central in commutative algebra. As an interesting motivation,
note that applying the following theorem with S = U(R) gives, as a corollary,
the old chestnut that any commutative ring with identity has a maximal ideal.

Theorem 1.4.2. Let R be commutative with identity and I ⊆ R and ideal. If
S is a multiplicatively closed set in R such that S

⋂
I = ∅, then there is a prime

ideal P ⊇ I such that P
⋂
S = ∅.

Proof. We first assume that there is an ideal P ⊆ R such that P is maximal
with respect to the exclusion of S (that is, P

⋂
S = ∅ and P is maximal with

respect to this property). We claim that such an ideal P is necessarily prime.
To see this, assume that we have ab ∈ P with neither a nor b in P.

Since a /∈ P, we must have that (a,P) ⊇ P and hence (a,P)
⋂
S 6= ∅. So

there exist r1 ∈ R and p1 ∈ P such that

r1a+ p1 = s1 ∈ S.

In a similar fashion, we can find r2 ∈ R and p2 ∈ P such that

r2b+ p2 = s2 ∈ S.

Multiplying the two equations above gives

r1r2ab+ r1ap2 + r2bp1 + p1p2 = s1s2 ∈ S.

But note that since ab ∈ P, the left side of the equation is also in P and hence
s1s2 ∈ P

⋂
S = ∅ which is a contradiction. This shows that P is a prime ideal.

We have shown that if such an ideal exists, then it must be prime. We
will now establish the existence of such an ideal. This is another application of
Zorn’s Lemma.
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We suppose that I is an ideal and S is an multiplicatively closed set such
that I

⋂
S = ∅. Consider the set of ideals

Γ := {J |I ⊆ J ( R and J
⋂
S = ∅}.

It is easy to see that since Γ is nonempty (since, in particular, it contains I).
Let C = {Jα} be a chain in Γ. We let J =

⋃
α Jα. Clearly, if J is an element of

Γ then it will function as an upper bound.
To see that J is an element of Γ, we note first that J is an ideal (since C is

a chain).
Finally, to see that J

⋂
S = ∅, note that if s ∈ J

⋂
S then s ∈ Jα for some

α and hence s ∈ Jα
⋂
S, which is a contradiction.

Since C has an upper bound, we apply Zorn’s Lemma to establish that Γ
has a maximal element. This element is the ideal, maximal with respect to the
exclusion of S that was claimed earlier. This completes the proof.

We now show the importance of multiplicatively closed sets in forming rings
of fractions, or localizations. We will restrict to the case where R is an inte-
gral domain. The concept of localization (for domains) generalizes the familiar
notion of quotient field (recall, the quotient field of an integral domain, R is
defined to be K = {ab |a ∈ R, b ∈ R \ {0}}).

Definition 1.4.3. Let R be a domain and S ⊆ R a multiplicatively closed subset
of R (not containing 0). We define the localization of R at S to be

RS = {r
s
|r ∈ R, s ∈ S}

with addition given by

r1
s1

+
r2
s2

=
r1s2 + r2s1

s1s2

and multiplication given by

(
r1
s1

)(
r2
s2

) = (
r1r2
s1s2

).

The fact that this rule for addition and multiplication turn RS (actually a
set of equivalence classes) into a ring is routine. Note that in the special case
where S = R \ {0}, we have that RS is the quotient field of R.

Example 1.4.4. Let R be a domain and P a prime ideal. It is easy to verify
that the set S := R\P is a saturated multiplicatively closed set. The localization
RP := RS is called the localization of R at P. Verify that the ideal PRP is the
unique maximal ideal of RP.

Note that, if R is a domain with quotient field K, and S is a multiplicative
set, then we have the inclusions
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R ⊆ RS ⊆ K.

In other words, a localization is always an overring of R (the terminology
overring refers to a ring between R and its quotient field). It is not true in
general that an overring is a localization.

Example 1.4.5. If R is a PID, show every overring is a localization.

We finish this section by recording the correspondence theorem for localiza-
tions.

Theorem 1.4.6. Let R be a commutative ring with identity and S a multiplica-
tively closed subset of R (0 /∈ S). Then there is a one to one correspondence
between prime ideals of R that exclude S and prime ideals of RS. This corre-
spondence is given by P 7→ PRS.

Proof. Exercise.

As one last new type of domain, we will define valuation domains. Valuation
domains are important as they determine integral closure. It is also known that
given any ideal I in the integral domain R, there is a valuation domain between
R and it quotient field where I survives.

Theorem 1.4.7. Let V be an integral domain. The following conditions are
equivalent.

1) For all nonzero a, b ∈ V either a divides b or b divides a.

2) For all nonzero ω ∈ K, either ω or ω−1 is in V .

3) V is quasi-local and any finitely generated ideal is principal.

We leave the proof as an exercise. A domain satisfying one and hence all of
the above conditions is called a valuation domain.



Chapter 2

Basic Extension Rings and
Homomorphisms

2.1 Homomorphisms

Definition 2.1.1. Let R and S be rings. A function φ : R −→ S is called a
homomorphism if

a) φ(a+ b) = φ(a) + φ(b) and

b) φ(ab) = φ(a)φ(b)

As is conventional, we may apply a number of modifiers to “homomor-
phisms” (e.g. injective for 1-1, surjective for onto etc.).

We will always assume that in the case of rings with identity that φ(1R) = 1S .
Here is a result that demonstrates why the convention is a natural one.

Proposition 2.1.2. If φ : R −→ S is a nonzero ring homomorphism and S is
a domain, then φ(1R) = 1S.

Proof. Let φ(1R) = a ∈ S. Hence φ(12
R) = φ(1R)φ(1R) = a2 = φ(1R) = a.

Hence we have that a2 = a and since S is a domain (and φ is nonzero) we have
that a = 1S .

From here on out, if we refer to a homomorphism φ : R −→ S then we will
assume that R and S are rings with 1 (if not domains) and additionally, we
assume that φ(1R) = 1S .

Definition 2.1.3. If φ : R −→ S we say im(φ) = {φ(r)|r ∈ R} and ker(φ) =
{r ∈ R|φ(r) = 0}.

We close this section with a familiar isomorphism theorem.

Theorem 2.1.4. If φ : R −→ S is a ring homomorphism then im(φ) is a
subring of S and ker(φ) is an ideal of R. Additionally R/ker(φ) ∼= im(φ)

11
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Proof. The fact that im(φ) is a subring of S and ker(φ) is an ideal of R is an
easy exercise. We will establish the last statement.

Define

Ψ : R/ker(φ) −→ im(φ)

by Ψ(r + ker(φ)) = φ(r).
If r + ker(φ) = s + ker(φ) then r = s + y for some y ∈ ker(φ) and hence

Ψ(r + ker(φ)) = φ(r) = φ(s) = Ψ(s+ ker(φ)) and so Ψ is well-defined.
Note that Ψ(r+ker(φ)+s+ker(φ)) = Ψ(r+s+ker(φ)) = φ(r+s) = φ(r)+

φ(s) = Ψ(r+ker(φ))+Ψ(s+ker(φ)). Additionally Ψ((r+ker(φ))(s+ker(φ))) =
Ψ(rs + ker(φ)) = φ(rs) = φ(r)φ(s) = Ψ(r + ker(φ))Ψ(s + ker(φ)). So Ψ is a
homomorphism.

To see that Ψ is one to one, suppose that r + ker(φ)) ∈ ker(Ψ). This, of
course, means that φ(r) = 0. Therefore r ∈ ker(φ) and hence r + ker(φ)) is the
0−coset in R/ker(φ) and Ψ is one to one.

Clearly, Ψ is onto ker im(φ) and the proof is complete.

2.2 Polynomial Rings

Polynomial rings and their completions, the power series rings, are structures of
fundamental importance in ring theory. We begin by defining polynomial rings
and power series rings.

Definition 2.2.1. Let R be a ring. The power series ring R[[x]] is the set{
∑∞
k=0 rkx

k|rk ∈
R} with addition given by

(
∞∑
k=0

rkx
k) + (

∞∑
k=0

skx
k) =

∞∑
k=0

(rk + sk)xk

and multiplication given by

(
∞∑
k=0

rkx
k)(

∞∑
k=0

skx
k) =

∞∑
k=0

(ck)xk

with ck =
∑k
i=0 risk−i.

The polynomial ring, R[x] is the subring of R[[x]] consisting of all finite sums
of the form

∑n
k=0 rkx

k.

We observe that we have the containments R ⊆ R[x] ⊆ R[[x]]. Additionally,
we note that if R is commutative or has an identity, then so does R[x] (resp.
R[[x]]).

A natural question to ask is if a given property of R extends to R[x] (resp.
R[[x]]). We record a “biggie” (after recalling that a ring is called Noetherian if
every ideal of R is finitely generated).

Theorem 2.2.2. If R is a commutative Noetherian ring with identity, then so
is R[x].
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It is interesting to note that if R[x] is Noetherian, then R must have an
identity. We also note that the analogous result is true for power series ring.

Theorem 2.2.3. Let R be an integral domain. In R[x], the ideal generated by
x is prime.

Proof. Consider the ring homomorphism φ : R[x] −→ R given by φ(f(x)) =
f(0). It is easy to see that this is a sirjective homomophism and hence R ∼=
R[x]/ker(φ). Since R is a domain, and ker(φ) = (x) we see that (x) is prime.

Here are a couple of other tools needed to study factorization in R[x] (among
other things).

Definition 2.2.4. Let R be a domain and f(x) = anx
n + · · ·+ a1x+ a0 ∈ R[x]

with an 6= 0. We say that deg(f(x)) = n.

By convention, we will say that deg(0) =∞.

Proposition 2.2.5. Let R be a domain and f, g ∈ R[x].

a) deg(f + g) ≤ max(deg(f), deg(g)).

b) deg(fg) = deg(f) + deg(g).

Proof. Exercise.

Corollary 2.2.6. If R is a domain, then R[x] is a domain.

Proof. Suppose that fg = 0 in R[x] and that neither f nor g is 0. If deg(f) =
n > 0 then deg(fg) > 0 which is a contradiction. Hence the degrees of both f
and g are 0 and hence in R. Hence fg = 0 for two nonzero elements of R which
is a contradiction.

Corollary 2.2.7. Let R be a domain and U(R) be the units of R. Then U(R) =
U(R[x]).

Proof. It suffices to show that U(R[x]) ⊆ U(R). Suppose that f ∈ U(R[x]).
This means that there is a g ∈ R[x] such that fg = 1. Taking the degree of
both sides and applying the above, we obtain that deg(f) = deg(g) = 0. Hence
f, g ∈ R and hence f ∈ U(R).

2.3 power series

Many of the theorems for polynomials “go through” for power series, but, of
course, many do not.

Theorem 2.3.1. If R is a domain, then (x) is a prime ideal of R[[x]].

Proof. Same.

Theorem 2.3.2. If R is a domain then so is R[[x]].
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Proof. Boring.

Here is an interesting “factorization theorem” for R[[x]]. This should be
constrasted with the case of R[x].

Theorem 2.3.3. U(R[[x]]) = {f ∈ R[[x]]|f(0) ∈ U(R)}.

Proof. High school division.

Corollary 2.3.4. If F is a field, then every nonzero element of F [[x]] is of the
form xnu(x) with n ≥ 0 and u(x) ∈ U(R[[x]]).

Example 2.3.5. Contrast this with R[x] (even when R is a field).

Proposition 2.3.6. If a ∈ R is an irreducible element then any power series
of the form, a+ xf(x) is irreducible in R[[x]].

Proof. If a + xf(x) = (b + xg(x))(c + xh(x)) then a = bc ∈ R. Since a is
irreducible, then we can say without loss of generality that b is a unit in R. By
the previous, b+ xg(x) is a unit in R[[x]] and we are done.

Example 2.3.7. The converse of the previous is not true (consider for example,
4 + x ∈ Z[[x]]). It should also be noted that the analog of this result is not true
for R[x] (this is one of the rare cases where R[[x]] may be construed as more
well-behaved than R[[x]]).

As far as ring extensions are concerned, we have considered a number of
types: RS , R[x], and R[[x]]. At the present, we will investigate one more type
in the section (integral extension). Later we will often attempt to discern how
factorization properties behave in these (and other) types of extensions.

2.4 integral extensions

In this section many proofs are omitted or abbreviated for now.
In this section R will be a domain with quotient field K and T will be a ring

containing R.

Definition 2.4.1. Let R ⊆ T be an extension of rings. An element t ∈ T is
said to be integral over R if t is a root of a monic polynomial xn + an−1x

n−1 +
· · ·+ a1x+ a0 ∈ R[x].

Example 2.4.2. i is integral over the ring R (and R + xC[x]). Any Gaussian
integer (complex number of the form a+ bi with a, b ∈ Z is integral over Z (it is
a root of x2 − 2ax + (a2 + b2) ∈ Z[x]). The element x is integral over the ring
R[x2, x3] and it should be noted that any element of R is integral over R.

Theorem 2.4.3. Let R ⊆ T be an extension of rings and s, t ∈ T . If s and t
are integral over R then so are st and s+ t.
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Proof. Here we only sketch the idea. An equivalent way to look at the integrality
concept is to note that t is integral over R if and only if R[t] is a finite R
module. As an exercise in linear algebra, it can be shown (for domains) that
this is equivalent to the existence of a finitely generated R−module, A, such
that tA ⊆ A. Suppose that A is the module for t and B is the module for
s (and arrange it so that 1 is in A and B). Hence (u + v)AB ⊆ AB and
uvAB ⊆ AB.

Corollary 2.4.4. Let R ⊆ T be an extension of rings. Then the set

R = {t ∈ T |t is integral over R}

is a ring containing R.

Definition 2.4.5. If R ⊆ T are rings, the ring RT = {t ∈ T |t is integral over R}
is called the integral closure of R in T . If T = K then R := RK is called the
integral closure of R. If R = R, we say that R is integrally closed. If every
element of T is integral over R then T is called an integral extension of R.

Example 2.4.6. The ring of algebraic integers Z is the set Z = {z ∈ C|p(z) =
0 for some monic p(x) ∈ Z[x]}. The ring Z (in fact any UFD) is integrally
closed. The extension Z ⊆ Z[i] is an integral extension.

Here is an important “factorization theorem” for integral extensions.

Theorem 2.4.7. Let R ⊆ T be an extension of rings. If T is integral over R
and r ∈ R is a nonunit, then r is a nonunit of T .

Proof. Note that in any case (integral or not) that U(R) ⊆ U(T ). Suppose that
r ∈ R is a nonunit in R, but there is a t ∈ T such that rt = 1. Since T is
integral over R, there exist rn−1, rn−2, · · · , r1, r0 ∈ R such that

tn + rn−1t
n−1 + · · ·+ r1t+ r0 = 0.

Multiplying the above by rn, we obtain

(rt)n + rn−1r(rt)n−1 + rn−2r
2(rt)n−2 + · · ·+ r1r

n−1(rt) + r0r
n = 0

which gives

1 = r[−rn−1 − rn−2r − · · · − r1rn−2 − r0rn−1].

Since both factors on the right side of the above are in R, we obtain that
r ∈ U(R) and the proof is complete.

Example 2.4.8. It is fairly easy to see that the “integrality” assumption is
needed. To see this concretely, consider the extension R ⊆ RS.

Proposition 2.4.9. If Ri is a collection of integrally closed domains, all con-
tained inside some large domain T , then

⋂
Ri is integrally closed.
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Proof. Exercise.

Theorem 2.4.10. Let R be an integral domain. Then R =
⋂

MRM where M
ranges over the maximal ideals of R.

Proof. Certainly the containment R ⊆
⋂

MRM is clear. For the other contain-
ment, we suppose that a

b ∈
⋂

MRM. Let I = {x ∈ R|xa ∈ (b)} and note that if
I = R, then we are done (as then a

b ∈ R). If, on the other hand, I is a proper
ideal of R, we expand I to a maximal ideal (say I ⊆ N). Since a

b ∈ RN, we
have that fracab = c

s with s /∈ N. Hence as = bc which implies s ∈ I ⊆ N.
This completes the proof.

Proposition 2.4.11. If R is integrally closed and S is a multiplicative subset
of R, then RS is integrally closed.

Proof. Suppose that a
b ∈ K and we have the equation

(
a

b
)n +

rn−1

sn−1
(
a

b
)n−1 + · · ·+ r1

s1
(
a

b
) +

r0
s0

= 0.

Multiplying through by the appropriate denominator we obtain the auxilary
equation

tn(
a

b
)n + tn−1rn−1(

a

b
)n−1 + · · ·+ t1r1(

a

b
) + t0r0 = 0

with each ti ∈ S. Note that this equation implies that the element tn ab is integral
over R. Since R is integrally closed, we have that

tn
a

b
= r

and hence

a

b
=

r

tn

and this completes the proof.

Corollary 2.4.12. R is integrally closed if and only if RM is integrally closed
for all M ∈ MaxSpec(R).

Proof. Exercise.

Here is a last (for now) lemma on integrality that we will utilize in the next
chapter.

Lemma 2.4.13. Let R be a commutative ring and u an invertible element of a
ring containing R. Then u−1 is integral over R if and only if u−1 ∈ R[u].

Proof. Exercise.



Chapter 3

Valuations and valuation
domains

3.1 Basics

Definition 3.1.1. Let R be an integral domain, we say that R is a valuation
domain if given any two nonzero a, b ∈ R, we have that either a|b or b|a.

Equivalently, R is a valuation domain if for any ω in the quotient field of R,
we have that either ω or ω−1 is an element of R.

The following result gives a number of nice properties of valuation domains.

Theorem 3.1.2. Let R be a valuation domain. Then R has the following
properties.

1. R is quasi-local.

2. R is integrally closed.

3. Every overring of R is a valuation domain.

4. Every overring of R is a localization of R.

5. R every finitely generated ideal of R is principal.

6. R all (prime) ideals of R are linearly ordered.

7. If I is any ideal in R, then
√
I is prime.

Example 3.1.3. Noetherian valuation domains (e.g. Z(p) and F[[x]]). Many
other example exist with some strange properties (e.g. no height on prime,
principal maximal ideal contrasted with maximal ideal that is a union of the
primes contained in it).

The following is quite useful.

17
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Theorem 3.1.4. Let R ⊆ T be rings, u ∈ U(T ), and I a proper ideal in R.
Then I survives in R[u] or in R[u−1].

Proof. If not, then we obtain two equations:

a0 + a1u+ · · ·+ anu
n = 1

and

b0 + b1u
−1 + · · ·+ bmu

−m = 1

with each ai, bj ∈ I. We assume that n ≥ m and further has been chosen as
small as possible. First we multiply the second equation by un to get

(1− b0)un = b1u
n−1 + · · ·+ bmu

n−m.

Now merely multiply the first equation by 1 − b0 and substitute to find a
similar equation for u with smaller n.

This give rise to an important theorem.

Theorem 3.1.5. Let K be a field and R ⊆ K and I a proper ideal of R. Then
there exists a valuation domain V (R ⊆ V ⊆ K) such that K is the quotient
field of V and I survives in V .

Proof. Consider all pairs, Rj , Ij where Rj is a ring between R and K and Ij
is a proper ideal of Rj . We partially order this set by declaring that ≥ means
both that Rj ⊇ Ri and that Ij ⊇ Ii. Zornify to get maximal pair (V, J). It
will suffice to show that V is a valuation domain. To this end, suppose that
u ∈ K (quotient field of V ), we merely need to show that either u or u−1 is an
element of V . But by the previous result, we have that J (and hence I) survives
in either V [u] or V [u−1]. By the maximality of V , this implies that either V [u]
or V [u−1] is V and hence either u or u−1 is an element of V .

The following theorem illustrates the importance of valuation domains in
the realm of integrality.

Theorem 3.1.6. Let R be an integral domain with quotient field K, then

R =
⋂

R⊆V⊆K

V

where V ranges over the valuation overrings of R.

Proof. One containment is clear. For the other, assume that x is an element
of every valuation overring of R. It suffices to show that x is integral over R.
Recall that x is integral over R if and only if x ∈ R[x−1]. We suppose that x is
not in R[x−1]. So there is a valuation overring of R[x−1] (and hence of R) such
that (x−1) survives. Necessarily, this is a valuation ring not containing x.
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Here is a result that is easy to show, but interesting in its content. It is
“rare” for overrings of certain types of domains persist in this property:

Proposition 3.1.7. Every overring of a valuation domain is again a valuation
domain.

Definition 3.1.8. We say that the domain R is a Bezout domain if every
finitely generated ideal is principal.

The following is an ideal theoretic characterization of valuation domains.

Theorem 3.1.9. Let R be an integral domain. R is a valuation domain if and
only if R is a quasilocal Baezout domain.

Proof. It is known that if R is a valuation domain, then it is quasilocal and
it is also easy to see (by induction) that any finitely generated ideal must be
principal.

For the more interesting direction, we suppose that R is a quasilocal domain
with the property that every finitely generated ideal of R is principal. Suppose
that a, b ∈ R are both nonzero. We consider the ideal (a, b). By assuption, this
mean that (a, b) = (x), and hence x|a and x|b and what is more, we can find
r, s ∈ R such that

ra+ sb = x.

Writing a
x = a′ and b

x = b′, we obtain the equation

ra′ + sb′ = 1.

Recalling that R is quasilocal, we note that at least one of r′, sb′ is not in
the maximal ideal M, and hence a unit of R. Without loss of generality, we say
that ra′ (and hence a′) is a unit of R. Hence a and x are associates and since
x divides b, we must have that a|b. This concludes the proof.

Another way to look at valuation domains is via the concept of a valuation.

Definition 3.1.10. Let K be a field. A valuation on K is a map v : K\{0} −→
Z satisfying for all a, b ∈ K∗

1. v(ab) = v(a) + v(b),

2. v(a+ b) ≥ min(v(a), v(b)).

Example 3.1.11. Q, quotient field of a power series ring, more complicated
valuations.

Theorem 3.1.12. Let K be a field with valuation v. The set of elements
R := {x ∈ K|v(x) ≥ 0}

⋃
{0} is a (the) valuation domain associated to v.

Proof. Since v(x+ y) ≥ min(v(x), v(y)) we see that R is closed under addition.
Also note that R is closed under multiplication. To see that R is a valuation
domain, note that if ω ∈ K then either v(ω) or v(ω−1) is positive.

Example 3.1.13. The p−adics. Inverse limits and completions.
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3.2 Invertible ideals

In this section we introduce and develop the concept of invertibility. One might
consider the concept of invertibility a generalization of (and somewhat akin to)
principality. In a certain sense, invertible ideals are similar to principal ideals.

Definition 3.2.1. Let R be an integral domain with quotient field K. An
R−submodule of K (say I) is called a fractional ideal of R if there is a nonzero
a ∈ R such that aI ⊆ R.

The condition that aI ⊆ R is a finiteness condition that guarantees that I
is not “too big”. For example, 1

2Z is a fractional ideal of Z, but Q is not.

Definition 3.2.2. Let R be a domain and I a nonzero fractional ideal. We
define the inverse of I via

I−1 = {x ∈ K|xI ⊆ R}.

Note that II−1 ⊆ R. If II−1 = R, we say that I is invertible.

We make a couple of observations. Firstly we note that the set of invert-
ible ideals of R forms a group under multiplication (with R functioning as the
identity). We also note that every (nonzero) principal ideal of R is invertible
and the set of all nonzero principal ideals forms a subgroup of the group of all
invertible ideals. Although we will explore this in a more in depth fashion later
we pause to define the class group.

Definition 3.2.3. Let R be a domain. We define the class group of R by

Cl(R) := Inv(R)/Prin(R),

where Inv(R) denotes the group of invertible ideals and Prin(R) denotes the
subgroup of principal ideals.

But now we will talk about invertible ideals of R. Thhis first theorem is (in
my view) nonintuitive. But it certainly narrows down the field for what “can”
be invertible.

Theorem 3.2.4. Let R be a domain and I an invertible ideal. Then I is finitely
generated.

It should be made clear that the converse is very far from true.

Proof. Since II−1 = R, we can find a1, · · · , an ∈ I and b1, · · · , bn ∈ I−1 such
that

a1b1 + a2b2 + · · · anbn = 1.

We claim that {a1, · · · , an} is a generating set for I. To this end note that
if x ∈ I then we have
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(xb1)a1 + (xb2)a2 + · · ·+ (xbn)an = x

and since each xbi ∈ R by definition, we see that each x ∈ I is an R−linear
combination of the ai’s.

Theorem 3.2.5. If R is quasilocal and I is an invertible ideal of R then I is
principal.

Proof. Suppose that R is quasilocal and that I is invertible (without loss of
generality, we will say that I ⊆ R. Since I is finitely generated, say I =
〈a1, · · · , an〉 and II−1 = R, we must have that there exist b1, · · · , bn ∈ I−1 such
that

a1b1 + a2b2 + · · ·+ anbn = 1.

Since each aibi ∈ R and since R is quasilocal, we observe that not all of
the terms aibi can be elements of the maximal ideal. Hence, without loss of
generality, we will say that a1b1 = u is a unit in R. And since for all 2 ≤ k ≤ n
we have that

ak = u−1uak = u−1(b1ak)a1

and hence each ak ∈ (a1) and so I is principal.

One can adjust the above proof to obtain:

Corollary 3.2.6. If R is semiquasilocal and I is invertible, then I is principal.

Of course over a global domain, invertible need not imply principal (for
example consider the ideal (3, 1 +

√
−5) in the domain Z[

√
−5]).

A final theorem for the section.

Theorem 3.2.7. Let I be a finitely generated ideal. Then I is invertible if and
only if IM is principal for all M ∈ MaxSpec(R).

Proof. Exercise.
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Chapter 4

Prüfer and Dedekind
Domains

The notion of Prüfer domain globalizes our aforementioned notion of valuation
domain. One can think of Prüfer domains of the non-Noetherian analog of the
more familiar Dedekind domains. We begin with the formal definition.

Definition 4.0.8. We say that the integral domain R is a Prüfer domain if
every finitely generated ideal of R is invertible.

Given the definition above, a large class of Prüfer domains includes the
valuation domains and, more generally, the Bezout domains.

Example 4.0.9. For a couple of exotic example of Prüfer domains, we consider
the ring of all algebraic integers Z and the ring of entire functions. Both of these
example turn out to be Bezout. For a non-Bezout example, consider the ring
Z[
√
−5] + Q(

√
−5)[[x]].

There are a zillion equivalent characterizations of Prüfer in the literature.
For now here are three.

Theorem 4.0.10. Let R be an integral domain. The following conditions are
equivalent.

1. R is a Prüfer domain.

2. RP is a valuation domain for all P ∈ Spec(R).

3. RM is a valuation domain for all M ∈ MaxSpec(R).

Proof. Note that 2. implies 3. is easy. We will show that 1. implies 2. and that
3. implies 1.

For the implication 1. implies 2., we assume that R is a Prüfer domain
and show that RP is a valuation domain. Since RP is quasilocal, it suffices to
show that every finitely generated ideal of RP is principal. Consider the ideal

23
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〈a1, · · · , an〉 of RP and note that this ideal is a fractional (and hence invertible)
ideal of R. Hence the extension of this ideal to RP is invertible and hence
principal.

For the implication 3. implies 1., we consider the finitely generated ideal
I = 〈a1, · · · , an〉 of R. Note that IM is necessarily principal (for all M ∈
MaxSpec(R)) and hence I is invertible.

Theorem 4.0.11. Let R be a Prüfer domain with quotient field K and let V
be a valuation overring of R, then V = RP for some P ∈ Spec(R).

Example 4.0.12. Consider the valuation on the field F(x, y) indiced by the ord
map on F[x, y]. In the valuation overring of F[x, y] induced by this map, we
have that x and y survive but are associates. One can see that this valuation
domain is not a localization of F[x, y].

Proof. Let M be the maximal ideal of V and P its contraction to R. Note that
if s ∈ R\P then s−1 ∈ V (lest s ∈M). Therefore it is easy to see that RP ⊆ V .

For the other containment, we first note that RP is a valuation domain since
R is Prüfer. Suppose that v ∈ V . If v /∈ RP then v−1 ∈ RP. Hence v−1 = r

s
with s /∈ P. Note that r ∈ P and hence vr = s ∈M which is our contradiction.

Theorem 4.0.13. Any overring of a Prüfer domain is again a Prüfer domain.

Proof. Note that if T is an overring of R and Q is a prime ideal of T and
P := R

⋂
Q then the previous makes it easy to see that RP = TQ and hence is

a valuation domain. Hence T is Prüfer.

We tie some stuff together.

Theorem 4.0.14. Let R be a domain. The following conditions are equivalent.

1. R is a Prüfer domain.

2. Every overring of R is a Prüfer domain.

3. Every overring of R is integrally closed.

4. Every overring is an intesection of localizations of R.

Theorem 4.0.15. Let K be a field and x an indeterminate. Let V be a valuation
domain between K and K(x) with V 6= K(x) but K(x) being the quotient field of
V . Then V is either K[x]] localized at some prime P = (f) or V = K[x−1](x−1).

Proof. Either x or x−1 is an element of V . If x ∈ V then K[x] ⊆ V and since
V [x] is Prüfer (PID) then V = K[x](f). If, on the other hand, we have that
x /∈ V , then K[x−1] is strictly contained in V . Once again, V = K[x−1]P and
since x /∈ V , x−1 ∈ P and hence P = (x−1).

The following is often called the “u, u−1 lemma” and it is quite useful.
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Theorem 4.0.16. Let R be quasilocal and integrally closed and u ∈ K, the
quotient field of R. If u is the root of a polynomial equation over R with at least
one of the coefficients an element of U(R), then either u or u−1 is an element
of R.

Proof. Suppose that the equation for u takes the form

aun + bun−1 + · · · = 0.

Note that in any case, au is integral over R and is hence in R. If au ∈ U(R)
then note that u−1 ∈ R and we are done. If au is not a unit, we consider the
equation

(au+ b)un−1 + · · · = 0.

If b is a unit, then au+ b is a unit and once again, u is integral (and therefor
in) R. If b is not a unit, we proceed by induction and at some point, there must
be a unit coefficient.

Here is another useful theorem that allows us to build Prüfer domains.

Theorem 4.0.17. Let R be a Prüfer domain with quotient field K. If F is
an algebraic extension of K and T is the integral closure of R in F , then T is
Prüfer.

Proof. Let N be a maximal ideal of T and let M := N
⋂
R. Our aim is to show

that TN is a valuation domain. To this end, suppose that λ ∈ F . Note that λ
is a root of a polynomial equation over RM. Since RM is a valuation domain,
we can adjust this equation so that (at least) one of the coefficients is a unit in
RM ⊆ TN. By the u, u−1 lemma, either λ or λ−1 is in TN. This concludes that
proof.

4.1 More on Integrality

Before we impose a tighter (Noetherian) restriction on our domains, we will look
a bit closer at integral extension. This will be done in a slighty more general
setting.

Theorem 4.1.1. Let R ⊆ T be rings and u an element of a ring containing T .
If u is integral over T and T is integral over R, then u is integral over R.

Proof. Suppose that u stisfies the polynomial equation

un + tn−1u
n−1 + · · ·+ t1u+ t0 = 0

with each ti ∈ T . Consider M = R[t0, t1, · · · , tn−1, u]. It is easy to see that M
is a finitely generated R module and hence u is integral over R.

Here are some properties that may be satisfied by the pair of rings R ⊆ T .
We say that the extension R ⊆ T satisfies:
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1. Lying over (LO) if for any P ∈ Spec(R), there is a Q ∈ Spec(T ) such that
Q

⋂
R = P.

2. Going up (GU) if given primes P0 ⊆ P1 of R and Q0 a prime in T
with Q0

⋂
R = P0, there exists a prime Q1 ⊆ T with Q0 ⊆ Q1 and

Q1

⋂
R = P1

3. Going down (GD) if given primes P0 ⊇ P1 of R and Q0 a prime in T
with Q0

⋂
R = P0, there exists a prime Q1 ⊇ T with Q0 ⊇ Q1 and

Q1

⋂
R = P1

4. Incomparable (INC) If Q0 and Q1 are distinct primes in T such that
Q0

⋂
R = Q1

⋂
R, then Q0 and Q1 are incomparable.

The key to comparing primes of R and primes of T often lie in the study of
multiplicative sets.

Theorem 4.1.2. Let R ⊆ T be rings. The following are equivalent.

1. GU holds.

2. If P is a prime ideal of R and S is the compliment of P in R and Q is an
ideal of T maximal with respect to the exclusion of S, then Q

⋂
R = P.

Proof. For the 2. implies 1. implication, suppose that we have P0 ⊆ P1

are primes of R and that Q0 is a prime in T contracting to P0 in R. Note
that Q0

⋂
S is empty (where S is the compliment of P1 in R. We expand

Q0 to Q1 that is maximal with respect to the exclusion of S. By assumption,
Q1

⋂
R = P1.

For the other direction, we let Q be maximal with respect to the exclusion
of S, which is the complement of P in R. Assuming GU, we have to prove
that Q

⋂
R = P. Certainly, Q lies over some prime ideal and GU allows us

to expand this to a prime Q1 lying over P. The maximality of Q shows that
Q = Q1.

Corollary 4.1.3. GU implies LO.

Proof. Immediate.

Theorem 4.1.4. Let R ⊆ T be rings. The following are equivalent.

1. INC holds.

2. If P ⊆ R is a prime ideal and Q ⊆ T contracting to P the Q is maximal
with respect to the exclusion of S, the complement of P in R.

Proof. Exercise.

Here is a look at what happens in the case of integral extensions.
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Theorem 4.1.5. Let R ⊆ T be an extension of rings with T integral over R.
Then the pair R ⊆ T satisfies GU and INC.

Proof. Using the characterization of GU from the previous (and the notation),
we must show that Q

⋂
R = P. Certainly we have that Q

⋂
R ⊆ P. If we do

not have equality, we choose and x ∈ P that is not in the contraction of Q.
Hence the ideal (Q, x) properly contains Q, hence it must hit S, That is, we
can find q ∈ Q and a ∈ T such that s = q + ax.

Write the equation of integrality for a ∈ T :

an + rn−1a
n−1 + · · ·+ r1a+ r0 = 0

and then multiply by xn to obtain an equation of integrality for ax:

(ax)n + rn−1x(ax)n−1 + · · ·+ r1x
n−1(ax) + r0x

n = 0.

Recall that ax = s − q and so, if we replace in the preceding equation, we
obtain

(s)n + rn−1x(s)n−1 + · · ·+ r1x
n−1(s) + r0x

n = q1 ∈ Q.

Note that the left side of the above is in R and Q and hence in P. Since
x ∈ P then it follows that s ∈ P.

To show that integral extensions satisfy INC, we use the previous. Assume
that P = Q

⋂
R, we wish to show that Q is maximal with respect to the

exclusion of S = R \P. SUppose on the contrary that Q is properly contained
in I and I

⋂
S is empty. Select u ∈ I \Q and recall that u is integral over R.

Among all monic polynomials in R[x] such that f(u) ∈ Q we select one of least
degree (and the degree will be larger than 1). Say our polynomial is

un + rn−1u
n−1 + · · ·+ r1u+ r0.

Note that the constant term is an element of I. Hence r0 ∈ I
⋂
R ⊆ P ⊆ Q.

Hence

u(un−1 + · · ·+ r1)

is in Q. But neither factor is.

Definition 4.1.6. We say that the chain of prime ideals of R

P0 ⊆ P1 ⊆ · · · ⊆ Pn

has length n.

Definition 4.1.7. The Krull dimension of R is the supremum over the lengths
of chains of primes in R.

Example 4.1.8. The dimension of Z is 1. Any field has dimension 0.
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Here are a couple of lemmas to pave the way for us.

Lemma 4.1.9. If R ⊆ T is GU then dim(R) ≤ dim(T ).

Proof. Suppose that we have a chain of primes of length n in R:

P0 ⊆ P1 ⊆ · · · ⊆ Pn.

Repested application of GU allows to to construct the chain of primes of T :

Q0 ⊆ · · · ⊆ Qn

with each Qi

⋂
R = Pi.

Lemma 4.1.10. If R ⊆ T is INC then dim(R) ≥ dim(T ).

Proof. Suppose that we have the chain of primes of T :

Q0 ( Q1 ( · · · ( Qn

Since the extension R ⊆ T is INC, the ideals in the corresponding chain of
primes obtained by intersecting with R:

P0 ( P1 ( · · · ( Pn

are all distinct. Hence the lemma.

Theorem 4.1.11. If R ⊆ T is an extension of domains satisfying GU and INC,
then dim(R) = dim(T ).

Proof. Immediate from the previous two lemmas.

4.2 Dedekind Domains

Dedekind domains may be considered analogs of UFDs (from a factorization
point of view) or PIDS (from an ideal-theoretic point of view). Dedekind do-
mains enjoy many “nice” properties and although some may exhibit certain
pathological behavior, most Dedekind domains are well-behaved. All rings of
algebraic integers are Dedekind domains for example.

We first define Dedekind domains in terms of invertible ideals.

Definition 4.2.1. We say that R is a Dedekind domain if every nonzero ideal
is invertible.

So Dedekind domains are the Noetherain Prüfer domains.
There are many equivalent characterizations of Dedekind domains in the

literature. Here are a few.
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Theorem 4.2.2. Let R be an integral domain. The following conditions are
equivalent.

1. R is Dedekind.

2. R is one-dimensional (or less), integrally closed, and Noetherian.

3. R is Noetherian and the localization of R at any prime is a Noetherian
valuation domain.

4. Every nonzero ideal in R is a product of prime ideals.

Proof. For 1 implies 2, we have that R is Dedekind (that is, all ideals are
invertible). Note that Noetherian is automatic since invertible ideals are finitely
generated. Now let M be a maximal ideal. For all such M, RM must be a PID
(since all ideals of R are invertible, they all must be locally principal). So RM

is a PID for all M and hence R is 1 dimensional. Additionally, since R is
integrally closed if and only if each RM is integrally closed, we have that R is
also integrally closed.

For the implication 2 implies 3, we note that the Noetherian is automatic.
It will suffice to show that the localization at any maximal ideal is a Noetherian
valuation domain. By way of contradiction, we suppose that for some maximal
ideal M, we have that RM is not a Noetherian valuation domain. We do note
that RM is Noetherian and 1 (or less) dimensional. Suppose that R is not a
PID.

Abusing the notation, we now assume that R is local with maximal ideal
M. We first claim that the maximal ideal M is the annihilator of R/(x) for
some nonzero, nonunit x ∈ R. To this end the set of all annihilators of nonzero
elements of R/(x) is contained in a maximal one (via ACC) and the set of all
zero divisors on R/(x) is the set theoretic union of all of the maximal ones, and
each of these is prime. Note that annihilators are nonzero since the maximal
ideal of R is the radical of any nonzero ideal within it. Hence our maximal ideal
M must be the annihilator of some nonzero, nonunit y ∈ R. We have that

My ⊆ (x)

and hence y
x is an element of M−1. We see that M−1 properly contains R and

hence MM−1 ⊇M.
If MM−1 = M then we have that (every element of) M−1 is integral over

R. Hence M−1 is contained in R which is a contradiction. Hence MM−1 = R.
Hence R is principal and we are done.

For the implication 3 implies 1, we have that each RM is a Noetherian
valuation domain. So if I ⊆ R is an ideal then I is finitely generated and locally
principal for all M and hence I is an invertible ideal of R.

The connection with 4 is an exercise.

Theorem 4.2.3. If R is a one dimensional Noetherian domain and T is an
overring of R, then T is again one dimensional and Noetherian
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We will prove this later.

Corollary 4.2.4. If R is one dimensional and Noetherian then the integral
closure of R is Dedekind.

Theorem 4.2.5. If R is Dedekind with quotient field K and F is a finite ex-
tension field of K, then T , the integral closure of R in K, is Dedekind.

Proof. We already know that T is Prüfer. To see that it is Dedekind, we merely
need Noetherian. Let {u1, · · · , un} be a basis for F over K (we can, and do,
demand that each ui ∈ T ). Let T0 = R[u1, · · · , un]. Note that T0 is Noetherian
and 1 dimensional and T is its integral closure. Hence T is Dedekind.

We will now take an excursion to prove an important result in commutative
algebra that we needed above. We first recall that a composition series for the
R−module M is a chain

M = M0 ⊃M1 ⊃ · · · ⊃Mn = 0

with the property that each Mi/Mi+1 is simple. It is known that if M has a
composition series then one can refine any series to a composition series and
that any two refined series have the same length.

We have the following theorem.

Theorem 4.2.6. Let R be a ommutative ring. The following are equivalent.

1. R is Noetherian and 0−dimensional.

2. Any finitely generated R−module has finite length.

3. R has finite length as an R−module.

4. R is Artinian.

Proof. For the implication 1 implies 2, we note that if R is 0−dimensional, then
all of its primes are minimal and maximal. Since there are only finitely many
primes over (0), there are only finitely many of them, say M1,M2, · · · ,Mn.
Note that the product M1 · · ·Mn is in the Jacobson (and the nil) radical.
Since this product is finitely generated, it must be nilpotent. We will say that
(M1 · · ·Mn)k = 0.

Let N be a finitely generated R−module. Between ) and N we can insert
nk intermediate modules as follows

N ⊃ · · · ⊃ B ⊃MiB ⊃ · · · ⊃ 0

with B being N multiplied by some product of the Mi’s (with appropriate
repetition allowed). Note that B/MiB is a finitely generated module over R/Mi

and hence only finitely many more can be inserted into the gap between B and
MiB.

2 implies 3 is clear.
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3 implies 1. If R has finite (fixed) length, it certainly must be ACC and
hence Noetherian. To show that R is 0-dimensional, we reduce the problem.
Suppose that there is a chain of primes P ( M in R. Passing to the quotient
R/P we merely need to show that if R is a domain of finite length, then R is
a field. If R is of finite length, we find a minimal (nonzero) ideal I and choose
0 6= x ∈ I. Note that xI = I and so there is an α ∈ I such that xα = x. Since
R is a domain, α = 1, I = R and hence R is a field.

Note that 3 and 4 are equivalent.

Corollary 4.2.7. Let R be a domain. Then R is Noetherian and dimension
≤ 1 if and only if for any nonzero ideal I in R, R/I has finite length.

Proof. If R is Noetherian and and of dimension ≤ 1 then for all I 6= 0, R/I is
Noetherian and 0−dimensional. The converse of this statement is clear.

Proposition 4.2.8. If R is a zero-dimensional ring, then any non-zero-divisor
is a unit.

Proof. Exercise.

Here is a last crucial lemma.

Lemma 4.2.9. Let R be a one dimensional integral domain and a, c nonzero
elements of R. If J = {x ∈ R|xan ∈ (c)}, then (J, a) = R.

Proof. Note that c ∈ J so that J 6= 0. By the previous, every non-zero-divisor
in R/J has an inverse. By abuse of notation, we consider a as an element of
R/J and assert that a is not a zero-divisor. Note that if ab = 0 in R/J , we
would have that ab ∈ J . Hence anab ∈ J , hence b ∈ J . This shows that a is not
a zero divisor in R/J and hence (J, a) = 0.

Now for the theorem.

Theorem 4.2.10. If R is a one dimensional Noetherian domain and T is an
overring of R, then T is again one dimensional and Noetherian.

Proof. Let a ∈ R be arbitrary. The strategy is to show that T/aT is a finitely
generated R−module. Since any ideal of T contains an element of R, we will be
done by the previous.

To this end, we write Im = (amT
⋂
R, aR). Note that this is a descending

chain of ideals of R all containing aR. Since this chain becomes stabilizes, we
will say that it stabilizes at In and for this value of n we claim that

T ⊆ 1
an
R+ aT.

To see this we take t ∈ T and write t = b
c with b, c ∈ R. Taking a, c as in

the previous lemma, we have that (J, a) = R where J = {x ∈ R|xan ∈ (c)}. We
can write
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1 = j + za

with j ∈ J and z ∈ R. Hence t = bj
c + tza. Note that jak ∈ (c) for some k so

bj

c
=
b

c

jak

ak
∈ 1
ak
R.

And so t ∈ 1
akR + aT for some k. So if k ≤ n we have established what we

wanted. Let us assume that k is as small as possible but k > n. We have

t
u

ak
+ at1.

Hence

u = ak(t− at1)

and so u is in akT and R and hence in Ik.
Since k > n we have Ik = Ik+1 and hence u = ak+1t2+au1. Substituting t =

u1
ak−1 +a(t1 +t2) and this is a contradiction. Since we have established te veraciy
of the containment, we have that T/aT is contained in a cyclic R−module.
Hence it is finitely generated.

We end this section with a quick look at almost Dedekind domains

Theorem 4.2.11. Let D be a domain with that is not a field. The following
conditions are equaivalent.

1. D is almost Dedekind.

2. Cancellation holds for nonzero ideals of D.

3. D is a one-dimesional Prüfer domain with no idempotent maximal ideal.

4. D is a Prüfer domain and
⋂∞
n=0A

n = (0) for every proper ideal A ⊂ D.

4.3 More on Dedekind domains and class groups

Theorem 4.3.1. Suppose that I ⊆ R is invertible. Then there is an ideal J ⊆ R
such that IJ is principal.

Proof. Suppose first that IJ = aR is principal. This gives that I(Ja1) = R and
hence I is invertible (with inverse Ja−1).

On the other hand, if I is invertible, then II−1 = R. Let a be a nonzero
element of R and note that aI−1 ⊆ R. Hence I(aI−1) = aR is principal.
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Example 4.3.2. The ring Z[
√
−5] is Dedekind. This ring is not a UFD as

we have the elemental factorization (2)(3) = (1 +
√
−5)(1 −

√
−5). It is easy

to see that this is a nonunique factorization by applying the standard norm
map. To see the reconciliation of factorization with respect to ideals, consider
the ideals R = (2, 1 +

√
−5), P = (3, 1 +

√
−5), and Q = (3, 1 −

√
−5). A

simple computation shows that R2 = (2), PQ = (3), PR = (1 +
√
−5), and

QR = (1−
√
−5). The elemental factorization come from rearranging the factors

in the ideal factorization

PQRR = (6).

We also note that since any principal ideal is invertible, it is immediate that
every PID is Dedekind.

Definition 4.3.3. Let R be a domain, Inv(R) = {I|I is an invertible ideal of R},
and Prin(R) = {xR|x ∈ K\{0}}. The quotient group Cl(R) := Inv(R)/Prin(R)
is called the class group of R. If |Cl(R)| = n < ∞ then n is called the class
number of R.

The set of invertible ideals forms a group under ideal multiplication (with
identity R). The set of principal ideals forms a subgroup. Since the group of
invertible ideals is often “too big” we consider the quotient group formed by
taking the invertible ideals modulo the principal ideals. We shall soon see that
this class group is often a good measure of how far a domain is from being a
UFD. In many important cases, (e.g. rings of algebraic integers) the class group
is finite. The problem of determining class numbers for rings of integers is still
wide open in many cases (in fact, it is still unknown as to whether there are
an infinite number of real quadratic rings of integers with class number 1). It
should also be noted that in the case of Dedekind domains, the class group is
an especially effective tool since every ideal is invertible.

This theorem records some useful facts concerning Dedekind domains.

Theorem 4.3.4. Let R be a Dedekind domain.

1) R is a UFD if and only if R is a PID.

2) If R has only finitely many maximal ideals, then R is a PID.

3) Every ideal of R can be generated by less than or equal to two elements.

Proof. 2) and 3) are left as exercises. For 1) the interesting implication is that
if R is a UFD then it is a PID. But since R is Dedekind it is one dimensional.
Coupling this with the UFD assumption, we obtain that R is a PID.

Example 4.3.5. In the previous example (Z[
√
−5]) it turns out that the class

number is two (that is, Cl(R) ∼= Z2. We shall see later that this condition implies
that although there are factorizations that are nonunique, all factorizations of
the same element have the same length.
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Example 4.3.6. For a more interesting example along these lines consider the
ring Z[

√
−14] (note in this ring we have the irreducible factorization (3)(3)(3)(3) =

(5 + 2
√
−14)(5 − 2

√
−14). This ring has class number 4 (so the class group is

isomorphic to either Z4 or Z2⊕Z2). We give ideals in each of the four classes:

(1), (3, 1−
√
−14), (3, 1−

√
−14), (2,

√
−14).

Determine the structure of the class group given this information.

We close this section with a theorem that demonstrates the fact that the
class group measures loss of unique factorization.

Theorem 4.3.7. Let R be a Dedekind domain. Then R is a UFD if and only
if the class group of R is trivial.

Proof. Suppose that R is a UFD and Dedekind. We have already established
that R is a PID and hence any (invertible) ideal is principal. Hence Inv(R) and
Prin(R) coincide and the class group is trivial.

On the other hand, if the class group of R is trivial, this implies that ev-
ery invertible ideal is principal. But since R is Dedekind (and every ideal is
invertible) we have that R is a PID (and hence a UFD).

Theorem 4.3.8. Let F be a finite field extension of Q and let R be the integral
closure of Z in F . Then R is a Dedekind domain.

Such a Dedekind domain is called a ring of (algebraic) integers.

Proof. Done.

Example 4.3.9. It is a good computational exercise to compute the ring of
integers of a quadratic extension of Q. Let d be a square-free integer; we consider
the (quadratic) extension F := Q(

√
d). Show that the ring of integers of F is

given by

R =

{
Z[
√
d] if d ≡ 2, 3 mod(4)

Z[ 1+
√
d

2 ] if d ≡ 1 mod(4)

See if you can determine the ring of integers for the field Q 3
√

2.

We record the following useful theorem concerning rings of algebraic integers.
The proof of this theorem can be found in many standard texts on number
theory.

Theorem 4.3.10. Let R be a ring of algebraic integers. Then R enjoys the
following properties.

1) Cl(R) is finite.

2) Every ideal class in Cl(R) contains infinitely many prime ideals.
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The second statement is a generalization of the well known result in elemen-
tary number theory that if m and n are relatively prime integers then there
are infinitely many primes of the form m + an. In fact, prime ideals tend to
be distributed more or less “evenly” in the ideal classes of a ring of algebraic
integers.

Definition 4.3.11. An atomic domain, R, is said to be a half-factorial domain
if given any factorization

α1α2 · · ·αn = β1β2 · · ·βm
with each αi, βj irreducible, then n = m.

The orginal definition from Zaks’ paper did not make the assumption that R
is atomic (so by the original definition, any domain with no irreducible elements
is a half-factorial domain). The modern convention is for half-factorial domains
(HFDs) to be atomic and we will follow this convention.

Example 4.3.12. Of course any UFD is an HFD. There are amny examples
of HFDs which are not UFDs. By Carlitz’ 1960 paper, any ring of integers
that has class number 2 is an HFD that is not a UFD (we will see this later).
Additionally the ring Z[

√
−3] is an HFD, but cannot be a UFD since it is not

integrally closed. An example that is easier to visualize at this stage is the ring

R := R + xC[[x]].

It is easy to see that this ring is not a UFD directly or by noting that it
is not integrally closed. To see that this ring is an HFD, we first note that
the nonzero nonunits of R are precisely the elements of the form xnf(x) where
f(x) ∈ C[[x]] and n ≥ 1 (if n = 0 it is easy to see that f(0) is a nonzero real
number and f(x) is a unit). Fom this we can conclude that the irreducibles of
R is precisely the subset of the nonzero nonunits consisting of elements of the
form xf(x) with f(0) 6= 0. This allows us to count the number of irreducible
factors in a general nonzero nonunit. Namely the nonzero nonunit xnf(x) may
have multiple factorizations, but the number of irreducible factors in a given
factorization is always n.

For rings of algebraic integers, there is an extremely nice characterization of
the HFD property. This beautiful result is due to Carlitz.

Theorem 4.3.13. Let R be a ring of algebraic integers. Then R is an HFD if
and only if |Cl(R)| ≤ 2.

More is true, in fact. This characterization neatly partitions rings of integers
that are HFDs into two classes. Class number 1 rings of integers are UFDs and
class number 2 rings of integers are non-UFD HFDs.

Proof. We assume first that the class number of R does not exceed 2. If the
class number of R is 1 then R is a UFD and so is trivially an HFD. We will
therefore suppose that the class number of R is 2.
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We now claim that if x ∈ R is irreducible and not prime, then as an ideal (x)
factors into precisely two (nonprincipal) prime ideals of R. To see this suppose
that

(x) = P1P2 · · ·Pn.

If one of the prime ideals on the right is principal (say P1) this would imply
that P2 · · ·Pn = R since x is irreducible. Hence all of the prime ideals on the
right must be nonprincipal. But since the class number of R is 2 and each ideal
is nonprincipal, this implies that the product of any two of them is principal.
Hence P1P2 is principal. Again by the irreducibility of x, we must have that
P3 · · ·Pn = R. Hence n = 2.

With this claim in hand we consider the irreducible factorization

α1α2 · · ·αn = β1β2 · · ·βm.

Since any prime factor above must appear on both sides (and can therefore be
cancelled) we can assume without loss of generality that each irreducible above
is nonprime. By the claim each (αi) = Pi,1Pi,2 and each (βj) = Qj,1Qj,2. We
now consider the elemental factorization as an ideal factorization and replace
each irreducible with its prime factors to obtain:

P1,1P1,2 · · ·Pn,1Pn,2 = Q1,1Q1,2 · · ·Qm,1Qm,2.

Since this factorization into prime ideals is unique, we get that 2n = 2m and
hence n = m.

For the other direction, we will that the class number of R is greater than 2
and show that R cannot be an HFD.

The first case to consider is the case where there is an element in [I] ∈ Cl(R)
of order n > 2. Let P be a prime in this class and select a prime ideal Q in
[I]−1. We can make this choice as there are (infinitely many) prime ideals in
every ideal class of a ring of integers.

We now claim that the ideals Pn,Qn, and PQ are all principal and generated
by irreducible elements. The fact that these ideals are principal follows easily
from the choices that we made (the ideal classes where they are contained). To
see that Pn is generated by an irreducible, note first that Pn = (x) for some
x ∈ R. If x = ab ∈ R, then

(x) = (a)(b) = Pn.

In particular, since prime ideal factorizations are unique, the ideal factorization
of (a) must be Pm for some m ≤ n. But since the order of P is n, and (a) is
principal, this forces m to be either 0 or n. Of course this means that a or b
must be a unit. The proof that PQ is irreducible is similar, but easier.

We now consider the ideal factorization

(Pn)(Qn) = (PQ)n.
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We now let α an irreducible generator for Pn, β an irreducible generator for
Qn, and γ an irreducible generator for PQ. The above equation yields

(α)(β) = (γ)n,

and this implies that there is a unit u ∈ U(R) such that

αβ = uγn.

Since n > 2 we have that R is not an HFD.
The final case is the situation where every nonidentity element of the class

group has order 2. Since the class number is at least 3, and every nonidentity
element of the class group has order 2, we can conclude that the class group
must contain a subgroup isomorphic to the Klein 4-group (Z2 ⊕ Z2). Writing
this subgroup additively, we select prime ideals P in the class corresponding to
the element (0, 1), Q in the class corresponding the element (1, 0), and R in the
class corresponding to (1, 1). In a similar fashion to the previous argument P2

is principal and generated by the irreducible α, Q2 is principal and generated
by the irreducible β, R2 is principal and is generated by the irreducible γ, and
PQR is principal and generated by the irreducible δ. We consider the ideal
factorization

(P2)(Q2)(R2) = (PQR)2

or equivalently

(α)(β)(γ) = (δ)2.

We now have that there is a unit u ∈ U(R) such that αβγ = uδ2 and hence
R is not an HFD. This completes the proof.

We end our section on Dedekind domains now with the following catchy
result.

Theorem 4.3.14. If R is Dedekind and I ⊆ R is an ideal, then I is 2-generated
(actually 1 1

2 generated).
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