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Chapter 1

Basic Basics

The notation N,Z,Q,R,C refer to the natural numbers, the integers, the rational
numbers, the real numbers and the complex numbers respectively.

The following theorem is the famous (and quite useful) Euclidean algorithm.

Theorem 1.0.1. Let m,n ∈ Z be integers with n 6= 0. Then we can find
integers q and r such that

m = qn+ r

with 0 ≤ r < n.

Our next definition is not the best in the general sense (as we will observe
when we get to ring theory) but it is correct and utilitarian for use in the
integers.

Definition 1.0.2. We say that a positive integer p is prime if the only (positive)
factors of p are itself and 1.

A useful consequence of the existence of the Euclidean algorithm is the fa-
mous Fundamental Theorem of Arithmetic:

Theorem 1.0.3. Any integer n > 1 can be decomposed (uniquely) into a product
of prime integers.

We now define the related concepts of greatest common divisor (gcd) and
least common multiple (lcm).

Definition 1.0.4. Let m,n ∈ Z both be positive. We define the gcd(n,m) = d
to be a common divisor of m and n such that if b is another common divisor of
m and n then b divides d

Definition 1.0.5. Let m,n ∈ Z both be positive. We define the lcm(n,m) = L
to be a common multiple of m and n such that if k is another common multiple
of m and n then L divides k
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Both gcds and lcms exist for pairs of positive integers (and the concepts can
be extended to encompass airs of nonzero integers). This fact is a consequence of
the Euclidean algorithm (either directly or through the Fundamental Theorem
of Arithmetic). The following result shows that the two concepts are intimately
related.

Proposition 1.0.6. Let m and n be positive integers and let L = lcm(m,n)
and d = gcd(m,n). Then dL = mn.

Proof. Since d divides both m and n, mnd is a common multiple of m and n and
hence L divides mn

d and hence dL divides mn. Write L = km = jn and it is
easy to see that gcd(k, j) = 1 (otherwise L is not the least common multiple).
Also we can write m = dm′ and n = dn′ with gcd(m′, n′) = 1. We obtain

km′ = jn′.

Since m′ and n′ are relatively prime, this implies that n′ divides k (verify).
Hence we have that L = km = kdm′ = k′n′dm′ = k′nm′. Hence we have that
dL = k′mn ≥ mn. So we have that dL divides mn and dL ≥ mn and so we
have equality.



Chapter 2

Groups: A First Look

2.1 Basics and Definitions

Definition 2.1.1. Let S be a nonempty set equipped with a binary operation
S × S −→ S which is associative (that is, a(bc) = (ab)c for all a, b, c ∈ S) is
called a semigroup.

Definition 2.1.2. A semigroup, M , which also possesses an element, e (referred
to as an identity) such that em = me = m for all m/inM is called a monoid.

Definition 2.1.3. A monoid, G with the property that for all x ∈ G, there is
an element y ∈ G such that xy = yx = e is called a group.

Loosely speaking, a group is a set with an associative binary operation that
also has an identity and inverses. If the cardinality of the set underlying the
group G is finite, we say that G is a finite group. The next terminology is
important enough to justify its own definition.

Definition 2.1.4. If G is a group such that xy = yx for all x, y ∈ G, we say
that G is an abelian group.

We remark that analogous terminology is sometimes employed for semi-
groups and monoids as well.

Example 2.1.5. 1. Z,Q,R,C are all groups under addition.

2. Continuous funtions on the interval [0, 1], C[0, 1], is a group under addi-
tion.

3. All of the above examples are monoids under multiplication.

4. Symmetries of an n−gon form a finite, nonabelian (if n > 2) group.

5. Sn := {f : {1, 2, · · · , n} −→ {1, 2, · · · , n}|f is bijective} forms a finite
group of order n!.
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Example 2.1.6. Consider the subset of the integers modulo n (Zn) consisting
of integers m such that the gcd(n,m) = 1. This set is denoted by U(Zn) and
forms a finite group under multiplication.

Example 2.1.7. We define two rational numbers to be equivalent if their dif-
ference is an integer. That is a ∼ b ⇐⇒ a − b ∈ Z. Verify that this is an
equivalence realtion and that the set of equivalence classes (denoted by Q/Z)
forms an infinite abelian group with the addition rule given by a + b = a+ b
(where x denotes the equivalence class of x).

Proposition 2.1.8. Let G be a group

a) e ∈ G is unique.

b) ∀x ∈ G, x−1 is unique.

c) (x−1)−1 = x ∀ ∈ G.

d) (xy)−1 = y−1x−1 ∀x, y ∈ G.

Definition 2.1.9. Let G be a group.

a) The order of G (|G|)is the cardinality of the set underlying G.

b) If x ∈ G, then the order of the element X (written |x| or ◦(x) is the
smallest positive integer n such that xn = e (if no such n exists, we say
that ◦(x) =∞).

c) The exponent of G, exp(G) is the smallest positive integer m such that
xm = e for all x ∈ G (if no such m exists, we say that exp(G) =∞).

2.2 Some Important Examples: Dihedral, Sym-
metric, Matrix Groups and the Quaternions

We first look at the dihedral group. This group clearly has at its heart a
geometric definition that is based on symmetry. Let n ≥ 2 be an integer; we
consider all of the possible symmetries of the n−gon (the case n = 2 deserves
special degenerate attention).

The dihedral group of on the n−gon (which we denote by Dn) is the group
of all 2n symmetries on a regular n−gon. We define it formally in terms of
generators and relations as follows.

Theorem 2.2.1. The group set Dn = {x, y|xn = e = y2, y−1xy = x−1} forms
a group of order 2n.

The group defined by the generators and relations above is called the dihedral
group of order 2n.

Another important group is the symmetric group alluded to before.
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Theorem 2.2.2. The set of bijective functions from a set of n objects to itself
forms a group under multiplication called the symmetric group (on n letters) of
order n!.

Remark 2.2.3. Note that Sn coincides with Dm if and only if n = m = 3. Also
Dn (resp. Sn is abelian if and only if n = 2). Also note that Dn is contained
in Sn (whatever that means at this point).

Example 2.2.4. Do some computations with cyclic notation. Observe that
disjoint cycles commute and that every element of Sn can be written as a product
of disjoint cycles (and can be written as a product of transpositions).

Matrices also offer a rich supply of groups.

Definition 2.2.5. Let F be a field. We define

a) GLn(F) = {M ∈Matn(F)|det(M) 6= 0}

b) SLn(F) = {M ∈Matn(F)|det(M) = 1}

Theorem 2.2.6. If |F| = q <∞ then |GLn(F)| =
∏n−1
i=0 (qn − qi).

Proof. Use linear independence and counting.

The quaternions are an interesting group that tends to rear its head quite
often.

Definition 2.2.7. The quaternion group Q8 is generated by the elements i, j, k
with the relations i2 = j2 = k2 = −1, ij = k, jk = i, ki = j.

Example 2.2.8. Write Q8 as a subgroup of SL2(C).

2.3 Morphisms and Subgroups

Definition 2.3.1. Let G and H be groups (monoids, semigroups). A function
f : G −→ H is a homomorphism if

f(xy) = f(x)f(y) ∀x, y ∈ G.

There are types of homomorphisms worth noting.

Definition 2.3.2. Let f : G −→ H be a homomorphism. If f is 1-1, we
say that f is a monomorphism or injective. If f is onto we say that f is an
epimorphism or surjective. If f is both 1-1 and onto, we say that f is an
isomorphism. If H = G we say that f is an endomorphism and if H = G and
f is an isomorphism, we say that f is an automorphism.

Example 2.3.3. The function f(x) = ln(x) is a homomorphism from the mul-
tiplicative group of positive reals to the additive group of the reals. In the same
fashion, g(x) = ex is a function from the additive group of reals the multiplica-
tive groups of ositive reals.
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Example 2.3.4. a) Z −→ Zn

b) A −→ A via a −→ a−1 when A is abelian (or more generally a −→ an).

c) φx(y) = x−1yx

Definition 2.3.5. Let G be a group and H a nonempty subset of G that is itself
a group. We say that H is a subgroup of G (H < G).

Example 2.3.6. What are the subgroups of S3, Z, Q? Note that if k ≤ n then
Sk is a subgroup of Sn. Is the same true if we replace S by D? Note, however,
that Dn < Sn.

Here is a useful result for determining subgroups.

Proposition 2.3.7. H < G is a subgroup if and only if for all x, y ∈ H,
xy−1 ∈ H.

Here we will define some important subgroups that will come up over and
over.

Proposition 2.3.8. Let f : G −→ H be a homomorphism of groups and let A
be a subset of G.

a) ker(f) = {x ∈ G|f(x) = eH} is a subgroup of G.

b) im(f) = {f(x)|x ∈ G} is a subgroup of H.

c) Z(G) = {z ∈ G|zg = gz,∀g ∈ G} is a subgroup of G (and is called the
center.

d) CG(A) = {g ∈ G|ga = ag,∀g ∈ G and ∀a ∈ A} (the centralizer of A in
G) is a subgroup of G.

e) NG(A) = {g ∈ G|g−1Ag = A} (the normalizer of A in G) is a subgroup
of G.

Proof. Exercise.

Here are some elementary properties of homomorphisms.

Theorem 2.3.9. Let f : G −→ H be a homomorphism of groups.

a) f(eG) = eH .

b) f(xn) = (f(x))n.

c) f is 1-1 ⇐⇒ ker(f) = eG.

d) f is onto ⇐⇒ im(f) = H.

e) f is an isomorphism ⇐⇒ ∃g : H −→ G such that gf = 1G and fg = 1H .

Proof. Easy.
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Definition 2.3.10. Let · · · //Gn
fn //Gn+1

fn+1 //Gn+2
// · · · be a se-

quence of groups and group homomorphisms. We say that the sequence is exact
at Gn if ker(fn+1) = im(fn). The sequence is exact if it exact at Gn for all n.

Proposition 2.3.11. Let G be a group and {Hi}i∈Λ be a family of subgroups
of G. Then

⋂
i∈ΛHi is also a subgroup of G.

Proof. Easy.

Definition 2.3.12. Let G be a group and X a subset of G. We define the
subgroup generated by X to be

〈X〉 =
⋂

X⊆H: a subgroup

H

It should be noted that from a computational point of view, the subgroup
generated by X is merely composed or all“words” composed from X. Also, even
though the intersection of groups is a group, the union is not in general. We
define H ∨K to be the “join” or the group generated by the union of the sets
H and K.

EXERCISES:

1. Let G be a finite group of order n. Show that any element of G is of finite
order and show the exponent of G is bounded by n.

2. Show that the order of any element in Sn is bounded above by e
n
e .

3. Show that any group of exponent 2 is abelian.

4. Show that any finite group generated by two element of order 2 is dihedral.

5. Show that that the semigroup G is a group if and only if G possesses a
left identity and every element of G has a left inverse (what if one of the
“lefts” is replaced by “right”?)

6. LetG be a group, show that Aut(G) is a group under function composition.

7. Show that Z is isomorphic to all of its nonidentity subgroups.

8. Show that A is an abelian group if and only if the map f(a) = a−1 is an
automorphism of A.

9. Show that Q8 is a subgroup of SL2(C) generated by the matrices
0 1

−1 0

 and


0 i

i 0

 .

Show that Q8 is not isomorphic to D4 (and can you find both of these
groups on the Rubik’s cube)?
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10. Compute Aut(Z), Aut(Z6), Aut(Z8), and Aut(Z2 ⊕ Z2).

11. Let G be a group and H a finite subset of G closed under the product
from G. Show that H is a subgoup.

12. Consider the following sequence of group (homomorphisms)

Z
φ //Z

ψ //G //0

where φ(n) = 2n. What familiar group must G be isomorphic to for the
sequence to be exact?

13. Let G = 〈X〉 and let f : G −→ H. Show that im(f) = 〈f(X)〉 and that
ker(f) = 〈Z〉 where Z = {x ∈ X|f(x) = eH}.

14. Let G be a group. For any x ∈ G we define φx : G −→ G by φx(y) =
x−1yx. Show that φx is an element of Aut(G). We define Inn(G) =
{φx|x ∈ G}. Show that Inn(G) is a subgroup of Aut(G). Give examples
to show that they are not equal in general.

2.4 The Classification of Cyclic Groups

Definition 2.4.1. We say that the group G is cyclic if it can be generated by a
single element (i.e. there is an x ∈ G such that g = xn for all g ∈ G).

The following theorem gives a complete description of the cyclic groups.

Theorem 2.4.2. Let G be a group. The following conditions are equivalent.

a) G is cyclic.

b) G is a homomorphic image of Z.

c) All homomorphic images of G are cyclic.

d) All subgroups of G are cyclic.

e) G is isomorphic to Zn for some n ≥ 0.

Proof. It is clear that both c) and d) imply a). We will show a)=⇒ b)=⇒ c)=⇒
e) =⇒ d).

a)=⇒ b): Since G is cyclic, G = {xn|n ∈ Z}. We define φ : Z −→ G by
φ(n) = xn. It is easy to verify that this is a surjective homomorphism.

b)=⇒ c): We have Z −→ G −→ H. So in particular, H is a homomorphic
image of Z. Verify that H = 〈f(1)〉.

c)=⇒ e): In particular, c) means that G itself is cyclic. If G = {xn|n ∈ Z}
is infinite then φ : G −→ Z via φ(xn) = n is an isomorphism. Additionally, if G
is finite then the “same” map gives an isomorphism to Zn.
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e)=⇒ d) In particular, G = {xn|n ∈ Z} is cyclic. Let H < G be a subgroup
and the m be the smallest positive integer such that xm is in H (if no such m
exists, then H is the identity subgroup). Now let xN ∈ H with N positive. We
use the Euclidean algorithm to write

N = qm+ r

noindent with 0 ≤ r < m. If r 6= 0 then xr ∈ H which is a contradiction.
Therefore, r = 0 and hence H = 〈xm〉 and we are done.

Corollary 2.4.3. Any cyclic group is countable.

Corollary 2.4.4. If G is a finite cyclic group of order n and m divides n, then
G has a unique subgroup of order m.

Proof. Let |G| = n and let m divide n (say n = km). If x is the generator
of G then it is easy to see that xk generates a subgroup of order m (say H).
It remains to see that this subgroup is unique. Suppose that K is another
subgroup of order m. We will say that K = 〈xj〉. Note that xjm = 1 = xkm.
Therefore both jm and km are multiples of n (and no smaller multiple of j or
k is a multiple of n).

jm = dn

and gcd(d,m) = 1 (else the order is lowered). Therefore, d divides j (verify).
We write j = db and obtain

dbm = dn

and so bm = n and so b = k and j = dk. We now have that xj = (xk)d and so
K = 〈xj〉 ⊆ 〈xk〉 = H and since the ordrs are the same, we have equality.

We note that this explains the definition of order of an element. If x ∈ G
then |x| = |〈x〉|.

EXERCISES:

1. Let f : G −→ H be a group homomorphism and let x ∈ G. Show that
if f is 1-1, then |f(x)| = |x|. Also show that generally, if |f(x)| is finite,
then either |x| =∞ or |f(x)| divides |x|.

2. Show that G is finite if and only if G possesses only finitely many sub-
groups.

3. Show that an infinite group is cyclic if and only if it is isomorphic to all
of its nonidentity subgroups.
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Chapter 3

Cosets, Normality, and
Quotient Structures

3.1 Cosets and counting Techniques

The order of a finite group plays a significant role in the classification of the
group. Here we begin the discussion.

Definition 3.1.1. Let H < G and a, b ∈ G. We say that a is right (left)
congruent to b modulo H if ab−1(a−1b) ∈ H.

It should be observed that if G is abelian, then ab−1 ∈ H ⇐⇒ a−1b ∈
H. This is true more generally, in fact, and the equivalence of left and right
congruence modulo H is quite important.

Theorem 3.1.2. Let H < G

a) Right (left) congruence modulo H is an equivalence relation on G.

b) [a] under under right (left) congruence is Ha = {ha|h ∈ H} (aH =
{ah|h ∈ H}).

c) |Ha| = |H| = |aH| for all a ∈ G.

We remark that Ha is called a right coset and aH is called a left coset. It
is important when Ha = aH for all a ∈ G).

Proof. We do the proof only for the “right” case. It is easy to verify that
congruence modulo H is reflexive, symmetric, and transitive. The equivalence
class of a is the set {g ∈ G|g ∼ a}. But g ∼ a means that ga−1 ∈ H, i.e.,
g ∈ Ha. For part c) consider the map φ : Ha −→ H given by φ(ha) = h. It is
easy to verify that this is 1-1 and onto.

Corollary 3.1.3. Let H < G.

13
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a) 2 right (left) cosets of H in G are either disjoint or equal.

b) G =
⋃

disjointHa

c) ∀a, b ∈ G,Ha = Hb⇐⇒ ab−1 ∈ H and aH = bH ⇐⇒ b−1a ∈ H.

d) If R is the set of distinct right cosets of H in G and L is the set of distinct
left cosets of H in G then |R| = |L|.

Proof. a): Suppose that x is in Ha and Hb. We write x = ha = h1b. Now let
h2a ∈ Ha be arbitrary. Note that a = h−1h1b and so h2a = h2h

−1h1 ∈ Hb and
so Ha ⊆ Hb by symmetry, we have equality.

b): Note first that if g ∈ G, then g ∈ Hg. Now the previous part makes this
obvious.

c): Clear from part a) as well.
d): We define ψ : R −→ L by ψ(Ha) = a−1H. Clearly ψ is onto. To see

1-1, note that a−1H = b−1H ⇐⇒ ba−1 ∈ H. Hence Hb = Ha

These warm-up results give us some powerful tools for classical counting
results in group theory.

Definition 3.1.4. Let H < G then the index of H in G (written [G : H]) is
the number of distinct right (left) cosets of H in G.

Example 3.1.5. Consider the group S3 and let H be a subgroup of order 3 and
K a subgroup of order 2. Compare the cosets of H and K in G.

Theorem 3.1.6. If K < H < G then [G : K] = [G : H][H : K].

Note that if any of two of the three above indices are finite, then so is the
third.

Proof. Let H =
⋃
j∈J Kbj and G =

⋃
i∈I Hai (with |J | = [H : K] and |I| =

[G : H]). It suffices to show that {Kbjai|j ∈ J, i ∈ I} is a complete set of coset
representatives of K in G. To see that⋃

(i,j)∈I×J

Kbjai =
⋃
i∈I

(
⋃
j∈J

Kbj)ai = G

we let g ∈ G. Note that g = hai and h = kbj , therefore g = kbjai.
Now assume that Kbjai = Kbj′ai′ therefore bjai = kbj′ai′ . Recalling the

the b’s and k are elements of H, we obtain Hbjai = Hkbj′ai′ or more compactly,
Hai = Hai′ and hence i = i′. Since therefore ai = ai′ we have that bj = kbj′

and hence Kbj = Kbj′ and hence j = j′. This concludes the proof.

Here is a famous, useful and generally smokin’ corollary.

Corollary 3.1.7. (Lagrange) If H < G then |G| = [G : H]|H|. In particular if
G is finite and a ∈ G then |a| and |H| both divide |G|.

Proof. The previous result with K = e.
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At this juncture we make the notational convention that if H and K are
subgroups of G then HK = {hk|h ∈ H, k ∈ K}. Note that in general, this is a
set and has no additional structure.

Theorem 3.1.8. Let H and K be finite subgroups of G. Then |HK| = |H||K|
|H

⋂
K| .

Proof. L = H
⋂
K is a subgroup of K of index n = |K|

|H
⋂
K| (and we write

K := Lk1

⋃
Lk2

⋃
· · ·
⋃
Lkn). Also note that HL < H since L is a subgroup

of H. So HK is the disjoint union Hk1

⋃
Hk2

⋃
· · ·
⋃
Hkn. Therefore |HK| =

|H|n = |H||K|
|H

⋂
K| . This completes the proof.

Proposition 3.1.9. Let H,K < G then [H : H
⋂
K] ≤ [G : K]. If [G : K] <∞

then [H : H
⋂
K] = [G : K]⇐⇒ G = KH.

Proof. Exercise.

Theorem 3.1.10. Let H and K be subgroups of finite index in G. Then [G :
H
⋂
K] is finite and [G : H

⋂
K] ≤ [G : H][G : K] and equality holds if and

only if G = HK.

Proof. [G : H
⋂
K] = [G : H][H : H

⋂
K] ≤ [G : H][G : K] (by previous and

therefore finite). Additionally [G : H
⋂
K] = [G : H][H : H

⋂
K] = [G : H][G :

K]⇐⇒ G = HK (again by previous).

EXERCISES:

1. Prove the unproven result(s) above.

2. Let H,K < G then HK is a subgroup of G if and only if HK = KH.

3. Let G be a finite group and H a normal subgroup of G such that |H| is
relatively prime to k = [G : H]. Show that H is the unique subgroup of
G of index k (too early?).

4. Classify all groups of order p, 4 and 6.

5. Show that if H and K are subgroups of G with finite index such that
gcd([G : H] : [G : K]) = 1 then G = HK.

3.2 Normal Subgroups

Theorem 3.2.1. Let N < G the following are equivalent:

a) Right and left equivalence modulo N coincide (every equivalence class [a]
is the same under left and right equivalence).

b) Every left coset of N in G is also a right coset.
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c) aN = Na for all a ∈ G.

d) ∀a ∈ G, a−1Na ⊆ N .

e) ∀a ∈ G, a−1Na = N .

We say that any subgroup satisfying one and hence all of the above conditions
is normal in G.

Proof. We will show e) =⇒ d) =⇒ c) =⇒ b) =⇒ a) =⇒ e) and first note that
e) =⇒ d) and c) =⇒ b) and a)⇐⇒ c) are clear.

d) =⇒ c): a−1Na ⊆ N for all a ∈ G and hence Na ⊆ aN for all a ∈ G. Also
note that aNa−1 ⊆ N and so aN ⊆ Na. This gives aN = Na.

b) =⇒ a): Given that aN = Nb, we have that a ∈ Nb. Therefore Na = Nb
and Na = aN for all a ∈ G. Hence right and left equivalence coincide.

a) =⇒ e): aN = Na and so N = a−1Na.

Example 3.2.2. 1. Every subgroup of an abelian group in normal.

2. Z(G) is a normal subgroup of G

3. The trivial subgroups are normal.

4. G′ := 〈{xyx−1y−1|x, y ∈ G} is a normal subgroup (called the commutator
subgroup of G.

5. Let f : G −→ H is a group homomorphism, then ker(f) is a normal
subgroup of G.

6. Let H < G be a subgroup of G such that σ(H) ⊆ H,∀σ ∈ Aut(G), then H
is a normal subgroup of G (called a characteristic subgroup).

7. An is normal in Sn and Zm is normal in Dm.

Definition 3.2.3. We say that the group G is simple if the only normal sub-
groups of G are G and {e}.

Theorem 3.2.4. Let K and N be subgroups of G with N normal in G.

a) N
⋂
K is normal in K.

b) N is normal in N ∨K.

c) NK = N ∨K = KN .

d) If K is normal in G and K
⋂
N = {eG} then nk = kn,∀k ∈ K,n ∈ N .

Proof. a) Easy. b) All you need here is for k−1nk ∈ N for all k ∈ K and this
holds. c) Clearly NK ⊆ N ∨K to show equality, it suffices to show that NK
is a group. Clearly NK contains the identity. Suppoer that nk, n1k1 ∈ NK.
Note that nkn1k1 = n(kn1k

−1)kk1 ∈ NK. Also note that (nk)−1 = k−1n−1 =
k−1n−1kk−1 ∈ NK. So NK = N ∨ K. To see that NK = KN note that
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nk = kk−1nk ∈ KN . By symmetry, we have equality. d) Assume additionally
that K is normal in G and N

⋂
N = {eG}. With this in hand we note that

nkn−1k−1 is necessarily an element of N since N is normal and is an element
of K since K is also normal. Hence this commutator is in N

⋂
H and hence is

the identity. So we have that nk = kn.

Theorem 3.2.5. Let N be a normal subgroup of G and G/N the set of left
cosets of N in G. Then G/N is a group of order [G : N ] under the operation
(aN)(bN) = abN .

Proof. It suffices to show that if a ≡ xmod(N) and b ≡ ymod(N) then ab ≡
xymod(N). Do so.

Proposition 3.2.6. Let N �G. Then the natural map πN : G −→ G/N is an
epimorphism of groups.

Proof. Easy.

Example 3.2.7. Sn/An and Z modulo mZ.

Here is an important universal mapping property that illustrates one of the
important facets of normal subgroups.

Theorem 3.2.8. Let f : G −→ H be a homomorphism of groups, N � G
and N ⊆ ker(f). Then there exists a unique homomorphism f : G/N −→ H
such that f(aN) = f(a),∀a ∈ G. What is more, im(f) = im(f) and ker(f) =
ker(f)/N .

G
f //

π

��

H

G/N

f

99t
t

t
t

t
(fπ = f)

Remark 3.2.9. It is worth noting at this point that f is an isomorphism if and
only if f is onto and ker(f) = N .

Proof. The map that we need is

f : G/N −→ H; f(aN) = f(a).

We first must show that this map is well-defined. Suppose that aN = bN ,
hence a = bn for some n ∈ N . This gives that f(a) = f(bn) = f(b)f(n) = (b)
since b ∈ N ⊆ ker(f). Homomorphism and the equalities of image and kernal
are easy to verify.

Corollary 3.2.10. (First Isomorphism Theorem) If f : G −→ H is a homo-
morphism, then f induces an isomorphism f : G/ker(f) −→ im(f).

Here is a more general corollary.
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Corollary 3.2.11. If f : G −→ H is a homomorphism, N � G,M � H and
f(N) ⊆M . Then f induces a homomorphism

f : G/N −→ H/M, (aN 7−→ f(a)M)

and f is an isomorphism ⇐⇒ im(f)∨M = H and f−1(M) ⊆ N . In particular,
if f is onto such that f(N) = M and ker(f) ⊆ N , then f is an isomorphism.

Remark 3.2.12. Note that in the previous if N = ker(f) and M = {eH}, then
we recover the first isomorphism theorem.

Proof. Consider the given map. First assume that aN = bN . Of course this
means that an = b for some n ∈ N . So f(b)M = f(an)M = f(a)f(n)M =
f(a)M since f(N) ⊆M . So the map is well-defined and it is easy to verify that
it is a homomorphism.

Now if f is an isomorphism, this means that every element of H/M is of the
form f(a)M where a ∈ G, hence im(f) and M together must generate H. And
since f is 1-1, the preimage of M must be contained in N . It is also clear that
these two conditions guarantee that f is an isomorphism.

Corollary 3.2.13. (Second Isomorphism Theorem) If K and N are subgroups
of G with N normal in G, then K/(N

⋂
K) ∼= NK/N .

Proof. We remark first that (as left to exercises) that N
⋂
K �K. Also NK is

a group since N is normal in G and N �NK.
We first define f : K −→ NK/N by f(k) = kN . Note that ker(f) =

{k ∈ K|kN ⊆ N} = K
⋂
N . We now claim that f is onto. To see this, let

nkN ∈ NK/N . Note that nkN = k(k−1nk)N = kN = f(k) so f is surjective.
Since f is onto and the kernal is N

⋂
K, the first isomorphism theorem gives

K/(N
⋂
K) ∼= NK/N .

Corollary 3.2.14. (Third Isomorphism Theorem) Let H and K be normal
subgroups of G and K ⊆ H. Then H/K �G/K and (G/K)/(H/K) ∼= G/H.

Once again, here is a more sweeping result.

Theorem 3.2.15. Let f : G −→ H be an epimorphism. Then the assignment
K 7−→ f(K) is a 1-1 correspondence between the set of all subgroups of G
containing the kernal of f and all subgroups of H. What is more, K is normal
in G if and only if f(K) is normal in H.

Corollary 3.2.16. Let N�G, then every subgroup of G/N is of the form K/N
where N ⊆ K ⊆ G. Additionally, K/N �G/N ⇐⇒ K �G.

EXERCISES:

1. Prove the unproven result(s) above.

2. Let N ⊆ G such that [G : N ] = 2. Show that N �G.
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3. Verify the example(s) from this section.

4. Classify all groups of order p (try for p2).

5. Show that if G is a group such that G/Z(G) is cyclic, then G is abelian.

6. Find all normal subgroups of Dn. Also compute Z(Dn).

7. Let G′ = 〈{x−1y−1xy|x, y ∈ G}〉 be the commutator subgroup of G.

a) Show G′ �G.

b) Show that G′ is a characteristic subgroup of G.

c) Show that if f : G −→ A is a homomorphism with A abelian, then
G′ ⊆ ker(f).

3.3 The Symmetric and Alternating Groups

We take Sn and Dn as defined as before.

Definition 3.3.1. A cycle is an element of Sn of the form (a1, · · · , ak) with
the ai’s distinct elements of {1, 2, · · · , n}. A cycle is called a transposition (or
involution) if k = 2.

Example 3.3.2. Write some elements as cycle decompositions. Find inverses
and orders of cycles.

Definition 3.3.3. We say that σ1, σ2, · · · , σr ∈ Sn are disjoint if for all 1 ≤
i ≤ r and k ∈ {1, 2, · · · , n}, σi(k) 6= k =⇒ σj(k) = k, ∀j 6= i.

Theorem 3.3.4. Every element of Sn is uniquely a product of disjoint cycles.

Proof. Exercise.

Corollary 3.3.5. Let σ ∈ Sn be a product of disjoint cycles c1c2 · · · ck of re-
spective orders m1,m2, · · · ,mk. Then |σ| = lcm(m1,m2, · · · ,k ).

Proof. It is clear that if L = lcm(m1, · · · ,mk) then σL is the identity. Hence L
is a multiple of the order of σ. We will show that L ≤ |σ| by induction on the
number of disjoint cycles (k). If k = 1 the result clearly holds. Assume that
the result holds for k = r. Now assume that σ is a product of r + 1 disjoint
cycles, c1, c2, · · · , cr+1 of respective lengths m1,m2, · · · ,mr+1. By the above
and induction, the order of (c1) · · · (cr) is precisely lcm(m1,m2, · · · ,mr). Since
(cr+1) is disjoint from (c1) · · · (cr), the order of σ must be a common multiple
of the respective orders. This concludes the inductive step.

Corollary 3.3.6. Every element of Sn is a product of transpositions.

Proof. It is easy to see that (1n)(1n− 1) · · · (13)(12) = (123 · · ·n). Since every
cycle is a product of transpositions and every element of Sn is a product of
cycles, this shows the result.
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Theorem 3.3.7. Let σ ∈ Sn. If σ = τ1τ2 · · · τk = ξ1ξ2 · · · ξm where each τi and
ξj is a transposition, then k ≡ m mod(2).

Proof. It suffices to show that the identity element cannot be written as an odd
product of transpositions and we will induct on n. If n = 2, that is Sn = S2

then it is clear that the identity cannot be written as an odd product of (1 2).
We suppose that the result holds for Sn and we will show it for Sn+1.

We first make the following observations about rearranging transpositions:

(1b)(1c) = (1cb) = (1c)(cb), (c 6= b)

and

(ab)(1c) = (1c)(ab),

and

(ab)(1a) = (1ba) = (1b)(ab).(b 6= 1).

Suppose that τ1τ2 · · · τ2n+1 = e. If none of the transpositions τi involves
a “1” (if it does then we will call it a 1-transposition) then we are done by
induction (as the above product could be thought of as taking place in Sn).
The last two displayed realtions above show that we can rearrange successive
transpositions as to get all the transpositions involving a “1” to the left (and
notice that if during the algorithm we ever encounter (1 x)(1 x) then cancellation
occurs in pairs preserving the parity of the original 2n+ 1.

Additionally notice that the first relation allow us to take all of our transpo-
sitions at the left (involving the “1”’s) can be rearranged (reducing the number
of 1-transpositions by 1 and preserving the length). We can keep applying the
first relation and since the product of the transpositions is the identity, and
cancellation must occur in pairs, then we get

τ1τ2 · · · τ2m+1 = e

which contradicts the inductive hypothesis. This completes the proof.

With the previous result in hand, the following definition is a natural one.

Definition 3.3.8. We say that σ ∈ Sn is even (resp. odd) if it is the product
of an even (resp. odd) number of transpositions.

Proposition 3.3.9. For all n ≥ 2 we let An = {σ ∈ Sn|σ is odd}. Then
An � Sn and |An| = n!

2 . Also An is the unique subgroup of Sn of index 2.

Proof. Most of this can be captured via noting that An = ker(f) where f :
Sn −→ {±1}.

We will now strive to prove a rather big result.

Theorem 3.3.10. An is simple ⇐⇒ n 6= 4.
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The proof of this will require a number of lemmata a number of which are
of independent interest.

Lemma 3.3.11. Let r, s be distinct in {1, 2, · · · , n}. Then An (n ≥ 3) is
generated by all 3-cycles {(rsk)|1 ≤ k ≤ n, k 6= r, s}.

Proof. Note that any 3-cycle is an element of An so it suffices to show the other
containment. Of course any element of An is a product of elements of the form
(ab)(ac) or (ab)(cd) with a, b, c, d all distinct. The equations

(ab)(ac) = (acb)

and

(ab)(cd) = (cba)(dac)

show the necessary containment.

Lemma 3.3.12. If N �An (n ≥ 3), and N contains a 3-cycle, then N = An.

Proof. Let (rsc) ∈ N and let k 6= r, s. Note that (rsk) = (rs)(ck)[(rsc)(rsc)](ck)(rs) ∈
N .

We now prove the result that An is simple for n 6= 4.

Proof. Let case for 2 and 3 are trivial. Also note that the Klein four group
H = {e, (12)(34), (13)(24), (14)(23)}�A4.

With this noted, we will assume that n ≥ 5 and N �An. We also note that
if N is properly contained in An then N contains no 3-cycle.

Case 1: If N contains an element σ such that σ has a cycle of length at least
4 in its cycle decomposition. We write σ = (a1a2 · · · ar)τ where r ≥ 4
and τ is disjoint from the cycle. Let ξ = (a1a2a3) ∈ An and note that
σ−1ξσξ−1 ∈ N . Therefore

τ−1(ar · · · a1)(a1a2a3)(a1a2 · · · ar)τ(a3a2a1) = (a1a3ar) ∈ N

which is a contradiction.

Case 2: Assume now that N contains an element σ that is a product of disjoint
cycles, at least 2 of which have length 3. In the spirit of the previous, we
will write σ = (a1a2a3)(a4a5a6)τ . As before we will let ξ = (a1a2a4) ∈
An. Again, N must contain the element σ−1ξσξ−1 = (a1a4a2a6a3) which
reverts us tothe previous case.

Case 3: N contains an element σ that is the product of one 3-cycle and the rest
(disjoint) 2-cycles. We write σ = (a1a2a3)τ with τ a product of disjoint
2-cycles. Hence σ2 = (a3a2a1) ∈ N and we have a contradiction.
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Case 4: every element of N is a product of disjoint transpositions (an even number
in fact since N �An). We write σ = (a1a2)(a3a4)τ (where τ is a product
of disjoint transpositions). Note that if δ = (a1a2a3) then σ−1δσδ−1 =
(a1a3)(a2a4) ∈ N . Since n ≥ 5 we pick an element a5 distinct from the
others. Let x = (a1a3a5) and y = (a1a3)(a2a4), and note that yxyx−1 =
(a1a3a5) ∈ N .

This concludes the proof.

EXERCISES:

1. Prove the unproven results from this section.

2. Prove that Sn is generated by {(1 2), (1 3), · · · , (1 n)}.

3. Prove that Sn is generated by {(1 2), (2 3), · · · , (n− 1 n)}.

4. Prove that Sn is generated by {(1 2) and (1 2 · · ·n).

5. Prove that Sn is generated by {(1 2) and (2 3 4 · · ·n).

6. Compute Z(Dn).

7. Find all normal subgroups of Dn.

8. Show that A4 has no subgroup of order 6.

9. Let N = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. Show that N � A4 and
N �A4. Additionally show that S4/N ∼= S3 and that A4/N ∼= Z3.

10. For all divisors, d, of 120 find a subgroup of S5 of order d or prove that
one does not exist.

3.4 Direct Products and Direct Sums

Definition 3.4.1. Let {Gi}i∈I be a family of groups. We define the direct
product of the family {Gi}i∈I to be the group with underlying set

∏
i∈I Gi and

operation defined by {ai}{bi} = {aibi}.

Definition 3.4.2. Let {Gi}i∈I be a family of groups. We define the weak direct
product of the family {Gi}i∈I to be the subgroup of

∏
i∈I Gi given by

∐
i∈I Gi =∏w

i∈I Gi = {{ai}|ai = eGi
almost everywhere}.

We remark here that if eash Gi is abelian then we often use the terminology
“direct sum” for weak direct product. The notation ⊕i∈IGi will be used.

Theorem 3.4.3. If {Gi}i∈I is any family of groups, then

a)
∏
i∈I Gi is a group.
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b) ∀k ∈ I, πk :
∏
i∈I Gi −→ Gk given by πk({ai}) = ak is an epimorphism of

groups.

Proof. Easy.

The next result is the universal mapping property (UMP) of the direct prod-
ucts.

Theorem 3.4.4. Let {Gi}i∈I be a family of groups and {φi : H −→ Gi|i ∈ I}
group homomorphisms. Then there exists a unique Φ : H −→

∏
i∈I Gi such that

πiΦ = φi,∀i ∈ I. The direct product is uniquely determined (up to isomorphism)
with respect to this property.∏

i∈I Gi

πk

��

H
Φoo_ _ _ _ _

φk
xxqqqqqqqqqqqqq

Gk (πkΦ = φk)

Proof. We define Φ : H −→
∏
i∈I Gi by Φ(h) = {φi(h)}i∈I . It is easy to see

that Φ is a homomorphism making the diagram commute. To see uniqueness
of Φ let ξ be another such map. Note that ξ(h) = {xi}i∈I . Now observe that
πiξ = xi = φi(h).

To see that the direct product is the unique solution to this UMP, suppose
that H (equipped with maps hi : H −→ Gi. So given we have the following:∏

i∈I Gi

πk

��

H
Φoo_ _ _ _ _

hk
xxqqqqqqqqqqqqq

Gk (πkΦ = φk)

since
∏
i∈I Gi is a solution to the universal mapping problem. But H is a

solution so we get a similar diagram:

H

hk

��

∏
i∈I Gi

foo_ _ _ _

πk

zztttttttttt

Gk (hkf = φk)

Gluing together the diagrams in the obvious fashion, we obtain

∏
i∈I Gi

πk

##GGGGGGGGG H
Φoo_ _ _

hi

��

∏
i∈I Gi

foo_ _ _

πk

{{wwwwwwwww

1∏
Gi

{{

Gi
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Note the the identity map is a solution to the UMP, and by uniqueness, this
must be the solution. We obtain therefore that

Φ ◦ f = 1∏
i∈I Gi

using the symmetric picture we get that

f ◦ Φ = 1H

so we get that H ∼=
∏
i∈I Gi.

Theorem 3.4.5. If {Gi}i∈I is a family of groups, then

a)
∐
i∈I Gi �

∏
i∈I Gi,

b) ∀k ∈ I, the map ιk : Gk −→
∐
i∈I Gi given by ι(x) = {xi} where xi = eGi

if i 6= k and xk = x is a monomorphism of groups,

c) ∀k ∈ I, ιk(Gk) �
∏
i∈I Gi.

Proof. Exercise.

We specialize to the abelian case for weak direct product to obtain a dual
universal mapping property.

Theorem 3.4.6. Let Ai be a family of abelian groups. If B is an abelian groups
and {ψi : Ai −→ B} is a family of homomorphisms then there exists a unique
Ψ : ⊕i∈IAi −→ B such that Ψιk = ψk for all k ∈ I. The property determines
the direct sum uniquely up to isomorphism.

⊕i∈IAi
Ψ //_____ B

Ak

ιk

OO

ψk

88qqqqqqqqqqqqq
(Ψιk = ψk)

Proof. Recall that if {xi} ∈ ⊕i∈IAi, then only finitely many of the xi are
nonzero. We define Ψ : ⊕i∈IAi −→ B via Ψ({xi}) =

∑
xi nonzero ψi(xi).

It is easy to see that Ψιk = ψk for all k ∈ I and that Ψ is a homomorphism.
It is also pretty easy to see that Ψ (and the direct sum) are both unique and
the proof is dual.

Theorem 3.4.7. Let Ni �G be such that

a) G = 〈
⋃
i∈I Ni〉 and

b) ∀k ∈ I,Nk
⋂
〈
⋃
i 6=kNi〉 = {eG}.

Then G ∼=
∐
i∈I Ni.
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Proof. We first remark that is a ∈ Ni and b ∈ Nj with i 6= j then ab = ba
because of the intersection property (the commutator of a and b is an element
of Ni

⋂
Nj = {e}.

Let the sequence {ai} be an element of
∐
i∈I Ni and recall that ai is the

identity almost everywhere. Let I0 ⊆ I be the subset of I such that ai 6= ei for
all i ∈ I0.

Now consider φ :
∐
i∈I Ni −→ G via

φ({ai}) =
∏
i∈I0

ai

(you should verify that this is a homomorphism).
Any element is a finite product of elements from the Ni’s. Write g ∈ G as∏
ai (recall that the elements of different Ni’s commute). It is now obvious that

g has preimage {yi} where yi = ai if i ∈ I0 and is the identity otherwise.
Now for one to one, let’s look at ker(φ). φ({ai}) =

∏
i∈I0 ai = e. For

convenience we will write this relation as

a1a2 · · · an = e.

Note that a−1 ∈ N1

⋂
〈N2

⋃
N3

⋃
· · ·
⋃
Nn〉 = e By induction each ai = e and

the map is 1-1.

Here are some quick last results.

Corollary 3.4.8. Let Ni�G. G is the (internal) weak direct product of the fam-
ily {Ni} ⇐⇒ every nonidentity a ∈ G can be written uniquely as ai1ai2 · · · ain
where ij are distinct elements of I (aij 6= e).

Theorem 3.4.9. Let fi : Gi −→ Hi be homomorphisms and f =
∏
fi be the

map from
∏
Gi to

∏
Hi given by f({ai}) 7→ {fi(ai)}. Then f is a homomor-

phism such that f(
∐
Gi) ⊆

∐
Hi. ker(f) =

∏
ker(fi), im(f) =

∏
im(fi). So f

is 1-1 and onto ⇐⇒ each fi is.

Corollary 3.4.10. Let Ni, Gi be families of groups such that Ni �Gi ∀i.

a)
∏
Ni �

∏
Gi and

∏
Gi/

∏
Ni ∼=

∏
(Gi/Ni).

b)
∐
Ni �

∐
Gi and

∐
Gi/

∐
Ni ∼=

∐
(Gi/Ni).

Proof. For both of these just use the first isomorphism theorem.

EXERCISES:

1. Show that to achieve the universal mapping property for direct sums,
abelian is really needed.

2. Show that neither Sn nor Q8 can be decomposed as a direct product of
its proper subgroups.
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3. Let G be cyclic. Show that G ∼= H ⊕K ⇐⇒ |G| = n <∞ and n is not a
prime number.

4. Let G be abelian with subgroups H and K. Show G ∼= H ⊕K if and only
if there exist homomorphisms

H
ι1
//G

π1oo π2 //
K

ι2
oo

such that

(a) π1ι1 = 1H .

(b) π2ι2 = 1K .

(c) π1ι2 = 0.

(d) π2ι1 = 0.

(e) ι1π1 + ι2π2 = 1G.

5. Every finitely generated abelian group of exponent p is isomorphic to
⊕ni=1Zp.

6. Let H,K,N be nontrivial normal subgroups of G and assume that G =
H ×K. Show that N ⊆ Z(G) or N intersects either H or K nontrivially.

7. Let G,H,K be abelian groups such that G ∼= H ⊕K and there exists φ :
G −→ H a monomorphism of groups, then there exists a monomorphism
ψ : ⊕∞i=1K −→ G (that is, G contains ⊕∞i=1K as a subgroup). Give an
example to show that G � ⊕∞i=1K in general.

3.5 Free Groups

Free groups are, in a certain sense, are the grandaddy of all groups. We have
mentioned in class that every group is contained in a permutation group. There
is a sort of dual notion here. We will see that every group is the homomorphic
image of a free group.

Definition 3.5.1. Let x = {xi}i∈I be a set. A letter is an element xi ∈ X. A
word is a formal (finite) product of the form

xε1i1x
ε2
i2
· · ·xεkik

where each xij is a letter and εj±1. We often write the word as a reduced word:

xa1i1 x
a2
i2
· · ·xakik

where ai ∈ Z (obtained by grouping consecutive elements with the same index).
The word is reduced if no two consecutive ij and ij+1 are the same.
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Theorem 3.5.2. If X is a set then F = F (X) = 〈X〉 is a group under multi-
plication described above (forming words). F is called the free group on the set
X.

Proof. Exercise.

Example 3.5.3. 〈∅〉 = {e}. 〈a〉 ∼= Z. If |X| ≥ 2 then F (X) is nonabelian. If
|X| ≥ 1 then every element of F (X) is of infinite order.

Theorem 3.5.4. Let F be free on X and ι : X −→ F the inclusion map. If
G is a group and f : X −→ G is a map of sets then there exists a unique
homomorphism of groups f : F −→ G such that fι = f .

F
f //___ G

X

ι

OO

f

>>~~~~~~~

Proof. Define f : F −→ G by f(eF ) = eG and f(xa11 · · ·xann ) := (f(x1))a1 · · · (f(xn))an .
It is easy to see that f is a homomorphism satisfying fι = f . Also if g : F −→ G
is another such homomorphism then g(xa11 · · ·xann ) = g(x1)a1 · · · g(xn)an =
g(ι(x1))a1 · · · g(ι(xn))an = f(x1)a1 · · · f(xn)an = f(xa11 · · ·xann ). Hence f is
unique.

Corollary 3.5.5. Every group G is the homomorphic image of a free group.

Proof. Let G be generated by the set X and let F be the free group on the set
X. Consider the diagram

F
f //___ G

X

ι

OO

inclusion

>>~~~~~~~

As im(f) contains all generators of G, im(f) = G.

We note that G ∼= F/N where G = 〈X〉, F is free on X and N = ker(f)
where f : F −→ G. So in effect we can understand G if we merely know X
and N . In N we have “relations” xa11 xa22 · · ·xann = e (that is, xa11 xa22 · · ·xann is
a generator of N . N is the smallest normal subgroup of F containing all the
relations.

Definition 3.5.6. Let X be a set and Y a set of reduced words on X. G is
said to be the group defined by the generators x ∈ X and the relations w = e,
(w ∈ Y ) provided G ∼= F/N where F is free on X and N � F is generated by
Y . One says that (X|Y ) is a presentation of G.
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Theorem 3.5.7. Let X be a set, Y a set of reduced words, and G the group
defined by the generators x ∈ X and w = e, (w ∈ Y ). If H is any group such
that H = 〈X〉 and H satifies all the relations w = e, (w ∈ Y ) then there is a
ring epimorphism φ : G −→ H.

Proof. Let F = F (X) and X
inclusion// H . By the previous this induces an epi-

morphism φ : F −→ H. Therefore as H satisfies all relations in Y , Y ⊆ ker(φ),
so there is φ : F/N −→ H/{0} ∼= H. Therefore G −→ F/N is onto.

Example 3.5.8. a) Dn = 〈a, b|an = 1 = b2, bab = a−1〉.

b) Cn = 〈a|an = e〉.

c) Q8 = 〈a, b|a4 = e = a2b−2 = abab−1〉.

We will briefly introduce the notion of free products. The idea is that
words are allowed to be reduced via theor groups. (So the relations of the
separate groups in the free product are employed.) For example Z2 ∗ Z3 =
{a1b1 · · · anbn|ai ∈ Z2, bi ∈ Z3}.

Theorem 3.5.9. Let Gi be a family of groups and
∏∗
i∈I Gi their free product.

If ψi : Gi −→ H are homomorphisms, then there is a unique homomorphism
Φ :

∏∗
i∈I Gi −→ H such that Φιk = ψk for all k ∈ I. This property uniquely

determines the free product up to isomorphism.

Proof. Exercise.

EXERCISES:

1. Use properties of free groups to classify all cyclc groups.

2. Let F be a free group and n ∈ Z. N = 〈{xn|x ∈ F}〉. Show that N � F .

3. Let F be free hunter on X and let Y ⊆ X. If H is the smallest normal
subgroup of F containing Y , show that F/H is free.

4. The group generated by a and b subject to the relations a8 = b2b4 =
ab−1ab = e has order no more than 16.

5. The cyclic group of order 6 is generated by a and b and the relations
a2 = b3 = a−1b−1ab = e.

6. Change the previous problem to the group generated by a and b and the
relations a2 = b3 = e then the group that we get is Z2 ∗ Z3.
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3.6 Free Abelian Groups

In this section we will always assume that our groups are abelian. “Free abelian”
is sort of like free except that there are enough relations to ensure that all
elements commute...no more and no less. Basically an element of a free abelian
group looks like a word (as it did in the free case) but now we have the added
condition that we can commute the elements of the group.

In this section, since our groups are abelian, we will write the notation
additively and we will see that there is a convenient way to think about “free
abelian” in terms of “bases”.

If A is our abelian group and X is a subset of A then we write

〈X〉 = {
k∑
i=1

nixi|n+ i ∈ Z, xi ∈ X}

Note that if |X| = 1 then 〈X〉 is cyclic.

Definition 3.6.1. We say that the set X is linearly independent if for every
finite subset {x1, · · · , xn} ⊆ X, the relation

m1x1 +m2x2 + · · ·+mnxn = 0

implies that mi = 0,∀1 ≤ i ≤ n.

Definition 3.6.2. A basis for F (if it exists) is a linearly independent subset
X ⊆ F such that 〈X〉 = F .

Theorem 3.6.3. Let F be an abelian group. TFAE

a) F has a nonempty basis.

b) F is the internal direct sum of a family of infinite cyclic groups.

c) F ∼=
∑
⊕i∈IZ.

d) There is a nonempty set X and a function ι : X −→ F such that given
any abelian group A and function f : X −→ A, there is a unique homo-
morphism f : F −→ A such that fι = f .

F
f //___ G

X

ι

OO

f

>>~~~~~~~

Proof. For a) implies b), we assume that F possesses a basis and it suffices
to show that there is a family of infinite cyclic groups 〈x〉x∈X such that F =
〈
⋃
x∈X〈a〉〉 and 〈y〉

⋂
〈
⋃
x 6=y〈x〉〉 = 0.
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Let X be our basis. Note that nx = 0 implies that n = 0 as X is linearly
independent. Assume that there is a y ∈ X such that

ny = m1x1 + · · ·+mkxk

of course this means that

0 = −ny +m1x1 + · · ·+mkxk

which means that mi = 0 = n and hence 〈y〉
⋂
〉
⋃
x 6=y〈x〉〉 = 0 and hence

F ∼= ⊕x∈X〈x〉.
The implication 2) implies 3) is easy.
For 3) implies 4) we write F as ⊕i∈ICi with Ci ∼= Z with generator xi. Let

X = {xi}i∈I and let ι : X −→ F be inclusion (xi 7→ {yi} where yj = xi if i = j
and the identity otherwise). Let f : X −→ G; we define f by f({nixi}i∈I) =∑
i∈I nif(xi) (which makes sense as ni = 0 a.e.).

Clearly fι = f and f is a homomorphism.
To see uniqueness assume that g : ⊕Ci −→ G is such that gι = f . Note

that g({nixi}) =
∑
nig(xi) =

∑
nigι(xi) =

∑
nif(xi) and hence g = f . A

technical note (since we did this for ⊕Z).

F
φ∼= //
⊕Ci

φ−1

oo
f // G

X

ι

OO

f

=={{{{{{{{

For F , ι becomes φ−1ι and f becomes fφ.
Finally for 4) implies 1), a reasonable candidate for a basis of F is ι(X).

Define G to be the group ⊕x∈XZ and f : X −→ G the obvious inclusion map of
sets. Note that f(X) is a linearly independent subset of G. Assume that ι(X)
is linearly dependent in F . Then∑

niι(xi) = 0

with not all ni = 0. So
∑
nifι(xi) = 0 =

∑
nif(xi). We therefore conclude that

n0 ≡ 0 which is a contradiction. This shows that ι(X) is linearly independent.
It now suffices to show that ι(X) spans F .

As G = ⊕x∈XZ, G has the mapping property by 3) implies 4). We have the
diagram

F
f // G

g // F

X

ι

``@@@@@@@
f

OO

ι

>>~~~~~~~

Uniqueness implies that gf = 1F and hence F ∼= G. Finally observe that
g(f(X)) = im(g) = F = ι(X). This concludes the proof.
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We remark that an abelian group satisfying one, hence all, of the above
conditions is called a free abelian group. They are completely determined up to
isomorphism by their “size”.

Theorem 3.6.4. Any two bases of a free abelian group have the same cardi-
nality. What is more, two free and abelian groups are isomorphic if and only if
their respective bases have the same cardinality.

Remark 3.6.5. If F is a free abelian group with basis X then we call |X| the
rank of F .

Proof. We will prove the case where the two bases of F are finite. Assume that
F has two bases X and Y with |X| = n and |Y | = m. So in particular, F
is isomorphic to both n and m copies of (Z) (as a direct sum). So F has a
homomorphic image (consider the subgroup that looks like 2F )

⊕ni=1Z2.

Additionally if k is an integer k ≤ m then |F/2F | ≥ 2k. It follows that
m = n.

A similar argument shows that if F has an infinite basis then every basis of
F is infinite. For the rest of proof, it suffices to show that is F has an infinite
basis |X| then |F | = |X|. This is reasonablly straightforward.

Now suppose that F1
∼=α F2. If X is a basis of F1, then α(X) is a basis of

F2. On the other hand if X and Y are two sets of equal cardinality (say that
the bijection is f), consider the diagram

F (Y )
g // F (X)

f // F (Y )

X

f

ddHHHHHHHHH
ι

OO

f

::vvvvvvvvv

Since there is a symmetric diagram it is easy to see that F (X) ∼= F (Y ).

Theorem 3.6.6. Every abelian group A is the homomorphic image of a free
abelian group (this free abelian group can be chosen of rank |X| where 〈X〉 =
A...in particular if A is finitely generated then F can be chosen finitely gener-
ated).

Proof. Similar to the more general result on free groups.

Lemma 3.6.7. If {x1, · · · , xn} is a basis for a free abelian group and a ∈ Z
then for all i 6= j, {x1, · · · , xj−1, xj + axi, xj+1. · · ·xn} is also a basis.

Proof. It is easy to see that the two sets generate the same group. Linear
independence is also a straightforward computation.

This next result will be useful in the classification of finitely generated
abelian groups.
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Theorem 3.6.8. Let F be a free abelian group of rank n < ∞. If A is a
nonzero subgroup of F then there exists a basis {x1, · · · , xn} of F , an integer r
(1 ≤ r ≤ n) and positive integers d1|d2| · · · |dr such that A is free abelian with
basis {d1x1, · · · , drxr}.

Remark 3.6.9. We note that as a direct consequence of this, any subgroup of a
free abelian group is also free of rank not exceeding the rank of the parent group.

Proof. The case n = 1 is easy. We assume the result for all free abelian groups
of rank less than n. Let S be the set of integers such that there exist a basis
{y1, · · · , yn} of F and an element of A of the form

sy1 + k2y2 + · · ·+ knyn.

Note that all of the ki’s are in S as well. Since A 6= 0 then S 6= ∅. So there is
a smallest positive integer (say d1) in S. And for some basis of F there is an
element v ∈ A such that

v = d1y1 + k2y2 + · · ·+ knyn.

Using the Euclidean algorithm we write each ki:

ki = d1qi + ri

with each 0 ≤ ri < d1. We obtain that

v = d1(y1 + q2y2 + · · ·+ qnyn) + r2y2 + · · ·+ rnyn

Letting x1 = y1+q2y2+· · ·+qnyn, we note that the set W = {x1, y2, · · · , yn}
is a basis for F by the previous lemma. Since d1 > ri and d1 is minimal, this
implies that ri = 0 for 2 ≤ i ≤ n. And hence v = d1x1.

Now H = {y2, · · · , yn} is free abelian (it has the set as a basis) such that
F = 〈x1〉 ⊕ H. We claim that A = 〈v〉 ⊕ (A

⋂
H). Since {x1, y2, · · · , yn} is a

basis, it is easy to see that 〈v〉
⋂

(A
⋂
H) = 0. Now let

u = t1x1 + t2y2 + · · ·+ tnyn ∈ A

with t1 = d1q1 + r1 with r1 < d1. So A contains

u− q1v = r1x1 + · · ·+ tnyn ∈ H
⋂
A

and hence by the minimality of d1, r1 = 0.
So

u = q1v + · · ·+ tnyn

and this establishes the claim.
Finally we note that if A

⋂
H = 0, then we are done (A is singly generated

by d1x1). If A
⋂
H 6= 0 then by induction there is a basis {x2, · · · , xn} of H

and positive integers d2|d3| · · · |dr such that A
⋂
H is free abelian with basis
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{d2x2, · · · , drxr}. Since F = 〈x1〉 ⊕H and A = 〈d1x1〉 ⊕ (A
⋂
H), it is easy to

see that {x1, x2, · · · , xn} is a basis of F and that {d1x1, · · · , drxr} is a basis of
G. The only thing left is is to show that d1|d2. We write d2 = qd1 + r with
0 ≤ r < d1. Since {x1 + qx2, x2, x3 · · · , xn} is a basis of F and d1(x1 + qx2) +
rx2 = d1x1 + d2x2 ∈ G the minimality of d1 in S implies that r = 0. This
completes the proof.

Corollary 3.6.10. If G is a finitely generated abelian group generated by n
elements, then any subgroup H ⊆ G can be generated by mH elements with
mH ≤ n.

Remark 3.6.11. The previous corollary may be wildly untrue if G is not
abelian.

3.7 The Structure Theorem for Finitely Gener-
ated Abelian Groups

In this section we will classify completely all finitely generated abelian groups.
Basically it is easy to see...they are all basically just some finite number of copies
of Z (the “free part”) and the finite part (and we will see a couple of canonical
ways to write this part).

Here is the main structure theorem of this section.

Theorem 3.7.1. Every finitely generated abelian group is isomorphic to a finite
direct sum of cyclic groups in which the finite cyclic summands (if any) are of
order m1|m2| · · · |mt.

Remark 3.7.2. So any finitely generated ableian group is of the form:

F ⊕ T

where

F ∼= ⊕ni=1Z

with n ≥ 0 and

T ∼= Zm1
⊕ Zm2

⊕ · · · ⊕ Zmt

where t ≥ 0 and if t > 0 then m1|m2| · · · |mt.

The proof of this is fairly straightforward and depends on the results from
the previous section.

Proof. Let A be finitely generated, say by n elements. Then A is the homo-
morphic image of F a free abelian group on n elements. Consider π : F −→ A.
If π is one to one then we are done. If not then ker(π) can be generated by
{d1x1, d2x2, · · · , drxr} where {x1, x2, · · · , xn} is a basis for F and d1|d2| · · · |dr.
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It is now easy to see that

A ∼= F/K ∼= ⊕〈xi〉/⊕ 〈dixi〉 ∼= (⊕Zdi)⊕ (⊕Z)

with s = n− r.

Lemma 3.7.3. Let Cn be a cyclic group of order n. If n = ab with gcd(a, b) = 1
then Cn ∼= Ca ⊕ Cb.

Proof. Since cyclic groups are isomorphic to Zn we can couch the proof in these
terms. Show that the map

φ : Zab −→ Za ⊕ Zb
(with a and b relatively prime) obtained by reducing each element modulo a
and b respectively is an isomorphism.

Definition 3.7.4. A group is called torsion if every element is of finite order

Basically we can break down a finitely generated abelian group into a torsion
part and a free part.

Theorem 3.7.5. If G is a finitely generated abelian group then there is a unique
nonnegative integer s such that the number of infinite cyclic summands in the
decomposition in G is precisely s. What is more if G is not free abelian, there is
a unique list of integers m1| · · · |mt such that the torsion part of G is isomorphic
to

Zm1
⊕ · · · ⊕ Zmt

.

(Invariant factors)
Likewise

Zps11 ⊕ · · · ⊕ Zpskk .

(Elementary divisors).

EXERCISES:

1. If G is a finite abelian group and H ⊆ G is a subgroup, show that G has
a subgroup isomorphic to G/H.

2. Show that any finitely generated subgroup of Q (resp. Q/Z) is cyclic.

3. Find all abelian group of order 13,500.

4. Show that if G is a finite abelian group that is not cyclic, then G contains
(an isomorphic copy of) Zp ⊕ Zp.



Chapter 4

The Structure of Groups

4.1 The Action of a Group on a Set

This is the section where we can get a good feel for what groups are really “for”.
The action of a group on a set is one of the main questions of applications (e.g.
the action of the group of symmetries on the Rubik’s cube, or on a molecular
lattice). It should also be noted that many of our earlier examples are motivated
by actions (e.g. Dn and Sn).

Definition 4.1.1. Let G be a group and A a set. An action of G on A is a
function G×A −→ A such that ∀a ∈ A,

(g1g2)a = g1(g2a)

and

eGa = a

for all a ∈ A.

Example 4.1.2. Of course there is always the trivial action. Also one can allow
A := G and let G act on itself. As a last example, Sn acts on {1, 2, · · · , n}.

Here are some more large classes of important examples. These are impor-
tant enough to have their own names.
Translation: Let H be a subgroup of G. Of course H acts on G via the group
multiplication. But also G acts on the set of left cosets of H in G (x(gH) =
(xg)H).
Conjugation If H is normal in G via (g, h) = g−1hg. If H is any subgroup of
G then H acts on G via (h, g) = h−1gh. Also H acts on the set of subgroups of
G via (h,K) = h−1Kh.

Theorem 4.1.3. Let G act on A.

35
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a) The relation x ∼ x′ (on A) if and only if gx = x′ for some g ∈ G is an
equivalence relation.

b) For all x ∈ A, Gx = {g ∈ G|gx = x} is a subgroup of G called the stabilizer
of x.

Proof. Exercise.

Definition 4.1.4. Let G act on A and x ∈ A. The orbit of x (orb(x)) is the
set {gx|g ∈ G}.

We now define some of the “action terminology”.

Definition 4.1.5. Let G act on the set S. We define:

a) The kernal of the action to be {g ∈ G|gx = x, ∀x ∈ S}.

b) The action is faithful if the kernal of the action is the identity.

Example 4.1.6. Let G act on itself by conjugation then the orbit of x ∈ G is
precisely {g−1xg|g ∈ G}. If H is a subgroup which acts on G by conjugation,
then x = {h ∈ H|h−1xh = x} is the centralizer of x ∈ H,CH(x). If H = G this
is just the earlier defined centralizer.

Finally if H acts on the set of subgroups of G by conjugation, then the
subgroup of H fixing some K is {h ∈ H|h−1Kh = K} is the normalizer of K in
H, denoted NH(K) (if H = G this is just the earlier defined normalizerof K).
Note that K �NG(K) ad K �G⇐⇒ NG(K) = G.

Definition 4.1.7. Let G act on the set A. We say that G acts transitively on
A if for all x, y ∈ A, there exists g ∈ G such that gx = y.

Equivalently, we can say that G acts transitively on A is there is a unique
orbit in A.

One might ask how many ways are there for a group G to act on a set A.
This will be answered presently (our notation will be that if A is a set, then SA
is the set of all permutations of A).

Theorem 4.1.8. Let G be a group and A a nonempty set. Then there is a
bijective correspondence between the set of actions of G on A and the set of
homomorphisms from G to SA. This correspondence is given by the rule that if
φ : G −→ SA then φ corresponds to the action gx = (φ(g))x.

Proof. Clearly a homomorphism φ gives rise to an action on A via the above
rule. We will show that this correspondence is 1-1 and onto. Suppose first that
φ and ψ give rise to the same action. So if g ∈ G, then φ(g)x = ψ(g)x for all
x ∈ A. Therefore φ(g) and ψ(g) must be the same element of SA by definition.
Hence φ(g) = ψ(g), but since g is arbitrary, we have the φ = ψ.

Now let G act on A (we must show that this action “comes from” a homo-
morphism φ : G −→ SA). Given this action we define phi : G −→ SA via

φ(g) = σg ∈ SA
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where σg(x) = gx.
First we note that σg is a permutation; indeed, if σg(x) = σg(y) then x = y.

Also note that if x ∈ A, then g−1x = y ∈ A and hence x = gy = σg(y). It is
also easy to see that σg1g2 = σg1σg2 and so φ is a homomorphism.

Example 4.1.9. Show that the “permutation representation of Z6 is {e, (0 1 2 3 4 5), (0 2 4)(1 3 5), (0 3)(1 4)(2 5), (0 4 2)(1 5 3), (0 5 4 3 2 1)}.
Do the same for Z2 ⊕ Z2.

This next result is an important one. The length of the orbit of some x ∈ A
is the index of the stabilizer.

Theorem 4.1.10. If G acts on A then the length of the orbit of x ∈ A is
[G : Gx].

Proof. We first do a computation to make an observation. Suppose that gx = hx
with g, h ∈ G and x ∈ A. This is equivalent to the statement that h−1gx = x,
which is equivalent to saying that h−1g ∈ Gx. This holds if and only if gGx =
hGx.

We now consider the map from left cosets of Gx in G given by

gGx 7→ gx.

This map is clearly onto. By the above computation, it is also 1-1. This estab-
lishes this theorem.

The next theorem highlights an important application of group actions which
will prove quite useful in studying the structure of groups.

Theorem 4.1.11. Let G be a group and H a subgroup of G. Let G act by
translation (left multiplication) on the set of left cosets of H in G (we will call
this set A). Let πH be the associated permutation representation of this action.

a) G acts transitively on A.

b) The stabilizer of 1H ∈ A is H.

c) The kernal of this action is
⋂
x∈G xHx

−1 and the kernal of πH is the
largest normal subgroup of G contained in H.

Proof. For a) let xH, yH ∈ A. If g = yx−1 then g(xH) = yH.
For b) we note first that clearly H is contained in the stabilizer of 1H. So

suppose that g(1H) = H. This implies that gh = h′ for some h, h′ ∈ H. Hence
g = h′h−1 ∈ H.

For c) note that ker(πH) = {g ∈ G|g(xH) = xH, ∀x ∈ G} = {g ∈
G|x−1gxH = H, ∀x ∈ G} = {g ∈ G|x−1gx ∈ H, ∀x ∈ G} = {g ∈ G|g ∈
xHx−1, ∀x ∈ G}. Hence ker(πH) =

⋂
x∈G xHx

−1.
Now note that ker(πH) is normal in G (and H). Now suppose that N � G

and N is contained in H. Hence N is contained in xNx−1 ⊆ xHx−1. So
N ⊆

⋂
xHx−1
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Here is a cool example.

Example 4.1.12. The question here is “is there a subgroup of A5 of order 20?
(There is a subgroup of S5 of order 20). Assume that there is a subgroup H of
A5 of order 20. The length of the orbit of H (under conjugation action) is either
1 or 3. If the length is 1 this implies that H is normal in A5 which cannot be.
Hence the length of the orbit is 3. So there are 3 conjugates of H in G. This
induces a homomorphism from A5 to S3. Since S3 is much smaller, the kernal
must be nontrivial, which means that the kernal is all of A5. But this implies
(again) that H is normal in A5.

Proposition 4.1.13. Let G be a finite group and x ∈ G.

a) The number of elements in the conjugacy class of x is [G : CG(x)] which
divides |G|.

b) If x1, x2, · · · , xn are the conjugacy classes in G, then

|G| =
n∑
i=1

[G : CG(x)].

c) If K is a subgroup of G then the number of subgroups of G conjugate to
K is [G : NG(K)] which |G|.

We remark that the equation in part b) is called the class equation.

Proof. For a) the orbit of x under the conjugation action is the set of elements
of the form g−1xg with g ∈ G. Since the stabilizer is clearly CG(x), the result
follows from the previous theorem. For the last statement, notice that |G| =
[G : CG(x)]|CG(x)|.

For b) note that each [G : CG(xi)] counts the conjugates of xi. Since
x1, x2, · · · , xn is an exhaustive list of the conjugacy classes, each element of
G is contained in one of them (and hence |G| ≤

∑n
i=1[G : CG(x)]. To show the

other inequality it suffices to show the the conjugacy classes are disjoint (but
this is clear as conjugacy is an equivalence relation).

For c) first note (for the last statement) that |G| = [G : NG(K)]|NG(K)|.
The number of subgroups of G conjugate to K is precisely the length of the
orbit of K and is hence [G : NG(K)].

We now note an important corollary (Cayley’s theorem) to the corrspondence
theorem between group actions G on A and homomorphisms from G to SA.
This theorem shows that any group can be thought of as a subgroup of some
permutation group.

Theorem 4.1.14. If G is a group then there is a group monomorphism from
G to AS. Hence every group is isomorphic to a group of permutations. What is
more, if |G| = n then G is isomorphic to a subgroup of Sn.
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Proof. Let G act on itself by left translation. This induces a homomorphism
π : G → SG (where SG means the permutations on the underlying set of G).
Suppose that g ∈ ker(π). We have that π(g) is the identity permutation, hence

π(g)(x) = x = gx, ∀x ∈ G.

And hence g = eG and π is 1-1.

Corollary 4.1.15. Let G be a group

a) For all g ∈ G conjugation by g induces an automorphism G −→ G.

b) There exists a homomorphism φ : G −→ Aut(G) whose kernal is Z(G).

Proof. Exercise.

Here is a more familiar form for the class equation.

Class Equation:

|G| = |Z(G)|+
m∑
i=1

[G : CG(xi)].

where x1, · · · , xm, (xi ∈ G \ Z(G)) are the distict conjugacy classes and [G :
CG(xi)] >.

Here are some interesting consequences of some of this stuff.

Corollary 4.1.16. If G is a finite group of order pn where p is a prime, then
the center of G is nontrivial.

Proof. Apply the class equation.

Corollary 4.1.17. If [G : H] = n and no nontrivial subgroup of G is contained
in H, then G is isomorphic is a subgroup of Sn.

Proof. Let G act on the left cosets of H in G by translation (we will call this
set of cosets A). By the Theorem 4.1.11, the kernal of the homomorphism
G −→ SA is contained in H. Since there are no nontrivial normal subgroups
of H, this means that the homomorphism is trivial. Hence G is a subgroup of
SA = Sn.

Corollary 4.1.18. If G is a finite group and H is a subgroup of G of index p,
where p is the smallest prime dividing the order of G then H is normal in G.

Proof. Note that there are precisely p left cosets of H in G. We therefore have
a homomorphism from G to Sp. Let K be the kernal of this homomorphism.
Note that G/K is isomorphic to a subgroup of Sp. Note that

|G/K| | p!

and
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|G/K||K| = |G|.
So every divisor of |G/K| divides |G|. Since no prime smaller than p divides

|G|, it follows that |G/K| is either 1 or p. Since |G/K| = |G/H||H/K| it follows
in either case that |H/K| = 1. Hence H = K �G.

Corollary 4.1.19. Any subgroup of index 2 is normal in G.

Proof. 2 is the smallest prime period.

It should be noted that the previous corollary is true even when G is infinite,
but the above proof is for the finite case. In general, note that any left coset is
a right coset.

EXERCISES:

1. Let G be a group and A an abelian normal subgroup. Show that G/A acts
on A by conjugation and show that there is a homomorphism G/A −→
Aut(A).

2. Suppose that G is a group and a ∈ G is an element that has precisely 2
conjugates in G. Show that G is not simple.

3. Let S be a set of at least 2 elements and suppose that G acts transitively
on S. Show that

a) If x ∈ S then the orbit of x is all of S.

b) ∀x, y ∈ S, Gx and Gy are conjugate.

c) If G has the property that {g ∈ G|gx = x ∀x ∈ S} = {eG} and if
N �G and N ⊆ G for some x ∈ S then N = {e}.

d) ∀x ∈ S, |S| = [G : Gx]. In particular, if |S| and |G| are both finite
then |S| | |G|.

4. Find all automorphisms of Z6. Note that none of these are inner auto-
morphisms.

5. If G/Z(G) is cyclic, then G is abelian.

6. Show that every automorphism of S4 is an inner automorphism.

7. Let G be a group with an element of order greater than 2. Show that
Aut(G) is nontrivial.

8. Let G be any group of order greater than 2. Show that Aut(G) is non-
trivial.

9. Suppose that |G| = pn with p a prime p > n. If H ⊆ G is of order p, then
H �G.

10. If N �G and |N | = p and |G| = pn then N ⊆ Z(G).

11. Show that Inn(G) ∼= G/Z(G).
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4.2 The Sylow Theorems

These may be the most important (finite) group structural results. In this
section p will always mean a (positive) prime integer.

Lemma 4.2.1. Suppose that |G| = pn and that G acts on A, a finite set. If
S0 = {x ∈ S|gx = x ∀g ∈ G} then |S| ≡ |S0|modp.

Proof. An orbit x contains one element ⇐⇒ x ∈ S0. We write S as the disjoint
union

S = S0

⋃
x1

⋃
· · ·
⋃
xk.

Each |xi| = [G : Gxi
] so p divides |xi|. Hence |S| = |S0|+ pm.

This next result is the celebrated Cauchy’s Theorem (which depends heavily
on p being prime).

Theorem 4.2.2. If p is a prime dividing |H| then G has an element of order
p.

Proof. Let S be the set of p−tuplesof elements of G, (a1, a2, · · · , ap) such that
a1a2 · · · ap = eG. Note that the first p−1 choices determine the last for “entries”
determine the last. Hence |S| = np−1 where n = |G|. Since p|n we have that
|S| ≡ 0mod(p).

We now let Zp act on this set via the action

k(a1, a2, · · · , ak, ak+1, · · · , ap) = (ak, ak+1, · · · , ap, a1, · · · , ak−1).

It is easy to verify that this is a group action.
Note (a1, a2, · · · , ap) ∈ S0 if and only if a1 = a2 = · · · = ap (and certainly

e = e = · · · = e is in S0 so S0 is nonempty). So vertS0| 6= 0, but |S0| ≡
|S|mod(p) therefore there are at least p elements in S0. So (a, a, · · · , a) ∈ S0

and hence ap = e.

Definition 4.2.3. We say that G is a p−group if every element of G has order
pn for some integer n ≥ 0.

We remark that a finite group is a p−group ⇐⇒ |G| = pn.

Definition 4.2.4. Let G be a finite group of order pnm where gcd(p,m) =
1. We say that a maximal p−subgroup of G (of order pn) is called a Sylow
p−subgroup of G.

We also say that a subgroup H of G is a p−subgroup of G if H is a p−group.
We now introduce the very important Sylow Theorems (possibly the most im-
portant structure theorems for finite groups).

Theorem 4.2.5. Let |G| = pnm with n ≥ 1 and gcd(p,m) = 1.
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I.) G contains a subgroup of order pj for all 1 ≤ j ≤ n and every subgroup of
order pj is normal in some subgroup of order pj+1 for all j < n.

II.) If H is a p−subgroup of G and P is any Sylow p−subgroup of, then there
an an x ∈ G such that H ⊆ x−1Px (in particular, all Sylow p−subgroups
are conjugate.

III.) If k is the number of Sylow p−subgroups of G, then k divides |G| and
k ≡ 1mod(p).

Let’s look at some quick applications.

Example 4.2.6. Look at the structure of groups of order pq. Also note that
there is no simple group of order 56, 80, 36.

Our proof the Sylow theorems requires the use of the following lemma.

Lemma 4.2.7. If G is a finite group and H is a p−subgroup of G then [NG(H) :
H] ≡ [G : H]mod(p).

Proof. Let S be the set of left cosets of H in G and let H act on S by translation.
Note that |S| = [G : H]. Now xH ∈ S0 ⇐⇒ hxH = xH ∀h ∈ H ⇐⇒ x−1hx ∈
H ∀h ∈ H ⇐⇒ x ∈ NG(H).

So |S0| is equal to the number of cosets xH with x ∈ NG(H). Therefore
|S0| = [NG(H) : H] ≡ [G : H]mod(p).

Corollary 4.2.8. If H is a p−subgroup of the finite group G such that p| [G : H]
then NG(H) 6= H.

Proof. [G : H] ≡ [NG(H) : H]mod(p). Since [G : H] ≡ 0mod(p) we have that
[NG(H) : H] must be at least p.

Now we get to the proofs of the Sylow theorems.

Proof. I.) Since p| |G|, G must contain an element of order p. We proceed by
induction (the previous statement taking care of the base case). Assume
that H is a subgroup of G of order pj with 1 ≤ j < n. Since p| [G : H]
and H � NG(H), H 6= NG(H) by the previous lemma. Also note that
1 < |NG(H)/H] = [NG(H) : H] ≡ [G : H] ≡ 0mod(p). We conclude
that p| |NG(H)/H| and NG(H)/H contains a subgroup of order p. This
subgroup is of the form H1/H with H1 a subgroup of G. Note that H�H1

and |H1| = |H| |H1/H| = pj+1.

II.) Let S be the set of left cosets of P in G (P some Sylow p−subgroup of
G) and let H act on S by translation. |S0| ≡ |S| ≡ [G : H]mod(p). But p
does not divide [G : P ] and hence |S0| 6= 0. So there is an xP ∈ S0. Note
that xP ∈ S0 ⇐⇒ hxP = xP ∀h ∈ H ⇐⇒ x−1hxP = P ∀h ∈ H. Hence
x−1Hx ⊆ P and so H ⊆ xPx−1. For the last statement, note that if H is
a Sylow p−subgroup then |H| = |P | and H = xPx−1.
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III.) By the previous, the number of Sylow p−subgroups is precisely the num-
ber of conjugates of any one of them (say P ). This number is [G :
NG(P )] which, of course, must divide |G|. Let S be the set of all Sy-
low p−subgroups and let P act on S by conjugation. Note that Q ∈
S0 ⇐⇒ xQx−1 = Q for all x ∈ P . This holds if and only if P ⊆ NG(Q).
Both P and Q are Sylow p−subgroups of G (and hence of NG(Q)) and
hence P and Q are conjugate in NG(Q). But since Q � NG(Q), Q = P .
We conclude that S0 = P . Since |S| ≡ |S0|mod(p) and |S0| = 1, we have
that |S| ≡ 1mod(p). So the number of Sylow p−subgroups of G is of the
form 1 + kp.

Example 4.2.9. Some more demonstrations of the power of the Sylow theorems.

4.3 Semidirect Products

Semidirect products provide a useful way for constructing non-abelian groups.
What is more they are “easy” to identify.

Let G and H be groups and θ : H −→ Aut(G) be a homomorphism. These
are the tools used in the construction of the semidirect product.

Theorem 4.3.1. Let G and H be groups and θ : H −→ Aut(G) be a homomor-
phism. The set G×H endowed with the multiplication

(g, h)(g1, h1) = (gθ(h)(g1), hh1)

forms a group called the semidirect product of G and H (G×theta H).

Proof. It is easy to verify that the multiplication is associative. The identity of
the semidirect product is (eG, eH). Also the inverse of (g, h) is (θ(h−1)(g−1), h−1).

Example 4.3.2. Let G and H be arbitrary groups and let θ : H −→ Aut(G) be
the trivial map (the identity automorphism is assigned to any element of H).
Then the semidirect product is just the ordinary direct product.

Theorem 4.3.3. Let G be a group. The following conditions are equivalent

a) There are subgroups N,H ⊆ G with N normal in G such that NK = G
and N

⋂
K = eG.

b) G ∼= N ×θ K.

Proof. b) implies a) is straightforwad. The more interesting direction is a)
implies b). To see this assume that we have N � G and K ⊆ G such that
NK = G and N

⋂
K = eG. We define θ : K −→ Aut(G) by

θ(k) = φk ∈ Aut(G)
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where

φk(g) = kgk−1.

To show that G ∼= N ×θK we consider the map ψ : G −→ N ×θK given by

ψ(g) = (n, k)

where g = nk (we are guaranteed that g can be written in this form by the
assumption that G = NK). We first note that this representation is unique.
Indeed if nk = n1k1, this implies that n−1

1 n = k1k
−1 and hence this element is

the identity since N
⋂
K = eG. So we obtain n = n1 and k = k1.

It is also clear that ψ is onto.
Note that ker(ψ) is the identity. Finally note that if g = nk and g1 =

n1k1 that ψ(gg1) = ψ(nkn1k1) = ψ(nkn1k
−1kk1) = (nkn1k

−1, kk1). Now note
that (nkn1k

−1, kk1) = (nφk(n1), kk1) = (nθ(k)(n1), kk1) = (n, k)(n1, k1) =
ψ(g)ψ(g1).

Here is a nice application.

Example 4.3.4. Find all groups of order 20. Since 20 = 225, we can see that
there is a unique Sylow 5-group (N) and hence is normal. It is also easy to see
that if K is (one of the) Sylow 4 groups, then K

⋂
N = eG and NK = G. Since

Aut(N) ∼= Z4 and K is either isomorphic to Z2 ⊕Z2 or Z4 there are only a few
possibilites. There are 5 total (2 abelian and 3 not).

Example 4.3.5. Suppose that p ≡ 1mod(q). Show that there are precisely 2
groups of order pq.

EXERCISES:

1. Classify all groups of order p3, p2q and p2q2.

2. Show that A5 is the only nonabelian simple group of order 90.

3. Let G be a group with center Z(G).

a) Show that if G/Z(G) is cyclic, then G is abelian.

b) Use this result to show that if |G| = p2 with p a positive prime
integer, then G is abelian.

c) Show that if |G| = p3 then

Z(G) ∼=

{
G if G is abelian

Zp if G is not abelian

d) Show that if |G| = p3 and G is not abelian, then G/Z(G) ∼= Zp⊕Zp.
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4. Let p, q, r be distinct positive prime integers. Show that there is no simple
group of order pqr.

5. Let p and q be distinct positive prime integers.

a) Show that there is no simple group of order pn, n ≥ 1.

b) Show that there is no simple group of order p2q.

6. Prove the following statements for groups of specific order.

a) Show that any group of order 35 is cyclic.

b) Show that any group of order 99 is abelian and classify them all.

c) Show that no group of order 24 is simple.

d) Show that no group of order 72 is simple.

7. Let p and q be distinct positive primes. Show that any group of order pq
or p2q is a semidirect product of its Sylow subgroups (this problem is true
in much more generality).

8. Give an example of a group which cannot be decomposed into a semidirect
product of two of its proper subgroups.

9. This problem is devoted to showing that A5 is the only simple group of
order less than or equal to 100. We start by assuming that |G| = 60 and
that G is simple.

a) Find the possibilities for the number of Sylow 2-subgroups (n) of G
and show that we only need concern ourselves with n = 5 or n = 15.

b) Show that if n = 5 then G is isomorphic to a subgroup of S5 and
conclude that G ∼= A5.

c) Show that if n = 15 then there are two Sylow 2-subgroups (say P
and Q) that must intersect in a subgroup of G of order 2.

d) If H = NG(P
⋂
Q) show that 4| |H| and conclude that |H| = 12.

(Hint: any group of order 4 is abelian so NG(P
⋂
Q) ⊇ P .)

e) Show that since the index of H in G less than or equal to 5, G ∼= A5.

f) Now assume that |G| ≤ 100 and is simple. Make a list of the possible
orders of G (eliminating most of them via earlier results). Eliminate
all possibilities except for |G| = 60 or 90.

g) Finally assume that |G| = 90 and is simple. Show that G must have
6 Sylow 5−subgroups.

h) Show that G is necessarily isomorphic to a subgroup of A6. (Hint:
G can be considered a simple subgroup of S6; consider G

⋂
A6).

i) Derive a contradiction by showing that A6 has no subgroup of order
90. (Hint: if A6 has a subgroup of order 90, look at the orbit of this
group under conjugation action...what is the order of its normalizer?)
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4.4 Nilpotent and Solvable Groups

Let G be a group. Then Z(G) := Z1(G) � G. Let Z2(G) be the inverse image
of Z1(G/Z1(G)) via the canonical G −→ G/Z1(G). Note that Z2(G) � G and
contains Z1(G). In general Zj(G) is the inverse image of Z(G/Zj−1(G)) via the
canonical projection from G. This gives an ascending central series

{e} ⊆ Z1(G) ⊆ Z2(G) ⊆ · · · ⊆ Zn(G) ⊆ · · ·

Definition 4.4.1. We say that G is nilpotent if Zn(G) = G for some n.

Of course any abelian group is nilpotent.

Theorem 4.4.2. Every finite p group is nilpotent.

Proof. Of course every subgroup and quotient group of a p group is again a p
group. Suppose that Zn(G) 6= G. Since p groups have nontrivial centers, it
follows that Zn+1(G) strictly contains Zn(G). As G is finite, this process must
terminate.

Theorem 4.4.3. The direct product of a finite number of nilpotent groups is
nilpotent.

Proof. It suffices to show this for the case H×K where H and K are nilpotent.
Assume inductively that

Zn(G) = Zn(H)× Zn(K).

The canonical epimorphism φ : G −→ G/Zn(G) is the composition

G = H ×K π //H/Zn(H)×K/Zn(K)
ψ //H ×K/(Zn(H)× Zn(K)) =

= H ×K/Zn(H ×K) = G/Zn(G)
where π = πH × πK and we will say that φ is the total composition.

Zn+1(G) = φ−1(Z(G/Zn(G))) = π−1ψ−1(Z(G/Zn(G))) = π−1(Z(H/Zn(H)×
K/Zn(K))) = π−1(Z(H/Zn(H)×Z(K/Zn(K))) = π−1

H (Z(H/Zn(H)))×π−1
K (Z(K/Zn(K))) =

Zn+1(H)× Zn+1(K).
This establishes our fact, the rest follows.

Lemma 4.4.4. If H ( G where G is nilpotent, then H ( NG(H).

Proof. Let Z0(G) = e and n the largest integer such that Zn(G) ⊆ H. Let
a ∈ Zn+1(G) \H. For all h ∈ H,Znah = Znha in G/Zn(G) since Zn(G) is in
the center of Zn+1(G) by definition. Therefore, ah = h′ha where h′ ∈ Zn(G) ⊆
H. Hence aha−1 = h′h ∈ H and a ∈ NG(H), but a /∈ H and we have a
contradiction.

The follwoing theorem characterizes finite nilpotent groups.
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Theorem 4.4.5. A finite group is nilpotent if and only if it is the direct product
of its Sylow subgroups.

Proof. ⇐= is implied by the previous. So we will prove the other direction.
Assume that G is nilpotent and that P is a Sylow p−subgroup of G. If P 6= G
then P 6= NG(P ) It turns out that NG(P ) is its own normalizer (easy exercise).
Hence by the previous, NG(P ) = G and P is the unique Sylow p−subgroup.
Now it is easy to see that

G ∼=
k∏
i=1

Pi

with each Pi being the Sylow pi−subgroup (since the intersection of the distinct
Sylow p−subgroups is trivial and the fact that G = P1P2 · · ·Pk is generated by
all of them).

Corollary 4.4.6. If G is a finite nilpotent group and m divides the order of G
then G has a subgroup of order m.

Proof. This is a direct consequence of the previous and the Sylow theorems.

We will now look at a special sequence of groups called the derived series.
But first we recall that if N � G then G/N is abelian if and only if G′ ⊆ N
(with G′ the commutator subgroup of G).

We consider the series of derived subgroups of G:

G ⊇ G(1) ⊇ G(2) ⊇ G(3) ⊇ · · ·
where G(1) = G′ and G(n) = (G(n−1))′.

Definition 4.4.7. We say that G is solvable if G(n) = e for some n.

Theorem 4.4.8. Every nilpotent group is solvable.

Proof. Note that Zn(G)/Zn−1(G) = Z(G/Zn−1(G)) is abelian, so Zn(G)′ ⊆
Zn−1(G) for all n ≥ 1 and Z1(G)′ = Z(G)′ = e. For some n, Zn(G) =
G, therefore Z(G/Zn−1(G)) = Zn(G)/Zn−1(G) = G/Zn−1(G) is abelian. So
G(1) = G′ ⊆ Zn−1(G), G(2) = (G(1))′ ⊆ Zn−1(G)′ ⊆ Zn−2(G), G(3) ⊆
Zn−3(G), · · · , G(n−1) ⊆ Z1(G) and G(n) ⊆ e. Hence G is solvable.

Theorem 4.4.9. a) Every subgroup and homomorphic image of a solvable
group is solvable.

b) If N �G is such that both N and G/N are solvable, then G is solvable.

Proof. 1) Suppose that f : G −→ H is an onto homomorphism. Note that
f(G(i)) = H(i) for all i. If G is solvable then f(G(n)) = f(e) = e = H(n) and
hence H is solvable.

If H ⊆ G then H(i) ⊆ G(i) therefore if G(n) = e then H(n) = e.
2) Now consider f : G −→ G/N (the natural projection map). As G/N is

solvable then f(G(n)) = (G/N)(n) = e. Therefore G(n) ⊆ ker(f) = N . As G(n)

is a subgroup of N (and N is solvable) then G(n) (and hence G) is solvable.
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It should be noted that (for example) no non-abelian simple group is solvable.
It is also of historical note the the famed Feit-Thompson Theorem (which says
that all groups of odd order are solvable) occupies an entire issue of the Pacific
Journal of Mathematics (”Solvability of groups of odd order” Pacific J. Math.
13, 1963, pp.775–1029).

EXERCISES:

1. Show that A5 is the only group of order less than or equal to 100 that is
not solvable.

2. Let Dn be the dihedral group on the n−gon.

a) Show that x2 ∈ D′n for all x ∈ Dn.

b) If n is odd, show that D′n = Zn.

c) If n = 2m is even show that D′n = Zm.

d) Dn is nilpotent if and only if n = 2k.

3. Show that S3 and S4 are solvable, but not nilpotent.

4. Construct all semidirect products of Z5 and Z4 (realize one as a subgroup
of S5 and another as a subgroup of S9...there are more than 2, though).

5. Using the notation [a, b] = aba−1b−1, show that

[ab, c] = a[b, c]a−1[a, c].

4.5 Normal Series

Definition 4.5.1. A chain of distinct subgroups

G = G0 ) G1 ) G2 ) · · · ) Gn

such that Gi+1�Gi is called a subnormal series. The groups Gi/Gi+1 are called
the factors and n is called the length. The series is called normal if Gi �G for
all i

Example 4.5.2.

G ) G(1) ) G(2) ) · · · ) G(n)

is a normal series and so is

Z1(G) ( Z2(G) ( · · · ( Zn(G) = G

if G is nilpotent.
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Definition 4.5.3. A one term refinement of

G0 ) G1 ) · · · ( Gn

is a series of the form

G0 ) G1 ) · · · ( Gi ) N ) Gi+1 ) · · · ) Gn

with N �Gi and Gi+1 �N . A refinement of a series is a sequence of one term
refinements.

Definition 4.5.4. A subnormal series

G0 ) G1 ) · · · ( Gn = e

is called a composition series if each factor Gi/Gi+1 is simple. It is called
solvable if each factor is abelian.

Theorem 4.5.5. Let G be a group.

a) Every finite group has a composition series.

b) Every refinement of a solvable series is a solvable series.

c) A subnormal series is a composition series if and only if it has no proper
refinements.

Proof. Exercise.

Now we see why “solvable” series have this name.

Theorem 4.5.6. G is a solvable group if and only if it possesses a solvable
series.

Proof. (=⇒) It is easy to see that the derived series is a solvable series.
(⇐=) Suppose that G has a solvable series:

G = G0 ⊇ G1 ⊇ · · · ⊇ Gn = e.

Note that G1 ⊇ G(1) since G/G1 is abelian. This gives that G2 ⊇ G
(1)
1 =

G(2). Continuing this process we obtain e = Gn ⊇ G(n) and this establishes the
theorem.

We leave the last theorem of the section as an exercise. This theorem is the
celebrated Jordan-Holder theorem and is one of the major motivations for the
classification of finite simple groups.

Theorem 4.5.7. Any two composition series of G are equivalent. Hence if G
possesses a composition series, then it determines a unique list of simple groups.
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Example 4.5.8. We look first at an easy abelian example. Consider the two
composition series for Z6:

Z6 ⊇ Z3 ⊇ e

and

Z6 ⊇ Z2 ⊇ e.

Although these composition series may look different, they possess the same
length that the same list of simple groups (Z2 and Z3 in different orders).
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Rings

5.1 Preliminaries

Definition 5.1.1. A ring is a nonempty set, R, together with two binary oper-
ations (+, ·) such that

a) (R,+) is an abelian group.

b) (a · b) · c = a · (b · c) for all a, b, c ∈ R.

c) a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

We remark here that if ab = ba for all a, b ∈ R then we say that R is
commutative. Additionally, if there is an element (denoted 1 = 1R) such that
1(a) = a(1) = a for all a ∈ R then R is said to have (multiplicative) identity.

Theorem 5.1.2. Let R be a ring.

a) 0(a) = a(0) = 0 for all a ∈ R.

b) (−a)(b) = a(−b) = −(ab) for all a, b ∈ R.

c) (−a)(−b) = ab for all a, b ∈ R.

d) (na)b = a(nb) = (ab)n for all a, b ∈ R and n ∈ Z.

e) (
∑n
i=1 ai)(

∑m
j=1 bj) =

∑n
i=1

∑m
j=1 aibj.

Proof. Exercise.

Definition 5.1.3. An element a ∈ R is said to be a left (right) zero divisor if
there is a nonzero b ∈ R such that ab = 0 (ba = 0). An element which is both
a left and right zero divisor is called a zero divisor. Additionally, if an = 0 for
some n ≥ 1 we say that a is nilpotent.

We remark that the element 0 (in a nonzero ring) is always a zero divisor
(we will sometimes refer to 0 as the trivial zero divisor).

51
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Definition 5.1.4. Let R be a ring with identity. An element a ∈ R is said to
be left (right) invertible if there is an element b ∈ R such that ba = 1 (ab = 1).
The element b, if it exists, is called a left (right) inverse of a. If a is both left
and right invertible, it is called invertible or a unit.

Proposition 5.1.5. If a is a unit in R (a ring with identity) and b is a left
inverse of a and c is right inverse of a, then b = c.

Proof.
c = (1)c = (ba)c = b(ac) = b(1) = b.

The previous result shows that the units of R form a group under multipli-
cation (often denoted by U(R)).

Definition 5.1.6. A (nonzero) commutative ring with identity is called an (in-
tegral) domain if it possesses no notrivial zero divisors. A ring D with identity
is called a division ring if U(D) = D \ {0}. A commutative division ring is
called a field.

Proposition 5.1.7. If R is a division ring, then R has no nontrivial zero
divisors. In particular, any field is an integral domain.

Proof. Suppose that R is a division ring and that ab = 0 with a 6= 0. Since
a is nonzero, there is an element x ∈ R such that xa = 1. This implies that
x(ab) = 0 = (xa)b = (1)b = b; so b = 0 and we are done.

Example 5.1.8. Here is a fundamental construction that is “full of” zero divi-
sors. Let Ri, i ∈ Γ be a family of rings, we construct the direct sum ⊕i∈ΓRi and
direct product

∏
i∈ΓRi of the families (considering each Ri as a group at first).

Multiplication is then defined “coordinate-wise” on the sequences. Check that if
|Γ| > 1 (and each Ri is nonzero) then you are guaranteed to have nontrivial zero
divisors. Also check that

∏
i∈ΓRi has an identity if and only if each Ri has an

identity and that ⊕i∈ΓRi has an identity if and only if each Ri has an identity
and |Γ| <∞.

Theorem 5.1.9. Any finite integral domain is a field.

We remark that, in fact, more is true here. One can remove the hypothesis
“with identity” (i.e. any finite commutative ring with no nontrivial zero divisors
is a field). It is also true that any finite division ring is a field and in this sense
the result can be generalized further.

Proof. Since R is finite, consider all powers of a nonzero element a ∈ R. There
must be positive integers n > m such that an = am. from this we deduce that
an−m = 1 (as R has no nontrivial zero divisors). Hence the inverse of a is
an−m−1.

One of the consequences of this observation is that (in contrast to group
theory) most of the “interesting” rings are infinite.
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Theorem 5.1.10. Let R be a ring with identity, n a positive integer, and
a, b, ai ∈ R.

a) If ab = ba then (a+ b)n =
∑n
k=0

(
n
k

)
akbn−k.

b) If aiaj = ajai for all i, j then

(a1 + a2 + · · ·+ as)
n =

∑
k1+k2+···+ks=n

n!

k1!k2! · · · ks!
ak11 a

k2
2 · · · akss .

Proof. Exercise (follows easily by induction).

Definition 5.1.11. Let R and S be rings. A function f : R −→ S is said to be
a ring homomorphism if

a) f(a+ b) = f(a) + f(b) for all a, b ∈ R.

b) f(ab) = f(a)f(b) for all a, b ∈ R.

We remark that the usual descriptives apply to ring homomorphisms (e.g.
isomorphism, epimorphism, etc.).

Example 5.1.12. The function “reduction modulo n” is a homomorphism from
Z to Zn. Also consider homomorphisms from R to R ⊕ R and from R[x] to R
via f(x) 7→ f(a) for some fixed a ∈ R.

Definition 5.1.13. Let R be a ring. If there is a smallest integer n > 0 such
that na = 0 for all a ∈ R, we say that R is of characteristic n. If no such n
exists, then R is of characteristic 0.

Example 5.1.14. The characteristic of Z is 0. Note that the characteristic of
Z2 ⊕Z4 ⊕ · · · ⊕Z2n is 2n, but the characteristic of Z2 ⊕Z4 ⊕ · · · ⊕Z2n · · · is 0.

Theorem 5.1.15. Let R be a ring with identity of characteristic n > 0.

a) If φ : Z −→ R is the map given by φ(k) = (k)1R, then φ is a homomor-
phism with kernal nZ.

b) n is the smallest integer such that (n)1R = 0.

c) If R has no nontrivial zero divisors, then n is prime.

Proof. Number 1 is easy to verify. For 2, it is clear that n1R = 0. Assume that
m1R = 0 with m < n and let a ∈ R be arbitrary. Note that ma = m1Ra = 0 and
this means that the characteristic of R is less than n which is a contradiction.

Finally we note that if n is not prime then n can be factored nontrivially into
two integers (n = mk) with both m and k greater than 1. Note that m1R 6= 0
and k1R 6= 0, but (m1R)(k1R) = (n1R) = 0 and this is a contradiction.
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Is the converse to part c) true? How much is true if “with identity” is
removed? Generally speaking rings without identity can be quite badly behaved.
But here is a saving grace. Any ring can be thought of as a subring of a ring
with identity.

Theorem 5.1.16. Every ring R can be embedded in a ring S with identity.
What is more, the characteristic of S can be chosen to coincide with the char-
acteristic of R or it can be chosen to be of characteristic 0.

Proof. Consider the construction

S = R⊕ Z

as a group with multiplication given by

(r, n)(t,m) = (rt+ rm+ tn, nm).

This gives the appropriate of S of characteristic 0. For one of coinciding
characteristic, replace Z with Zn where n is the characteristic of R.

EXERCISES:

1. Establish the claims made for the direct product and direct sum of a family
of rings.

2. We say that R is a Boolean ring if x2 = x for all x ∈ R. Show that
any Boolean ring is of characteristic 2 and commutative. Must it have an
identity?

3. Let R be a nonzero ring such that for all nonzero a ∈ R, there is a unique
b ∈ R such that aba = a. Establish the following results.

a) R has no nontrivial zero divisors.

b) bab = b (with the notation as above).

c) R has an identity.

d) R is a division ring.

4. Suppose that R is commutative with identity and the characteristic of R is
a nonzero prime number p. Show that for all a, b ∈ R, (a+b)p

n

= ap
n

+bp
n

and use this to show that for all n, the function φn : R −→ R given by
φn(x) = xp

n

is a ring homomorphism.

5. We recall that a ∈ R is nilpotent if an = 0 for some n ≥ 1. Show that if
R is commutative, the the set of nilpotent elements forms an ideal of R.
Give a counterexample for the noncommutative case.

6. Give an example of an injective ring homomorphism f : R −→ S such
that f(1R) is not a unit of S.
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5.2 Ideals

Definition 5.2.1. Let R be a ring. A subset T ⊆ R that is itself a ring is called
a subring of R. A subring I ⊆ R is called a left (right) ideal if for all x ∈ I and
r ∈ R, rx ∈ I (xr ∈ I). I is called an ideal if it is both a left and right ideal.

Note that sometimes if R has an identity, then the terminology “subring”
also demands that 1R is an element of T . We will make clear which we are
using, but the default will be the more general definition above.

Example 5.2.2. (0) and R are both subrings and ideals. Z(R) = {z ∈ R|zr =
rz ∀ r ∈ R} is a subring of R, but not necessarily an ideal.

Example 5.2.3. If f : R −→ S is a ring homomorphism, then ker(f) is an
ideal of R and im(f) is a subring of S.

Example 5.2.4. An exhaustive list of the ideals in Z is the set of ideals nZ,
n ∈ Z.

Example 5.2.5. If R is a ring with identity and I ⊆ R is an (left) ideal then
I = R if and only if 1R ∈ I.

Theorem 5.2.6. A nonempty subset I ⊆ R is a left ideal if and only if for all
a, b ∈ I and r ∈ R,

a) a− b ∈ I; and

b) ra ∈ I.

Corollary 5.2.7. Let {Ij}, j ∈ Γ be a collection of left ideals of R. Then⋂
j∈Γ Ij is a left ideal of R.

Definition 5.2.8. Let X be a subset of R and {Ij}, j ∈ Γ the family of all left
ideals of R containing the set X, then the left ideal generated by X is 〈X〉 =⋂
j∈Γ Ij := I.

Notes: If X is a finite set then we say that I is finitely generated. If |X| = 1,
then we say that I is principal. A principal ideal ring (PIR) is a ring in which
every ideal is principal. A principal ideal domain (PID) is a PIR that is an
integral domain (e.g. Z).

Theorem 5.2.9. Let R be a ring and X a subset of R.

a) The principal ideal (a) consists of elements of R of the form ra + as +
na+

∑m
i=1 riasi (ri, si, r, s ∈ R and n ∈ Z).

b) If R has an identity the above can be shortened to
∑m
i=1 riasi.

c) If a ∈ Z(R) then (a) consists of elements of the form ra+ na with r ∈ R
and n ∈ Z.
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d) Ra = {ra+ na|r ∈ R,n ∈ Z| is a left ideal of R (which might not contain
a). If 1R ∈ R then a ∈ Ra.

e) If 1R ∈ R and a ∈ Z(R) then Ra = aR = (a).

f) If 1R ∈ R and X ⊆ Z(R) then 〈X〉 consists of all finite sums of the form

r1x1 + r2x2 + · · ·+ rnxn

with ri ∈ R and xi ∈ X.

Definition 5.2.10. Let I and J be left ideals of R. We define

I + J = {x+ y|x ∈ I, y ∈ J}

and

IJ = {
m∑
i=1

xiyi|xi ∈ I, yi ∈ J}.

Theorem 5.2.11. Let A1, A2, · · · , An, A,B,C be left ideals of R.

a) A1 +A2 + · · ·+An and A1A2 · · ·An are left ideals of R.

b) A+ (B + C) = (A+B) + C.

c) (AB)C = A(BC).

d) B
∑
Ai =

∑
BAi and (

∑
Ai)C =

∑
AiC.

Proof. Exercise.

Theorem 5.2.12. Let R be a ring and I ⊆ R an ideal. Then the quotient group
R/I is a ring with multiplication given by

(a+ I)(b+ I) = ab+ I

for all a, b ∈ R. What is more, if R is commutative, so is R/I and if R has an
identity, then so does R/I.

Proof. We leave most details to the reader, but we will show that multiplication
is well-defined. Suppose that a+ I = x+ I and b+ I = y+ I. This means that
a − x, b − y ∈ I. We write a = x + i and b = y + j with i, j ∈ I. Note that
ab = xy + xj + iy + ij and since xj + iy + ij ∈ I, ab + I = xy + I and the
multiplication is well-defined.

Theorem 5.2.13. If f : R −→ S is a homomorphism, then ker(f) is an ideal
of R. If I is an ideal in R, then πI : R −→ R/I is an epimorphism of rings
with kernal I.
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Proof. We have already established the first statement. For the second we know
that πI is a ring epimorphism (since it is a ring homomorphism and is onto).
The kernal being I can be obtained by observing that it is the kernal of the
group homomorphism.

Theorem 5.2.14. If f : R −→ S is a homomorphism of rings and I ⊆ R is an
ideal in the kernal of f then there is a unique ring homomorphism f : R/I −→ S
such that f(a+ I) = f(a) for all a ∈ R. im(f) = im(f) and ker(f) = ker(f)/I.
If particular f is an isomorphism if and only if f is onto and I = ker(f).

Proof. The proof of this is almost exactly the same as the analogous theorem
in group theory.

We now record the first isomorphism theorem.

Corollary 5.2.15. If f : R −→ S is a homomorphism, then f induces an
isomorphism R/ker(f) ∼= im(f).

Corollary 5.2.16. If f : R −→ S is a homomorphism and I ⊆ R and J ⊆ S
are ideals such that f(I) ⊆ J , then f induces a homomorphism

f : R/I −→ S/J

with f(a + I) = f(a) + J . Additionally f is an isomorphism if and only if
im(f) +J = S and f−1(J) ⊆ I. In particular, if f is an epimorphism such that
f(I) = J and ker(f) ⊆ I then f is an isomorphism.

Here are the second and third isomorphism theorems.

Theorem 5.2.17. Let I, J be ideals in R.

a) There is an isomorphism of rings I/(I
⋂
J) ∼= (I + J)/J .

b) If I ⊆ J then J/I is an ideal of R/I and there is an isomorphism of rings
(R/I)/(J/I) ∼= R/J .

Proof. Again the proof is very similar to the group-theoretic results.

Theorem 5.2.18. If I ⊆ R is an ideal then there is a 1-1 correspondence
between ideals of R containing I and ideals of R/I given by J 7→ J/I. Hence
every ideal of R/I is of the form J/I with J an ideal of R containing I.

5.3 Types of Ideals

There are different flavors of ideals out there and here we will list some of the
more important ones.

Definition 5.3.1. We say that M ( R is a maximal ideal if there is no other
ideal properly between M and R.
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Definition 5.3.2. We say that P is prime if P ⊇ AB implies P ⊇ A or P ⊇ B.

Remark 5.3.3. The collection of all prime ideals of R is called the spectrum of
R (Spec(R)). The collection of maximal ideals is called the maximal spectrum
of R (MaxSpec(R)).

beginthm If P is an ideal with the property that ab ∈ P implies that a ∈ P
or b ∈ P, then P is prime. Additionally, if R is commutative, then the converse
holds.

Proof. Suppose that AB ⊆ P and that A ( P. Select an element a ∈ A \ P.
Note that for all b ∈ B, ab ∈ AB ⊆ P. Since P has the property listed and
a /∈ P, we have that b ∈ P for all b ∈ B. Hence B ⊆ P and P is prime.

For the other statement, we will assume that R is commutative and that P
is prime. Assume that ab ∈ P. Therefore, we have that (ab) ⊆ P and hence

(ab) = (a)(b) ⊆ P.

Since P is prime, P ⊇ (a) (without loss of generality). Hence a ∈ P. (Where
did we use the assumption “commutative”...I assure you that we did).

Example 5.3.4. Look at primes in Q[x, y] and Z. All primes are maximal in
a finite ring.

Here are some more types of ideals that are mostly used in the commutative
situation.

Lemma 5.3.5. Let R be commutative and I ( R an ideal. The set rad(I) =√
I = {x ∈ R|xn ∈ I for some n ∈ N} is an ideal of R (called the radical of I).

Definition 5.3.6. Let R be commutative and I ( R an ideal. We say that I is
radical if I =

√
I. We say that R is primary if ab ∈ I with a /∈ I implies that

bn ∈ I for some n ∈ N.

The following result (via its corollaries) shows the value of looking at quotient
structures.

Theorem 5.3.7. Let R be a commutative ring with identity and let I ( R be
an ideal.

a) I is maximal if and only if R/I is a field.

b) I is prime if and only if R/I is an integral domain.

c) I is radical if and only if R/I is a reduced (that is, R/I has no nonzero
nilpotent elements).

d) I is primary if and only if all zero divisors of R/I are nilpotent.
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Proof. For a), first assume that I is maximal and consider a nonzero coset
x + I ∈ R/I. Since x + I is a nonzero coset, this means that x /∈ I and hence
(x, I) = R. So there is an element r ∈ R and an element z ∈ I such that
rx+ z = 1 and hence (x+ I)(r + I) = 1 + I and R/I is a field.

On the other hand, assume that R/I is a field. Let J be an ideal properly
containing I and select an element x ∈ J \ I. Since R/I is a field, we have that
there is an inverse (say (y+I)) to the nonzero coset x+I, i.e. (x+I)(y+I) = 1+I.
This means that there is an element z ∈ I such that xy + z = 1. This means
that the ideal (x, I) = R and since J ⊇ (x, I), we have that J = R and hence I
is maximal.

For d) first assume that I is primary and that x+ I is a zero divisor of R/I.
So there is a nonzero coset y + I ∈ R/I such that (x + I)(y + I) = 0 + I, i.e.,
xy ∈ I with y /∈ I. Since I is primary, we must have that xn ∈ I and hence the
coset (x+ I) is nilpotent.

Now assume that every zero divisor of R/I is nilpotent and let xy ∈ I with
x /∈ I. This means that y+I is a zero divisor of R/I and hence y+I is nilpotent.
Therefore yn ∈ I and I is primary.

b) and c) are simliar and left as exercises.

We now produce a corollary or two to show the usefulness of quotient rings
as well as to highlight the interplay between these types of ideals.

Corollary 5.3.8. Let R be commutative with identity and I ⊆ R a proper ideal.
Then we have the following implications: I is maximal =⇒ I is prime and I is
prime ⇐⇒ I is both primary and radical.

Proof. For the first statement, if I is maximal this implies that R/I is a field
and hence an integral domain. So I is prime.

For the second statement note that if I is prime then R/I is a domain.
Since any domain is reduced, I must be radical. Additionally since the only
zero divisor of a domain is 0 (which is nilpotent) I must be primary.

For the other implication, assume that I is radical and primary. In this
case, R/I must be reduced (no nonzero nilpotents) and every zero divisor of
R/I must be milpotent (0). So R/I is a domain and I is prime.

Corollary 5.3.9. The radical of a primary ideal is prime.

Proof. We will show this directly. Assume that J =
√
I where I is primary.

Suppose that ab ∈ J . Since J is the radical of I, there is an n such that
anbn ∈ I. Now note that if an ∈ I, this implies that a ∈

√
I = J and we are

done. If an /∈ I, then since I is primary, there is a k ∈ N such that bnk ∈ I and
hence b ∈

√
I = J . In either case, a ∈ J or b ∈ J and J is prime.

We are now going to prove one of the fundamental results in ring theory (the
existence of maximal ideals in rings with identity). But first, we must make (an
axiom of) choice to believe. We produce a result called Zorn’s Lemma (which
is intimately tied to the axiom of choice).
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ZORN’S LEMMA: Let S be a partially ordered set with the property that
every chain (linearly ordered subset) in S has an upper bound in the set. Then S
has a (at least one) maximal element.

As I said, do not try to prove this.

Theorem 5.3.10. Let R be a ring with identity. Then R has a maximal (left)
ideal. What is more, any ideal I is contained in a maximal ideal M.

Proof. Let I ( R be our (left) ideal (if you merely want existence of a maximal
ideal you can take I = (0)). Let Γ = {J |J is a proper (left) ideal of R containing I}
with the partial ordering being set-theoretic containment. Note that Gamma
is nonempty as I ∈ Γ.

To apply Zorn’s Lemma, we need to verify that every chain in Γ has an
upper bound in Γ. Let C = {Ij} be a chain (that is, a linearly ordered subset
of Γ). We claim that U :=

⋃
Ij is an upper bound for C (more precisely, the

fact that it is an upper bound is clear...we merely have to show that U ∈ Γ).
To this end, we first claim that U is an (left) ideal of R. Indeed, if x, y ∈ U

then x ∈ Iα and y ∈ Iβ . Since Iα and Iβ are elements of C, then we will assume
that Iα ⊆ Iβ without loss of generality. Hence x − y ∈ Iβ ⊆ U . Showing that
rx ∈ U is similar.

To see that U is proper, note that if it is not, then 1 ∈ U and hence 1 ∈ Iα
for some α. Hence Iα is not proper which is a contradiction.

Since U is an upper bound in Γ, Zorn’s Lemma applies and hence Γ has a
maximal element M. This element M is a maximal ideal of R containing I and
we are done.

Example 5.3.11. Can you list the maximal ideals of the ring
∏∞
i=1 Z2?

Here are some generalizations of earlier results (without proof).

Theorem 5.3.12. Let R be a commutative ring such that R2 = R (in particular,
this holds if R has identity), then any maximal ideal of R is prime.

Theorem 5.3.13. Let M be a proper ideal in a ring R with identity.

a) If M is maximal and R is commutative, then R/M is a field.

b) If R/M is a division ring, then M is maximal.

It should be noted in tandem with the above theorem that, in particular,
if R is commutative with identity then M is maximal if and only if R/M is a
field and R is a field if and only if R has no proper ideals if and only if (0) is
maximal if and only if any nonzero homomorphism f : R −→ S is injective.

Theorem 5.3.14. Let {Ri|i ∈ Λ} be a nonempty family of rings and
∏
i∈ΛRi

the direct product of the underlying groups.

a)
∏
i∈ΛRi is a ring with pointwise product.

b) If Ri has identity or is commutative for all i, then so is
∏
i∈ΛRi.
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c) For all k, the projection πk :
∏
i∈ΛRi −→ is a ring epimorphism.

d) For all k the inclusion ιk : Rk −→
∏
i∈ΛRi is a monomorphism of rings.

Theorem 5.3.15. Let {Ri} be a family of rings, S a ring, and {φi : S −→ Ri}
a family of homomorphisms. Then there is a unique φ : S −→

∏
Ri such that

πiφ = φi for all i. The direct product is determined up to isomorphism by this
property.

Proof. The proof is very similar to the analogous result for groups. The needed
map is φ(s) = {φi(s)}. Verify that this works.

Theorem 5.3.16. Let A1, A2, · · · , An be ideals in R such that

a) A1 +A2 + · · ·+An = R and

b) Ak
⋂

(A1 +A2 + · · ·+Ak−1 +Ak+1 + · · ·+An) = 0.

Then R ∼= A1 ×A2 × · · · ×An.

Proof. Consider the map φ : A1×A2×· · ·×An −→ R given by φ(a1, a2, · · · , an) =
a1 + a2 + · · ·+ an. It is clear that φ is an additive group homomorphism. Addi-
tionally by the first assumption, φ is onto and to see that φ is one to one, note
that if φ(a1, · · · , an) = a1 + · · · + an = 0 then we have that ai = −(a1 + a2 +
· · ·+ai−1 +ai+1 + · · ·+an) ∈ Ai

⋂
(A1 +A2 + · · ·+Ai−1 +Ai+1 + · · ·+An) = 0.

So an arbitrary ai = 0 and φ is one to one.
The only remaining part to show is that φ is a homomorphism with respect to

the multiplicative structure. But note that φ((a1, a2, · · · , an)(b1, b2, · · · , bn)) =
φ((a1b1, · · · , anbn)) = a1b1+· · ·+anbn. Also note that (a1+a2+· · ·+an)(b1+b2+
· · ·+bn) =

∑n
i=1

∑n
j=1 aibj . But if i 6= j then aibj ∈ Ai

⋂
Aj = 0 and hence this

sum is precisely a1b1 + · · ·+anbn and this shows that φ is a homomorphism.

The next result is the famous Chinese Remainder Theorem. We state this
in slightly more generality than is usually seen in practice (our assumption will
be that if A is an ideal of R then R2 + A = R which always holds if R has an
identity or, more generally is an idempotent ring).

Theorem 5.3.17. Let A1, A2, · · · , An be ideals in a ring R such that R2 +Ai =
R for all i and Ai +Aj = R if i 6= j. If b1, b2, · · · , bn ∈ R then there is a b ∈ R
such that

b ≡ bimod(Ai)

for all i. What is more, b is uniquely determined up to congruence modulo
A1

⋂
A2

⋂
· · ·
⋂
An.

Example 5.3.18. Find a solution to your favorite set of congruence equations.

Corollary 5.3.19. If A1, A2, · · · , An are ideals in R then there is a monomor-
phism of rings

θ : R/(A1

⋂
A2

⋂
· · ·
⋂
An) −→ R/A1 ×R/A2 × · · · ×R/An

and if R2 +Ai = R for all i and Ai+Aj = R if i 6= j then θ is an isomorphism.
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5.4 Factorization in Commutative Rings

Since a large part of the understanding of the multiplicative structure of a
commutative ring, R, concerns factorization, factorization is, in a sense, what
separates (commutative) ring theory from the theory of abelian groups. In this
section we will give a brief overview of basic factorization. In this section all
rings are commutative.

Definition 5.4.1. A nonzero element a ∈ R is said to divide b (a|b) if there
exists an x ∈ R such that ax = b. If a|b and b|a then a and b are associates.

Theorem 5.4.2. Let R be commutative with identity and a, b, u ∈ R.

a) a|b if and only if (b) ⊆ (a).

b) a and b are associates if and only if (a) = (b).

c) u ∈ U(R) if and only if u|r for all r ∈ R if and only if (u) = R.

d) The relation “a ∼ b if and only a and b are associates” is an equivalence
realtion on R.

e) If a = bu with u ∈ U(R) then a and b are associates. If R is an integral
domain, then the converse holds.

Proof. We will prove part e), leaving the others as exercises. Suppose that
a = bu with u a unit, then, of course, b|a. Since u ∈ U(R), u−1 ∈ R and
hence we have that au−1 = b and hence a|b so a and b are associates. For the
converse statement (assuming that R is a domain), we assume that a and b are
associates. Hence there are element x, y ∈ R such that a = bx and ay = b.
Combining these two equations, we obtain that a = yxa or a(1− yx) = 0. One
of these factors must be 0 since R is a domain. If a = 0 then b = 0 and we are
degenerate. Therefore 1 − yx = 0 and 1 = yx. So x (and y) is a unit and we
are done.

We now distinguish between the notions of “irreducibility” and “prime.”

Definition 5.4.3. Let R be commutative with identity. An nonzero, nonunit
element c ∈ R is said to be irreducible if c = ab implies that a or b is a unit of
R. The nonzero nonunit element p ∈ R is said to be prime if p|(ab) implies that
p|a or p|b.

Example 5.4.4. In the integers p being prime and irreducible coincide (and
coincides with the familiar notion of “prime integer”). In Z, we also say 0 is
prime (the definition above does not cover this, we will see later why this choice
is made.

Example 5.4.5. Verify that if F is a field, then in the domain F [x2, x3] the
elements x2 and x3 are irreducible elements that are not prime.
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Example 5.4.6. Verify that in Z6, the element 3 = 33 is not irreducible, but
is prime.

Theorem 5.4.7. Let p and c be nonzero elements of an integral domain.

a) p is prime if and only if (p) is a prime ideal.

b) c is ireducible if and only if (c) is maximal in the set of principal ideals.

c) Any prime element is irreducible.

d) If R is a PID then the notions of prime and irreducible are equivalent.

e) Every associate of an irreducible (resp. prime) element is irreducible (resp.
prime).

f) The only divisors of an irreducible, c, are units and associates of c.

Proof. a) Suppose that (p) is prime and p|ab. Hence ab ∈ (p) and hence a or b is
an element of (p). This means that p divides a or p divides b. For the converse,
suppose that p is a nonzero prime element and that ab ∈ (p). Therefore ab = rp
for some r ∈ R and hence p|ab. Since p is a prime element, p|a without loss of
generality and hence a ∈ (p).

c) Let p be prime and suppose that p = ab. Hence p|ab and since p is prime
we will say that p|a without loss of generality. So p = ap′. Rewriting the
equation, we get that p = pa′b and since R is an integral domain, we have that
a′b = 1. Therefor b is a unit and p is irreducible.

d) We have to show that any irreducible is prime in a PID. Let c be an
irreducible element of R and suppose that c|ab. Hence ab = cr for some r ∈ R.
Suppose that c does not divide a (equivalently the ideal (c) does not contain
(a)). Consider the ideal (a, c). This ideal must be principal, say (a, c) = (x).
Hence x|c and so c = yx. Since c is irreducible, this means that either x ir y is
a unit. If y is a unit, this implies that c|a (since x|a and x and c are associates)
and this is a contradiction. On the other hand, if x is a unit, then (a, c) = R
and there are elements u, v ∈ R such that

ua+ vc = 1,

multiplying both sides by b, we get

uab+ vbc = b = (ur + vb)c

and c|b and we are done. The others are left for exercises.

It is not true in general that any element of a domain can be factored into
irreducible elements.

Example 5.4.8. Show that the domain Z+ xQ[x] is not atomic and neither is
Z.
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Definition 5.4.9. We say that a domain, R, is atomic if every nonzero nonunit
of R can be factored into a (finite) product of irreducible elements (or atoms).

Example 5.4.10. Z,Z[x1, x2, · · · , xn] are examples of atomic domains. More
generally any Noetherian domain (that is, all ideals are finitely generated) is
atomic.

Lemma 5.4.11. Let R be a domain and let x be an element of R that can
be factored into prime elements: x = p1p2 · · · pn. Then this factorization is
unique up to reordering and units (that is, if q1q2 · · · qm is any other irreducible
factorization then n = m and for all 1 ≤ i ≤ n, pi = uiqj for some ui ∈ U(R)).

Proof. The proof of this lemma is an easy induction. The first step will show
how it is done. Assume that we have the prime factorization x = p1p2 · · · pn
and that

p1p2 · · · pn = q1q2 · · · qm
with each qi irreducible. Note that p1 divides the right side of the above equa-
tion, and since p1 is prime, p1 must divide one of the qi’s. Without loss of
generality we say that p1 divides q1 and we have

cp1 = q1.

Since q1 is irreducible, c must be a unit and hence q1 is an associate of p1

(and hence prime). Divide out both sides by p1 and proceed by induction (this
continuation also gives that n = m).

Here is the daddy mack of factorization domains.

Theorem 5.4.12. Let R be an atomic integral domain. The following condi-
tions are equivalent.

a) If a1a2 · · · an = b1b2 · · · bm are two irreducible factorizations then n = m
and there is a σ ∈ Sn such that ai = uibσ(i) with ui ∈ U(R) for all
1 ≤ i ≤ n.

b) If a1a2 · · · an = b1b2 · · · bn are two irreducible factorizations then n = m
there is a σ ∈ Sn such that ai = uibσ(i) with ui ∈ U(R) for all 1 ≤ i ≤ n.

c) Every nonzero nonunit in R can be factored into prime elements.

Any domain satifying one (hence all) of the above conditions is called a unique
factorization domain (UFD).

Proof. The equivalence of a) and c) follow from the above. The fact that a) and
b) is equivalent is more difficult and will not be shown here.

Definition 5.4.13. We say that a subset (not containing 0) is multiplicatively
closed is s, t ∈ S implies that st ∈ S.
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Lemma 5.4.14. Let S be a multiplicatively closed subset of R and I an ideal of
R such that I

⋂
S = ∅. Then I can be expanded to a prime ideal P containing

I such that P is maximal with respect to the property that P
⋂
S = ∅.

Proof. The fact that such an ideal exists is a Zorn’s Lemma argument (Zornify
the collection of ideals containing I which exclude S). It is an exercise to see
that such an ideal (maximal with respect to excluding S) is prime.

Here is a nice ideal-theoretic characterization of UFD.

Theorem 5.4.15. Let R be an integral domain. R is a UFD if and only if
every nonzero prime ideal contains a nonzero prime element.

Proof. First assume that R is a UFD and that P is a nonzero prime ideal of
R. Let x ∈ P be a nonzero element. Since R is a UFD, we factor x into prime
elements:

x = p1p2 · · · pn ∈ P

and since P is a prime ideal, then (at least) one of the pi’s is in P. In particular,
P contains a nonzero prime element.

On the other hand, suppose that R is a domain with the property that every
nonzero prime ideal conatins a nonzero prime element. If R is not a UFD, then
there is an element a ∈ R such that a cannot be factored into prime elements.
Let S be the multiplicative subset of R generated by primes (every element of
S is a product of primes). Note that (a)

⋂
S = ∅. Indeed, if not, then there is

a nonzero r ∈ R such that ra is a product of primes:

ra = p1p2 · · · pn.

Since each prime divides either r or a, we have that r = r′pi1 · · · pik and
a = a′pj1 · · · pjm . Note that r′, aprime are necessarily units and hence a is a
product of primes which is a contradiction.

Since (a)
⋂
S = ∅, we can expand (a) to a prime ideal P such that P

⋂
S = ∅.

But since P excludes S, it can contain no prime element, which is a contradic-
tion.

Corollary 5.4.16. Any PID is a UFD.

Proof. Let R be a PID and let P be a nonzero prime ideal. P = (x) and hence
conatins a prime element, so R is a UFD.

Definition 5.4.17. Let R be an integral domain. We say that R is a Euclidean
domain if there exists a function φ : R \ {0} −→ N

⋃
{0} such that φ(a) ≤ φ(ab)

and if a, b ∈ R with b 6= 0 then there exists q, r ∈ R such that

a = qb+ r

with r = 0 or φ(r) < φ(b).
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Example 5.4.18. F [x] and F [[x]] are Euclidean as well as Z and Z[i].

Theorem 5.4.19. Any Euclidean domain is a PID and hence a UFD.

Proof. If I is an (nonzero) ideal in R, consider the element x ∈ I such that φ(x)
is minimal. It is easy to see that x generates I.

Definition 5.4.20. At atomic integral domain is a half-factorial domain (HFD)
if given two irreducible factorizations

π1π2 · · ·πn = ξ1ξ2 · · · ξm
then n = m.

Example 5.4.21. Let F ( K be a nontrivial extension of fields, then F +
xK[[x]] is an HFD. Another example of an HFD is Z[

√
−5] (and of course any

UFD is an HFD). An example of a non-HFD is F [x2, x3].

Definition 5.4.22. Let S be a subset of a commutative ring R. An element d
is said to be a greatest common divisor for the set S if

a) d|s for all s ∈ S and

b) if c|s for all s ∈ S then c|d.

Theorem 5.4.23. Let R be a commutative ring with identity.

a) If R is a PIR then gcd(a1, a2, · · · , an) exists and what is more, this greatest
common divisor is an R−linear combination of the elements a1, a2, · · · , an.

b) If R is a UFD then gcd(a1, a2, · · · , an) exists.

We remark that an integral domain such that any two elements (and hence
any finite set of elements) has a greatest common divisor is called a GCD-
domain. If a GCD-domain has the additional property that for all a, b, gcd(a, b)
is a linear combination of a and b, then R is called a Bezout domain.

Example 5.4.24. F [x, y] is a GCD-domain that is not a Bezout domain. Beze-
out domains are precisely the domains where every finitely-generated ideal is
principal. See if you can find an example of a Bezout domain that is not a PID.

5.5 Localization

In this section we look at one of the most fundamental constructions in commu-
tative algebra. We will assume that our rings in this section are commutative.

We first recall from the previous section the notion of multiplicative set (that
is, a subset of R closed under multiplication. These sets form the basis for the
concept of localization (which may be thought of as a generalization of “forming
fractions”). Note that the rules that we are used to in multiplying and adding
fractions in Q:
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a

b

c

d
=
ac

bd
and

a

b
+
c

d
=
ad+ bc

bd
seem to naturally demand that the set of “denominators” be closed under mul-
tiplication. Basically, if S ⊆ R is a multiplicatively closed set, then we can
think of S as a collection of “possible denominators” in some ring that is re-
lated to the original ring R. Before we make this precise, we give an example
of a fundamental type of multiplicatively closed set.

Example 5.5.1. Let R be commutative and let {Pi}i∈I be a collection of prime
ideals of R. Then the set

S := R \
⋃
i∈I

Pi

is a multiplicatively closed subset of R. Indeed, if a, b ∈ S then for all i ∈ I,
neither a not b is in Pi. Since each Pi is prime, ab is is no Pi either.

Definition 5.5.2. We say that the multiplicatively closed S ⊆ R is saturated if
st ∈ S implies that s, t ∈ S.

Theorem 5.5.3. A set, S, (0 /∈ S) is multiplicatively closed and saturated if
and only if it is the complement of a set theoretic union of prime ideals.

Proof. It is easy to see that the complement of a set-theoretic union of primes
is a saturated multiplicatively closed set...the converse is the more interesting
statement.

Suppose that S is a saturated, multiplicatively closed subset of R and sup-
pose x ∈ Sc. Note that since S is saturated, (x)

⋂
S = ∅. By the previous

results, we can expand (x) to a prime ideal P such that P
⋂
S = ∅. Hence

every element in the complement of S is in a prime ideal that misses S and we
are done.

Proposition 5.5.4. Let S ⊆ R be a multiplicatively closed subset. The relation
on R× S given by

(r, s) ∼ (r′, s′)⇐⇒ ∃t ∈ S such that t(rs′ − r′s) = 0

is an equivalence relation.

Proof. Clearly (r, s) ∼ (r, s) and (r, s) ∼ (r′, s′) implies that (r′, s′) ∼ (r, s).
Transitivity is what is needed to be shown.

Suppose that x, y, z ∈ R and a, b, c ∈ S and that (x, a) ∼ (y, b) and (y, b) ∼
(z, c). So there are s, t ∈ S such that s(xb − ya) = 0 and t(yc − zb) = 0.
Multiply the first equation by ct ∈ S and the second by as ∈ S to obtain
sctxb−syact = 0 and tycas−tzbas = 0. Now add these two equations to obtain
sctxb− tzbas = 0 = stb(xc− za). Since stb ∈ S we have that (x, a) ∼ (z, c).
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Theorem 5.5.5. Let R be commutative and S a multiplicatively closed subset.
The set S−1R = RS of equivalence classes of R× S (we denote the equivalence
class of (r, s) by r

s ) forms a commutative ring with identity under the operations

x

s
+
y

t
=
xt+ sy

st

and

(
x

s
)(
y

t
) =

xy

st
.

Additionally, if R 6= 0 has no nonzero zero-divisors and 0 /∈ S then R is
an integral domain. What is more, if R 6= 0 has no nonzero zero-divisors and
S = R \ {0}, then RS is a field.

Proof. Exercise.

Proposition 5.5.6. Let S be a multiplicatively closed subset of R.

a) For a fixed s ∈ S the map φs : R −→ RS given by φs(r) = rs
s is a well-

defined homomorphism of rings such that φs(t) is a unit in RS for all
t ∈ S.

b) If 0 /∈ S and S contains no zero-divisors, then φs is one to one. In
particular, any integral domain may be embedded in its quotient field.

c) If R has identity and S is a subset of U(R), then φs is an isomorphism.

Proof. Exercise.

Theorem 5.5.7. Let S be a multiplicatively closed subset of R and T a com-
mutative ring with identity. If f : R −→ T is a homomorphism of rings with
f(s) ∈ U(T ) for all s ∈ S then there exists a unique homomorphism of rings
f : RS −→ T such that fφs = f . The ring RS is completely determined up to
isomorphism by this property.

Proof. The map f( rs ) = f(r)(f(s))−1 is what is needed. Fill in the details.

We now turn our attention to the (ideal) structural interplay between R and
RS .

Theorem 5.5.8. Let S be a multiplicatively closed subset of a commutative ring
R.

a) If I ⊆ R is an ideal then S−1I = {xs |x ∈ I, s ∈ S} is an ideal of RS.

b) If I, J are ideals in R then

S−1(I + J) = S−1I + S−1J

S−1(IJ) = (S−1I)(S−1J)

S−1(I
⋂
J) = S−1I

⋂
S−1J
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Lemma 5.5.9. Let S be a multiplicatively closed subset of R (commutative with
identity) then S−1I = S−1R if and only if S

⋂
I 6= ∅.

Proof. Suppose that S−1I = S−1R, in particular, 1 ∈ S−1I. So there is an
element t ∈ S (and x

s ∈ S
−1I) such that t(s − x) = 0. Hence xt = st ∈ S and

S
⋂
I 6= ∅.

On the other hand, suppose that x ∈ S
⋂
I 6= ∅. Note that x( 1

x ) = 1 ∈ S−1I
and hence S−1I = S−1R.

Proposition 5.5.10. Let R be commutative with identity, I ⊆ R an ideal and
S a multiplicatively closed subset.

a) I ⊆ φ−1
s (S−1I).

b) If I = φ−1
s (J) for some ideal J ⊆ RS, then S−1I = J .

c) If P is a prime ideal of R and S
⋂

P = ∅, then S−1P is a prime ideal of
RS and φs(S

−1P) = P.

We remark here that part b) says that every ideal of S−1R is of the form S−1I
for some ideal I ⊆ R.

Theorem 5.5.11. Let R be commutative with identity and S a multiplicatively
closed subset of R. Then there is a one to one correspondence between primes
of R missing S and primes of RS.

Proof. Check that the assignment P 7→ S−1P works.

Here we record the standard notation that if P is a prime ideal of R then
RP = RS where S = R \P.

Corollary 5.5.12. Let R be commutative with identity and P a prime ideal.

a) There is a one to one correspondence between primes of RP and primes
of R contained in P.

b) PP is the unique maximal ideal of RP.

Definition 5.5.13. Let R be a commutative ring with identity. We say that
R is quasi-local (resp. semi-quasi-local) if R has a unique (resp. only finitely
many) maximal ideals.

We note that the terminology “local ring” (resp. “semi-local ring”) is re-
served for quasi-local rings (resp. semi-quasi-local rings) that are Noetherian.

Theorem 5.5.14. Let R be commutative with identity. The following condi-
tions are equivalent.

a) R is quasi-local.

b) All nonunits of R are contained in some fixed maximal ideal M ( R.

c) All nonunits of R form an ideal.
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5.6 Polynomial and Power Series Rings

We have seen these types of rings (in differents contexts) since at least the
days of calculus. Polynomial are fundamental structures in ring theory and
power series provide a topological flavor to the mix (the power series ring is a
completion of a polynomial ring). We will go teh other way, by defining power
series first.

Theorem 5.6.1. Let R[[x]] = {
∑∞
n=0 rnx

n|rn ∈ R} be the set of “formal sums”
with addition defined by

∞∑
n=0

rnx
n +

∞∑
n=0

snx
n =

∞∑
n=0

(rn + sn)xn

and multiplication by

(

∞∑
n=0

rnx
n)(

∞∑
n=0

snx
n) =

∞∑
n=0

cnx
n

where cn =
∑n
i=0 risn−i. Then R[[x]] is a ring with R[x] = {f ∈ R[[x]]|rn =

0 almost everywhere }.

The ring R[[x]] is called the ring of formal power series with coefficients in
R and R[x] is the ring of polynomials with coefficients in R.

Proof. Exercise.

We note that the polynomial rings (or power series rings) can be extended
inductively to the n−variable case. Polynomial can also be defined for any
(infinite) number of variables as well. For power series this is less clear and
there are at least three distinct definitions of “what it means” to be a power
series ring in infinitely many variables.

Definition 5.6.2. For a polynomial f(x) =
∑n
i=0 rix

i with rn 6= 0 we define
the degree of f(x) (deg(f)) to be n. We say that zero polynomial has degree
−∞.

For a power series of the form xn
∑∞
i=0 rix

i (with r0 6= 0) we define the
order of f(x) (ord(f)) to be n. We say that the order of the zero power series
is ∞.

Proposition 5.6.3. Let f, g be polynomials in R[x] and α, β be power series in
R[[x]].

a) deg(fg) ≤ deg(f) + deg(g) and equality holds if the leading coefficient of
either f or g is not a zero-divisor.

b) deg(fg) ≤ max(deg(f), deg(g)).

c) ord(αβ) ≥ ord(α) + ord(β) and equality holds if either the smallest coeffi-
cient of α or of β is not a zero-divisor.
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d) ord(α+ β) ≥ max(ord(α), ord(β)).

Proof. We will prove part a)...the rest are similar. Write f(x) =
∑n
i=0 aix

i and
g(x) =

∑m
i=0 bix

i where an and bm are both nonzero. Note that

f(x)g(x) = (

n∑
i=0

aix
i)(

m∑
j=0

bjx
j) =

n∑
i=0

m∑
j=0

aibjx
i+j

and clearly deg(fg) ≤ n+m. Also note that if either an or bm is nonzero then
anbm 6= 0 and we see that in this case equality holds.

Proposition 5.6.4. R is commutative (respectively has identity or is a domain)
if and only if R[x] is. The same holds if “R[x]” is replaced with “R[[x]].

Proof. We will attempt to prove only that which is not blatently obvious (e.g.
the “with identity” statement is an easy check). If R is a domain, the degree
(resp order) statements from the above show that R[x] (resp R[[x]]) is a domain.
On the other hand it is easy to see that if R is not a domain, then neither R[x]
nor R[[x]] can be.

Proposition 5.6.5. Let R be a commutative ring with identity.

a) f(x) ∈ R[x] is a unit if and only if f(0) ∈ U(R) and all other coefficients
are nilpotent (in particular, if R is a domain then the units of R[x] coincide
with the units of R).

b) g(x) ∈ R[[x]] is a unit if and only if g(0) ∈ U(R).

c) g(x) ∈ R[[x]] is irreducible if g(0) is irreducible in R.

We remark that “commutativity” is not needed for part b).

Proof. For a) we will show the case where R is an integral domain (the more
general case being slightly more complicated, but doable as an exercise). The
implication (⇐=) is clear in any case. If R is a domain and f is a unit then
there is a polynomial g such that fg = 1. By the previous, we have that
deg(fg) = deg(f) + deg(g) = 0. This forces the degrees of f and g to be 0 (that
is, both f and g are in R).

For part b) the implication (=⇒) is clear. So we assume that g(x) = a0 +
a1x+a2x

2+· · · ∈ R[[x]] is such that g(0) = a0 is a unit in R. We will inductively
build a power series f(x) = b0 +b1x+b2x

2 + · · · such that g(x)f(x) = 1. Clearly
we choose b0 = a−1

0 . Assume that we have chosen b1, b2, · · · bn so that

k∑
i=0

ak−ibi = 0

for all 1 ≤ k ≤ n. We merely need to show that we can select bn+1 in a similar
fashion.

Consider
∑k+1
i=0 ak+1−ibi =

∑k
i=0 ak+1−ibi + a0bk+1. So to guarantee that

this sum is zero, we merely need to select
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bk+1 = −a−1
0 (

k∑
i=0

ak+1−ibi).

and this completes the proof.

Proposition 5.6.6. Let I ⊆ R be an ideal of the commutative ring wit identity
R, I[x] = {

∑n
k=0 αkx

k|αk ∈ I}, and I[[x]] = {
∑∞
k=0 αkx

k|αk ∈ I}.

a) I[x] is an ideal of R[x] and R[x]/I[x] ∼= (R/I)[x].

b) I[[x]] is an ideal of R[[x]] and R[[x]]/I[[x]] ∼= (R/I)[[x]].

c) I is prime in R if and only if I[x] is prime (resp. maximal) in R[x].

d) I is prime in R if and only if I[[x]] is prime (resp. maximal) in R[[x]].

e) I is prime (resp. maximal) in R if and only if (I, x) is prime (resp.
maximal) in R[x].

f) I is prime (resp. maximal) in R if and only if (I, x) is prime (resp.
maximal) in R[[x]].

Proof. For a) consider the map φ : R[x] −→ R/I[x] given by φ(
∑
αkx

k) =∑
αkx

k where αk denotes the coset αk + I. It is easy to see that φ is onto with
kernal I[x]. The power series case case in b) is similar. For parts c) and d)
we see that if I is prime, then R/I is a domain and hence so is (R/I)[x] and
(R/I)[[x]] (and hence I[x] and I[[x]] are prime). Conversely, if I[x] or I[[x]] is
prime, then (R/I)[x] or (R/I)[[x]] is a domain which in either case means that
R/I is a domain. Hence I is prime.

Finally for parts e) and f), we merely note that R[x]/(I, x) ∼= R/I and
R[[x]]/(I, x) ∼= R/I (the proof is similar to a) and b)). From this observation,
the results follow.

Corollary 5.6.7. Let R be commutative with identity. Any maximal ideal of
R[[x]] is of the form (M, x) where M ⊆ R is a maximal ideal. In particular, R
is a (semi-) quasi-local ring is an only if R[[x]] is a (semi-) quasi-local ring.

Proof. By the above, any ideal of the form (M, x) is maximal. It remains to
show that any maximal ideal in R[[x]] is of this form. Let Γ ⊆ R[[x]] be a
maximal ideal. We first claim that x ∈ Γ. If this is not the case, then x /∈ Γ
and by the maximality of Γ, (Γ, x) = R[[x]]. Hence there are power series γ ∈ Γ
and f ∈ R[[x]] such that

γ + xf = 1.

It is immediate that the constant term of γ must be 1, but then γ ∈ U(R[[x]])
by the above results. This is a contradiction.
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Since x ∈ Γ, we will claim that Γ is of the form (I, x) where I = Γ
⋂
R. It is

clear that (I, x) ⊆ Γ so we will show the other inclusion. Let γ ∈ Γ. We write
γ = a0 + xg(x) and note that since x ∈ Γ, we have

γ − xg(x) = a0 ∈ Γ
⋂
R,

and hence gamma ∈ (I, x). Since there is a one to one correspondence between
maximal ideals of R and maximal ideals of R[[x]], the statement about (semi-)
quasi-local rings follows.

We note here that the previous results are wildly untrue for polynomials (for
example in Q[x] the ideal (1 + x) is maximal, but does not contain x). This is
a fairly rare instance where power series behave nicer than polynomials.

We now look at some rather familiar family of homomorphism obtained by
“plugging in.”

Proposition 5.6.8. Let T be a polynomial or power series ring in n variables
over R. Let v be an element of R×R× · · · ×R.

a) The map φ0 : T −→ R given by φ0(f) = f(0) is an epimorphism of rings
(in the polynomial case 0 can be replaced by v.

b) The inclusion ι : R −→ T is a monomorphism of rings such that φ0ι = 1R.

Proof. Verification is routine computation.

Theorem 5.6.9. Let R and S be commutative with identity and φ : R −→ S a
homomorphism such that φ(1) = 1. If s1, s2, · · · , sn ∈ S then there is a unique
φ : R[x1, x2, · · · , xn] −→ S such that φ|R = φ and φ(xi) = si for all i. The
property determines R[x1, x2, · · · , xn] up to isomorphism.

Here is a result that illustrates the interplay of localization and polynomials
and power series.

Proposition 5.6.10. Let R be a domain and S ⊆ R a multiplicatively closed
set.

a) R[x]S ∼= RS [x].

b) R[[x]]S ⊆ RS [[x]].

Proof. Part a) is an exercise in collecting denominators. Part b) is similar.

Example 5.6.11. Consider the ring Z and S = Z \ {0}. It is easy to see that
Z[[x]]S ( ZS [[x]]. In fact equality for part b) of the above rarely happens (one
of the equivalent conditions for equality is that for every countable collection of
elements si ∈ S it must be the case that

⋂
Rsi 6= (0)).

We will now focus on some factorization and finiteness theorems for R[x]
and R[[x]].

We begin with an earlier mentioned result.
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Proposition 5.6.12. Let F be a field, then F [x] and F [[x]] are Euclidean do-
mains.

Proof. Exercise. The functions to utilize are the degree function (for the poly-
nomial case) and the order function (for the power series case).

Theorem 5.6.13. Let R be a UFD, then R[x] is a UFD.

We remark that the converse is also true (and easier to show).

Proof. We use the earlier characterization of UFD. That is, to show that R[x]
is a UFD, it suffices to show that every nonzero prime ideal of R[x] contains a
nonzero prime element.

Let Γ be a prime ideal of R[x]. First suppose that Γ
⋂
R 6= (0). In this case,

Γ
⋂
R is necessarily a nonzero prime ideal of R (is ab ∈ Γ

⋂
R with a, b ∈ R then

one of a or b is in Γ and R). So, since R is a UFD, it must contain a nonzero
prime element (of R). We will call this element p. We will show that p is also
prime in R[x].

Suppose that p divides f(x)g(x) but divides neither f(x) nor g(x). If we
write f(x) = a0 + a1x+ · · ·+ anx

n and g(x) = b0 + b1x+ · · ·+ bmx
m then there

is a smallest i such that p does not divide ai and a smallest j such that p does
not divide bj . Consider the coefficient of xi+j in f(x)g(x):

a0bi+j + · · ·+ ai−1bj+1 + aibj + ai+1bj−1 + · · ·+ ai+jb0.

Clearly p divides all of the terms to the left and to the right of aibj . Since
p divides the coefficient itself, p divides aibj and as p is prime, p must divide
either ai or bj and this is a contradiction. So p is prime in R[x]. We conclude
that any prime ideal Γ such that Γ

⋂
R 6= (0) contains a prime element, so we

will assume that Γ
⋂
R = (0).

Consider the ideal ΓK[x] where K is the quotient field of R. Since Γ
⋂
R =

(0), Γ contains no units of K[x] and is proper. Also since K[x] is a PID,
ΓK[x] = (f(x)) and we can assume that f(x) ∈ R[x] (by clearing denominators).
Additionally, since R is a UFD, we can assume the greatest common divisor the
coefficients is 1. Certainly f(x) is prime in K[x] since it generates a prime
ideal (and (f(x)) is prime because is the localization of the prime ideal Γ). We
merely need to show that f(x) is prime in R[x]. We start with the claim that

if k(x)f(x) = g(x) ∈ R[x], then k(x) ∈ R[x]. To see this note that k(x) = p(x)
r

with p(x) ∈ R[x] and r ∈ R. Replacing k(x) in the previous equation and
multiplying both sides of the equation by r gets us

p(x)f(x) = rg(x).

Now factor r into primes, r = p1p2 · · · pn. Note that p1 is prime in R[x] as well
and divides p(x)f(x). Since p1 does not divide f(x) (since the gcd of its terms
is 1), it must divide p(x). By induction, r|p(x) and hence k(x) ∈ R[x].

With this claim established, we see that Γ = (f(x)) and hence f(x) is our
nonzero prime in Γ.
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Corollary 5.6.14. If R is a UFD then R[x1, x2, · · · , xn] is a UFD.

Proof. The base case is the previous result. Inductively, R[x1, · · · , xn−1] is a
UFD. Hence be the previous (again)R[x1, · · · , xn−1, xn] = (R[x1, · · · , xn−1])[xn]
is a UFD.

We now introduce a couple of auxiliary results that pertain to roots of poly-
nomials.

Definition 5.6.15. Let R ⊆ T be commutative rings. We say that t ∈ T is a
root of f(x) ∈ R[x] if f(t) = 0.

We remark that this can be extended to the multi-variable case (or the non-
comutative case if the distinction “left” and “right” roots is made.

Proposition 5.6.16. Let R be commutative with identity. Then r ∈ R is a
root of f(x) ∈ R[x] if and only x− r divides f(x).

Proof. Exercise.

Theorem 5.6.17. Let R ⊆ T be integral domains and f ∈ R[x] a nonzero
polynomial of degree n. Then f(x) has at most n distinct roots in T .

Proof. Let t1, t2, · · · tk be the distinct roots of f(x) in T . By the above results,
f(x) = f1(x)(x− t1) with f1(x) ∈ T [x]. Now plug in t2 to get

f(t2) = f1(t2)(t2 − t1)

and since t2 6= t1, we have that t2 is a root of f1(x). So we write f(x) =
f2(x)(x− t2)(x− t1). Proceeding by induction we obtain

f(x) = fk(x)(x− tk) · · · (x− t2)(x− t1)

and since textdeg(f) = n, it is easy to see that k ≤ n.

The next result is known as the “rational root test”.

Theorem 5.6.18. Let R be a unique factorization domain with quotient field
K and let

f(x) = r0 + r1x+ · · ·+ rnx
n ∈ R[x].

with r0 6= 0. If u = a
b is a root of f(x) with a, b relatively prime elements of R

then a|r0 and b|rn.

Proof. Since a
b is a root we have

∑n
i=0 ri(

a
b )i = 0. Clearing the denominator,

we get

r0b
n + r1ab

n−1 + · · ·+ rn−1a
n−1b+ rna

n

and since a and b are relatively prime, a|r0 and b|rn.
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The following is useful (especially in the characteristic p situation) for de-
termining multiple roots. We say that r is a multiple root of f(x) is f(x) =
(x− r)ng(x) where n > 1 (if n = 1 we say that the root is simple).

Definition 5.6.19. Let R be a domain and f(x) =
∑n
i=0 rix

i ∈ R[x]. The
formal derivative of f(x) is f ′(x) =

∑n
i=1 irix

i−1.

Theorem 5.6.20. Let R be a domain and f, g ∈ R[x].

a) (rf)′ = rf ′ for all r ∈ R.

b) (f + g)′ = f ′ + g′.

c) (fg)′ = fg′ + f ′g.

d) (fn)′ = nfn−1f ′.

e) r is a multiple root of f if and only if f(r) = 0 and f ′(r) = 0.

f) If R is a field and f and f ′ are relatively prime, then f has no multiple
roots.

Proof. Exercise.

We conclude this section with the famous Eisenstein’s criterion.

Theorem 5.6.21. Let R be a UFD with quotient field K. If

f(x) = r0 + r1x+ · · ·+ rnx
n ∈ R[x]

is of degree at least 1 and p is a prime of R such that

a) p|ri, 0 ≤ i ≤ n− 1, and

b) p does not divide rn and p2 does not divide r0,

then f(x) is irreducible in K[x] (and if the gcd of the coefficients is 1, then f is
irreducible in R[x]).

Proof. For this proof, we will go ahead and assume that the gcd of the coeffi-
cients of f is 1 (since dividing out by a nonzero coefficient does not affect the
irreducibility in K[x]).

Suppose that f(x) = k1(x)k2(x) with k1, k2 ∈ K[x] of positive degree. Write
k1 = g1

a1
and k2 = g2

a2
with g1, g2 ∈ R[x] and a1, a2 ∈ R. We can clear the

denominators to get

a1a2f(x) = g1(x)g2(x)

and as we have done before (since R and R[x] are UFDs) we can show that each
prime dividing either a1 or a2 must divide g1 or g2. This allows the reduction
to the assumption that
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f = g1g2

with g1, g2 ∈ R[x]. Let p be the prime satisfying the Eisenstein criterion above.
Note that since p but not p2 divides r0 precisely one of the constant coefficients
of g1 or g2 contains exactly one factor of p (without loss of generality, we will
say that the constant coefficient of g1, a0, is divisible by p). Since p does not
divide f , there must be coefficients of both g1 and g2 that are not divisible my
p. Let ak be the smallest degree coefficient of g1 that is not divisible by p. Write

g1 = a0 + a1x+ · · ·+ akx
k + · · · anxn

and

g2 = b0 + b1x+ · · ·+ bmx
m

with (p, b0) = 1 = (p, ak).
We now note that the kth degree term of f is

a0pbk + a1bk−1 + · · ·+ ak−1b1 + akb0.

Since ai has a factor of p for 0 ≤ i ≤ k−1 and p divides the k degree term of
f (since k < deg(f) = n+m), then p divides akb0 which is a contradiction.

5.7 A Short (for now) Blurb on Noetherian Rings

Classically, Noetherian rings were defined via the ascending chain condition on
ideals. There is an easier (in my book, anyway) characterization of Noetherian
rings that involves generators. That is, a ring is Noetherian if every ideal is
finitely generated. Finite generation of all ideals (and the ascending chain con-
dition) are very strict conditions on a ring and consequently, there are many
nice theorems for Noetherian rings. Additionally, finiteness conditions such as
these often lend themselves to computational methods and recently this (and
the great improvement in computer power and accessibility) has caused quite a
growth in “computational commutative algebra.”

We begin by noting that “Noetherian-ness” is considered in the non-commutative
case as well, but we begin here by restricting to the commutative.

Theorem 5.7.1. Let R be a commutative ring. The following conditions are
equivalent.

a) Every ascending chain of ideals stabilizes. That is, if

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

is a ascending chain of ideals of R then there is an n such that Ik = In
for all k ≥ n.
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b) Every ideal of R is finitely generated.

c) Every prime ideal of R is finitely generated.

Definition 5.7.2. Any ring satifying one, hence all of the above, is called
Noetherian.

Proof. Exercise.

We note that for item c) of the above the following lemma may prove useful.

Lemma 5.7.3. Let R be a commutative ring. If there is an ideal I ⊆ R that
is not finitely generated, then there is an ideal J ⊆ R an ideal that is maximal
with respect to not being finitely generated, and any such J is prime.

Proof. Exercise.

The Noetherian property is preserved under a wide variety of properties
some of which we will give in the following.

Theorem 5.7.4. Let R be a Noetherian ring. Then the following are also
Noetherian.

a) RS where S is a multiplicatively closed subset of R.

b) R/I where I ⊆ R is an ideal.

Additionally, if R has an identity, then the following are also Noetherain.

c) (The Hilbert Basis Theorem) If R is commutative with identity and R is
Noetherian, then so is R[x].

d) If R is commutative with identity and R is Noetherian, then so is R[[x]].

Proof. Later.



Chapter 6

Modules

6.1 Introduction and preliminaries

The theory of modules is central in the algebra and damn near everywhere
where algebra and its techniques are useful. Modules can be thought of as a
generalization of two familiar notions: the notion of a vector space and the
notion of an abelian group.

Even in the days of calculus, we saw that the study of vector and vector
spaces were essential in being able to implement the techniques of multivariable
calculus and differential equations effectively. The notion of a vector space is
the notion of a mathematical structure that is closed under addition (the sum
of two vectors is a vector). More correctly the set of vectors form an abelian
group under addition. What sets a vector space apart from an ordinary abelian
group is the fact that the set of vectors is equipped with “scalar multiplication”
where the scalars come from a field (in elementary courses, usually R or C).

The notion of an R−module is the generalization of “vector space” where
the scalars are taken from some ring R (instead of the more specific “field”.
Since a vector space and its generalization, the R−module is first and foremost
an abelian group, we also think of R−modules as the generalization of abelian
group (e.g. an abelian group equipped with ”scalar” multiplication from R).

Since the ring R need not be commutative, we will make the definition of
left R−module first. Throughout this course there will be many theorems for
left R−modules. The reader should realize that any such theorem has an analog
theorem for right R−modules.

Definition 6.1.1. A left R− module is an abelian group (M,+) equipped with
a function R ×M → M (we write (r,m) 7→ rm) such that for all r, s ∈ R and
a, b ∈M we have

a) r(a+b)=ra+rb

b) (r+s)a=ra+sa

79
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c) r(sa)=(rs)a

We remark here that if 1 ∈ R and 1Ra = a for all a ∈M then M is called a
unitary R−module (this will be the default assumption). If R is a division ring
we call M a left vector space. As an exercise verify that 0R(a) = 0M = (r)0M
for all r ∈ R and a ∈M .

Example 6.1.2. Note that any abelian group is a Z module. The set of con-
tinuous functions from [0, 1] to R is an R−vector space. If R is any ring and I
is a left ideal of R, then I is a left R−module. (It is worth noting that Z2 is a
Z− module, but not an ideal of Z.) For another example, if R ⊆ S are rings,
then S is an R−module. For a more exotic example (which we will see again
later) let F be a field and V a vector space over F and T : V −→ V a linear
transformation. Then V is an F [x] module via

f(x)v = f(T )v.

Finally, we note that the analog of R is a module. More precisely, if R is a
ring then

⊕α∈ΛR

is an R−module with “scalar” multiplication given by

r{sα}α∈Λ = {rsα}α∈Λ.

Next we generalize the familiar notion of linear transformation (abelian
group homomorphism).

Definition 6.1.3. Let A,B be R−modules and f : A −→ B be a function. We
say that f is an (left) R−module homomorphism if

a) f(x+ y) = f(x) + f(y) for all x, y ∈ A.

b) f(rx) = rf(x) for all r ∈ R, x ∈ A.

If R is a division ring, then this is called a linear transformation.

Lemma 6.1.4. φ : M −→ N is an R−module homomorphism if and only if
φ(x+ ry) = φ(x) + rφ(y) for all x, y ∈M and for all r ∈ R.

Proof. Exercise.

Example 6.1.5. If A,B are any abelian groups then “Z− module homomor-
phism” is synonomous with “abelian group homomorphism”.

Example 6.1.6. The function fn : Z −→ Z given by fn(x) = nx is a Z−module
homomorphism, but not a ring homomorphism. The same is true of the func-
tion g : R[x] −→ R[x] given by g(r(x)) = xr(x) (i.e., this is an R−module
homomorphism which is not a ring homomorphism.
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As is the case with our other morphisms, we can talk about “mono” (injec-
tive), “epi” (surjective), and bijective R−module homomorphisms. The termi-
nology will be analogous to earlier terminology in groups and rings.

It is important at this juncture to introduce an important class of abelian
groups that are, in certain important cases, also R−modules.

Proposition 6.1.7. Let M and N be R−modules. The set HomR(M,N) =
{φ : M −→ N |φ is an R−module homomorphism.} is an abelian group (un-
der pointwise addition of functions). Additionally, if R is commutative, then
HomR(M,N) is an R−module.

Proof. We will leave the fact that HomR(M,N) is an abelian group as an ex-
ercise and verify the second statement. If R is commutative then we define the
scalar multiplication by

(rφ)(x) = r(φ(x))

for all r ∈ R. Then it is easy to see that HomR(M,N) is an R−module.

Definition 6.1.8. Let M be a left R−module and N a subgroup of M . We say
that N is a (left) submodule of M if rN ⊆ N for all r ∈ R.

Proposition 6.1.9. Let R be a ring and M a (unitary) left R module. Then
N ⊆M is a left R−submodule of M if and only if N is nonempty and x+ry ∈ N
for all x, y ∈ N and r ∈ R.

Proof. The necessity of the condition is straightforward. Assume that for all
x, y ∈ N and r ∈ R, x + ry ∈ N . Choose r = −1 to see that for all x, y ∈ N ,
x−y ∈ N . So N is an abelian group. Now choose x = 0 to see that rN ⊆ N .

Example 6.1.10. If M is a Z−module then any subgroup of M is a Z−submodule
of M .

Example 6.1.11. If f : A −→ B is an R−homomorphism, then ker(f) =
{x|f(x) = 0} is an R−submodule of A. Additionally, Im(f) = {f(x)|x ∈ A} is
an R−submodule of B. If C ⊆ B is an R−submodule of B then f−1(C) = {x ∈
A|f(x) ∈ C} is an R−submodule of A.

Example 6.1.12. If X is a subset of some R−module, A, then 〈X〉 (the
R−submodule spanned by X) is the intersection of all R−submodules of A con-
taining X. That is:

〈X〉 =
⋂

X⊆M⊆A

M.

If X =
⋃
i∈I Bi where each Bi is an R−submodule of A, then 〈X〉 is called the

sum of the Bi’s and if I = {1, 2, · · · , n} then 〈X〉 = B1 +B2 + · · ·+Bn.

We conclude this section with a special and important class of R−modules.
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Definition 6.1.13. Let R be commutative with 1. An R−algebra is a ring A
with identity equipped with a ring homomorphism f : R −→ A (f(1R) = 1A)
such that f(R) is contained in the center of A.

Proposition 6.1.14. If A is an R−algebra, then A is an R−module.

Proof. We define a(r) = r(a) = f(r)a. Note that 1(a) = f(1)a = 1Aa = a. For
the second property (r + s)a = (f(r + s))a = (f(r) + f(s))a = f(r)a+ f(s)a =
ra+ sa. Also (rs)a = (f(rs))a = (f(r)f(s))a = f(r)(f(s)a) = f(r)(sa) = r(sa)
and finally r(a+ b) = f(r)(a+ b) = f(r)a+ f(r)b = ra+ rb.

Example 6.1.15. A good canonical example of an R−algebra is the matrix ring
Mn(R). The relevant homomorphism is the map that takes the element r ∈ R
to the n× n diagonal matrix with all r’s on the diagonal.

Definition 6.1.16. If A and B are R−algebras then an R−algebra homomor-
phism φ : A −→ B is a ring homomorphism such that

a) φ(1A) = 1B and

b) φ(ra) = rφ(a) for all r ∈ R and a ∈ A.

6.2 Quotient Structures and the Homomorphism
Theorems

The idea of quotient structure is the analog of what we have seen in the theory
of groups and rings. We begin with the following theorem.

Theorem 6.2.1. Let B,C ⊆ A be modules.

a) The quotient group A/B is an R−module with R−action given by r(a +
B) = ra+B.

b) The map πB : A −→ A/B given by πB(a) = a + B is an R−module
homomorphism with kernal B.

c) There is an R−module homomorphism B/(B
⋂
C) ∼= (B + C)/C.

d) If C ⊆ B then B/C ⊆ A/C and (A/C)/(B/C) ∼= A/B.

Proof. For part a) it suffices to show that the action is well-defined. Suppose
that x+ B = y + B. Hence x− y ∈ B and so r(x− y) ∈ B. We conclude that
rx+B = ry+B and the action is well-defined. Showing that the multiplication
satisfies the axioms is easy since A is an R−module. Part b) is routine. Parts c)
and d) are consequences of the next theorem and we leave them for exercises.

An application of the next result is the “best way” to prove parts c) and
d) of the above theorem. There are myriad others. This is called the first
isomorphism theorem.
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Theorem 6.2.2. Let f : A −→ B be an R−module homomorphism, then f
induces and R−module isomorphism

f : A/ker(f)
∼= //Im(f).

Proof. Define the map

f : A/ker(f) −→ Im(f)

via f(a+ ker(f)) = f(a). Since f is an R−module homomorphism, it is easy to
see that f is as well. It is also clear that f is onto the image of f . It remains to
show that f is one to one, and so assume that f(a + ker(f)) = 0 = f(a). This
means that a ∈ ker(f) and we are done.

For our last result we will produce a corollary that shows submodule corre-
sponce in quotient structures.

Corollary 6.2.3. If R is a ring and B ⊆ A are R−modules then there is a 1-1
correspondence between submodules of A/B and submodules of A containing B.

Proof. Let C be a submodule of A containing B. We know that from a previous
result that C/B ⊆ A/B. On the other hand, assume that M is a submodule of
A/B. Consider the canonical projection

πB : A −→ A/B.

Now consider the submodule of A: π−1
B (M). Verify that M ←→ π−1

B (M)
gives pur 1-1 cprrespondence.

6.3 The Direct Product and Direct Sum

As one may expect the universal constructions of direct product and direct sum
have an important analog in the theory of modules. We will see that the central
theorems from abelian group theory carry over in this realm, and in particular
we will see later that any R−module is the homomorphic image of a particular
direct sum of special R−modules.

Theorem 6.3.1. Let {Ai}i∈I be a family of R−modules and
∏
i∈I Ai and

⊕i∈IAi be respectively the direct product and direct sum of the family as abelian
groups.

a) The direct product
∏
i∈I Ai is an R−module with R−action given by r{ai}i∈I =

{rai}i∈I .

b) The direct sum ⊕i∈IAi is an R−submodule of
∏
i∈I Ai with the inherited

R−action.

c) For all k ∈ I the canonical projection πk :
∏
i∈I Ai −→ Ak (πk({ai}) = ak)

is an R−module epimorphism.



84 CHAPTER 6. MODULES

d) For each k ∈ I the canonical injection ιk : Ak −→ ⊕i∈IAi (ιk(a) = {xi}i∈I
where xi = 0 if i 6= k and xk = a) is an R−module monomorphism.

Proof. The proof of this is extremely similar to the proof of the analog theorem
from group theory.

As was the case earlier, the direct product and direct sum are (unique)
solutions to certain universal mapping problems.

Theorem 6.3.2. If R is a ring, {Ai|i ∈ I} is a family of R−modules, C is an
R−module and {φi : C −→ Ai|i ∈ I} is a family of R−module homomorphisms
then there is a unique R−module homomorphism φ : C −→

∏
i∈I Ai such that

πiφ = φi for all i ∈ I. Additionally
∏
i∈I Ai is uniquely determined (up to

isomorphism) by this property.

C
φi //

φ ##F
F

F
F

F Ai

∏
i∈I Ai

πi

OO

Proof. φ(c) = {φi(c)}i∈I is the map (verify that this is indeed an R−module
homomorphism). Assume that ξ is another such R−module homomorphism
satisfying the universal mapping problem.

We write ξ(c) = {ci} and note that πi(ξ(c)) = ci = φi(c). Hence each
ci = φi(c) and xi ≡ φ.

We will next demonstrate that the direct product is the unique (up to iso-
morphism) solution to this universal mapping problem.

Assume that D is another solution to this universal mapping problem (i.e.
D is an R−module that has the same properties as the direct product). We
have the diagram:

C //

  @
@

@
@ Ai

D

OO

in particular, replacing C with D we obtain

D //

φ   A
A

A
A Ai

D

OO

and we note that φ = 1D is an obvious solution to this mapping problem and
so φ must be precisely 1D by uniqueness.

We now consider the augmented diagram
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D
f //___

!!CCCCCCCC
∏
Ai

g //___

πi

��

D

}}{{{{{{{{

Ai

Considering the “big triangle” we see that gf = 1D must be the solution
by uniqueness. Augmenting the diagram from a different perspective (swapping
the roles of D and

∏
Ai since they are both solutions to the universal mapping

problem) we get the diagram

∏
Ai

g //___

!!DDDDDDDD D
f //___

��

∏
Ai

}}zzzzzzzz

Ai

and in a similar fashion to the above, we obtain that fg = 1∏Ai
.

In conclusion, we obtain that gf = 1D and fg = 1∏Ai
and hence D ∼=∏

Ai.

There is a dual result with respect the direct sum (more precisely, the direct
sum rears its head as the solution to the dual mapping problem).

Theorem 6.3.3. If R is a ring, {Ai|i ∈ I} is a family of R−modules, D is an
R−module and {ψi : Ai −→ D|i ∈ I} is a family of R−module homomorphisms,
then there is a unique R−module homomorphism ψ : ⊕i∈IAi −→ D such that
ψιi = ψi for all i ∈ I. What is more, the direct sum is uniquely determined up
to isomorphism by this property.

D Ai
ψioo

ιi

��
⊕i∈IAi

ψ

ccF
F

F
F

F

Proof. The proof here is “dual” (e.g. essentially the same with the arrows
reversed) to the previous proof. The unique map in question is ψ({ai}) =∑
i∈I ψi(ai). Note that since {ai} ∈ ⊕i∈IAi all but finitely many of the ai’s are

0 and hence the sum
∑
i∈I ψi(ai) is finite and “makes sense”.

We conclude this brief look at these constructions with the following result,
which is a nice characterization of when an R− module is a direct sum of some
of its submodules.

Proposition 6.3.4. Let R be a ring and {Ai}i∈I a family of R− submodules
of A such that

a) A is the sum of the family {Ai}.
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b) For all k ∈ I, Ak
⋂
Ak = 0 where Ak is the sum of {Ai}i 6=k.

Then A ∼= ⊕i∈IAi.

Proof. Define φ : ⊕i∈IAi −→ A by φ({ai}) =
∑
i∈I ai. Since {ai} is an element

of ⊕Ai, this sum is finite. The verification that φ is an R−module homomor-
phism is routine. We will show that φ is one to one and onto.

To see that φ is one to one, suppose that {ai} ∈ ker(φ) and that at least one
of the ai’s (say ak) is nonzero. We therefore have that

−ak =
∑
i 6=k

ai

and hence ak is an element of both Ak and the submodule of A generated
by the family {Ai}i 6=k. By assumtion, this means that ak = 0 which is our
contradiction, and hence ker(φ) = 0.

For the onto-ness (what a word) let a ∈ A. Since the sum of the Ai’s is
precisely A, we know that there is a (finite) sum ai1 + · · ·+ aik that is equal to
a. Let {xj} be the sequence defined by xi1 = ai1 , · · · , xik = aik and xj = 0 for
all other indices. Note that φ({xj}) = a.

6.4 Exact Sequences

Exact sequences are the genesis of some very very important tools in commu-
tative algebra, homological algebra, algebraic K-theory, and algebraic topology.
Exact sequences of R−modules can contain such (seemingly) diverse informa-
tion as factorization information of a commutative ring and the basic genus
structure of a topological space.

Definition 6.4.1. A sequence of R−module homomorphisms

· · · //An−1
fn //An

fn+1 //An+1
// · · ·

is called exact at An if Im(fn) = ker(fn+1). We say that the sequence is exact
if it is exact at An for all n.

Definition 6.4.2. An exact sequence of the form

0 //A
f //B

g //C //0

is called a short exact sequence (SES) if f is one to one, g is onto and ker(g) =
Im(f).

As it turns out, short exact sequences are the building blocks of general
exact sequences in the following sense. If

· · · //An−1
f //An

g //An+1
// · · ·
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then this sequence can be obtained by “splicing together” certain short exact
sequences (as an exercise you should try to figure out how this is done).

Example 6.4.3. a) The sequence 0 //A
f //B is exact if and only if f

is 1-1, the sequence B
g //C //0 is exact if and only if g is onto, the

sequence 0 //A
h //B //0 is exact if and only if h is onto.

b) If n 6= 0, the sequence 0 // Z
f // Z

πn // Zn // 0 with f(k) =

nk and πn(a) = a (the reduction of a modulo n) is a short exact sequence.

c) Any sequence of the form 0 //A
f //A⊕ C

g //C //0 with f(a) =
(a, 0) and g(a, c) = c is short exact. (It should be noted that there are usu-
ally many ways to have the maps make the sequence be exact, for example
if A = C, we could also have f(a) = (a, a) and g(x, y) = x− y). This ex-
ample is a special kind of short exact sequence called a split exact sequence.
Since the middle term is the sum of the second and fourth, there are maps
h : C −→ A ⊕ C such that gh = 1C and there is a k : A ⊕ C −→ A such
that kf = 1A. In other words we could “run” the sequence in reverse. An
example of a short exact sequence that does not split is given above in b)
if n 6= 1.

We now introduce a couple of results that are fundamental if you wish to
apply the concept of exactness. The proofs of most of these will be omitted as
exercises, but all of them require an interesting (and fun) technique known as a
“diagram chase.” This technique will be demonstrated in the proof of the short
five lemma (but all of the diagram chase proofs are similar.

This first result is called the five lemma.

Proposition 6.4.4. Consider the following commutative diagram of R−module
homomorphisms with exact rows

A1
f1 //

g1

��

A2
f2 //

g2

��

A3
f3 //

g3

��

A4
f4 //

g4

��

A5

g5

��
B1

h1 // B2
h2 // B3

h3 // B4
h4 // B5

a) If g2 and g4 are onto and g5 is one to one then g3 is onto.

b) If g2 and g4 are one to one and g1 is onto then g3 is one to one.

Now we produce a corollary which is often referred to as the short five lemma.

Corollary 6.4.5. Consider the following commutative diagram of R−module
homomorphisms with exact rows
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0 // A1
f1 //

g1

��

A2
f2 //

g2

��

A3
//

g3

��

0

0 // B1
h1 // B2

h2 // B3
// 0

a) If g1 and g3 are onto then g2 is onto.

b) If g1 and g3 are one to one then g2 is one to one.

c) If g1 and g3 are isomorphisms that g2 is an isomorphism.

Before beginning the proof, we note that this follows directly from the five
lemma, but we will prove this result from scratch to demonstrate the technique
of diagram chasing.

Proof. Of course c) follows directly from a) and b) so we will only show a) and
b).

For a) let b2 ∈ B2. The only direction that we can go is to the left so let
b3 = h2(b2) ∈ B3. Since g3 is onto, there is a a3 ∈ A3 such that g3(a3) = b3.
Additionally, f2 is onto, so we can find a2 ∈ A2 such that f2(a2) = a3. Now
we consider x = g2(a2) ∈ B2 (if x = b2 we are done, but there is no guarantee
of this). Note that by commutativity of the diagram, we have that h2(x) =
b3 = h2(b2) and hence h2(b2 − x) = 0, that is, b2 − x ∈ ker(h2) = im(h1).
Consequently, there is a b1 ∈ B1 such that h1(b1) = b2 − x. Now since g1 is
onto there is an a1 ∈ A1 such that g1(a1) = b1, and by the commutativity of
the diagram g2(f1(a1)) = b2− x. Notice that y = f1(a1) ∈ A2 and g2(y+ a2) =
g2(y) + g2(a2) = b2 − x+ x = b2 and hence g2 is onto.

For b) assume that a2 ∈ ker(g2), and hence g2(a2) = 0 and so h2(g2(a2)) =
g3(f2(a2)) = 0 by commutativity of the diagram. Since g3 is one to one, we
have that f2(a2) = 0, so a2 ∈ ker(f2) = im(f1). So we can find (a unique,
since f1 is one to one) element a1 such that f(a1) = a2. Note that g2(f1(a1)) =
0 = h1(g1(a1)) Since both h1 and g1 are one to one, a1 must be 0, and hence
a2 = f1(a1) = f1(0) = 0 and g2 is one to one. This completes the proof.

The next result is known as the 3× 3 lemma.

Theorem 6.4.6. Consider the following commutative diagram of R−module
homomorphisms
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0

��

0

��

0

��
0 // A1

//

��

A2
//

��

A3
//

��

0

0 // B1
//

��

B2
//

��

B3
//

��

0

0 // C1
//

��

C2
//

��

C3
//

��

0

0 0 0

a) If the columns and the bottom two rows are exact, then the top row is
exact.

b) If the columns and the top two rows are exact, then the bottom row is
exact.

Our final “homological theorem” is the very famous snake lemma and it is one
of the major tools of homological algebra and its applications. The important
part of the result is the existence of the well-defined homomorphism ∂ called the
boundary map which allows passage from nth homology to (n− 1)th homology.

Theorem 6.4.7. Consider the following commutative diagram with exact rows

A1
f1 //

g1

��

A2
f2 //

g2

��

A3
//

g3

��

0

0 // B1
h1 // B2

h2 // B3

then there is an exact sequence

ker(g1)
α1 //ker(g2)

α2 //ker(g3)
∂ //coker(g1)

β1 //coker(g2)
β2 //coker(g3) .

Additionally, if f1 is one to one, then so is α1 and if h2 is onto, then so is β2.

We will close out this section with a result that characterizes when a short
exact sequence is a split exact sequence.

Theorem 6.4.8. Let R be a ring and

0 //A
f //B

g //C //0

a short exact sequence of R−module homomorphisms. Then the following con-
ditions are equivalent.
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a) There is an R−module homomorphism h : C −→ B such that gh = 1C .

b) There is an R−module homomorphism k : B −→ A such that kf = 1A.

c) B ∼= A⊕ C.

We remark that this will be our formal definition of a split exact sequence;
namely a split exact sequence is a short exact sequence satisfying one, and hence
all, of the above conditions.

Proof. For a)=⇒ b) we need to find an intelligent way to associate an element
of A with a given element b ∈ B. We do this by “cleaning” b. Given a b ∈ B,
we are not guaranteed an element a ∈ A such that f(a) = b, so we consider
hg(b) ∈ B. Note that g(b − hg(b)) = g(b) − ghg(b) = g(b) − g(b) = 0. We
conclude that b − hg(b) ∈ ker(g) = im(f). With this insight, we define k(b) =
f−1(b− hg(b)). Since f is one to one, this assignment is well-defined. Suppose
that f−1(b1 − hg(b1)) = a1 and that f−1(b2 − hg(b2)) = a2 and note that
f(a1 + a2) = b1 + b2 − hg(b1 + b2). Hence we have that k(b1 + b2) = f−1(b1 +
b2 − hg(b1 + b2)) = a1 + a2 = k(b1) + k(b2). The proof that k(rb) = rk(b) is
similar. Note that kf(a1) = f−1(f(a1)−hgf(a1)) = f−1(f(a1)) = a1 and so a)
implies b).

For b)=⇒ c) consider the map φ : B −→ A⊕ C given by φ(b) = (k(b), g(b))
(verify that this is an R−module homomorphism). First let b ∈ ker(φ). So we
have k(b) = 0 and g(b) = 0. This means that b ∈ ker(g) = im(f) and so there
is an a ∈ A such that b = f(a). Therefore 0 = k(b) = k(f(a)) = a. Since a = 0,
we have that b = 0 and φ is one to one.

Now let (a, c) ∈ A ⊕ C be arbitrary. Since g is onto we can select b ∈ B
such that g(b) = c. Unifortunately, it may not be the case that k(b) = a. We
can, however, vary b by any element of ker(g) = im(f). Some computations
show that the appropriate element to choose is b − fk(b) + f(a). Indeed note
that φ(b − fk(b) + f(a)) = (k(b − fk(b) + f(a)), g(b − fk(b) + f(a)) = (k(b) −
kfk(b) + kf(a), g(b)) = (a, c) and φ is an isomorphism.

For now we leave c)=⇒ a) as an exercise.

6.5 Free Modules

Free modules are, in a certain sense, the easiest modules to picture (they are
most like the more familiar vector spaces). Free modules are also the “mothers
of all modules” in the sense that every R−module is the homomorphic image of
a free R−module. Free modules are precisely that modules that have a notion
of a basis (a very nice generating set) and we begin with the definition of a
basis.

Definition 6.5.1. A subset X of an R−module M is said to be linearly inde-
pendent if given any x1, x2, · · · , xn ∈ X, the relation
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n∑
i=1

rixi = 0

implies that ri = 0 for all 1 ≤ i ≤ n.

We remark (surprise, surprise) that a set that is not linearly independent is
called linearly dependent. Also if M is generated by X, we say that X spans
M . Finally we tie these together by saying that a linearly independent subset of
M that spans M (if such a subset of M exists) is called a basis of M . Modules
which actually have a basis are free modules that we have been alluding to.

Theorem 6.5.2. Let R be a ring with identity and F a unitary R−module.
The following conditions are equivalent.

a) F has a nonempty basis.

b) F is the (internal) direct sum of a family of cyclic R−modules each of
which is isomorphic to R as an R−module.

c) F is R−module isomorphic to a direct sum of some number of copies of
the R−module R.

d) There exists a nonempty set X and a function ι : X ↪→ F such that
given any unitary R−module M and function f : X −→ M , there exists
a unique R−module homomorphism f : F −→M such that fι = f .

F
f //___ M

X

ι

OO

f

>>}}}}}}}}

Proof. We first consider a) implies b). Let X be a basis of F . Note that if
x ∈ X then R ∼= Rx as a left R−module (since the singleton set {x} is linearly
independent). Also note that F =

∑
x∈X Rx (but the sum may not be direct

and that is what we need to show). Suppose that m ∈ Rx
⋂

(
∑
y∈X\xRy) then

we can write

rx =
∑

riyi

and hence the set X is linearly dependent.
The implication b) implies c) is easy and is left to the reader.

For c) implies d) let F ⊕ Ri with each Ri isomorphic is R via Ri
φi //R .

So (for all i we have the commutative diagram

Ri
φi //

ιi

��

R

F ∼= ⊕Ri

::vvvvvvvvvv
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Define X = {xi}i∈I where xi is such that φi(xi) = 1R. So our function iota :
X −→ F assigns to each cyclic generator its image in F . That is ι(xi) = ιi(xi)
and say that f : X −→M makes the assignment f(xi) = mi ∈M . The desired
homomorphism is the homomorphism that obeys the rule:

f(
∑

riιi(xi)) =
∑

rimi

and uniqueness is an easy exercise.
We leave the last implication to the reader.

Here is an important corollary that reflects the universal nature and impor-
tance of free modules.

Corollary 6.5.3. Every unitary module M over a ring with identity is the
homomorphic image of a free R−module. In fact, if M is finitely generated,
then the free module may be chosen to be finitely generated.

Proof. Let X be a generating set of M and consider the diagram

F
f //____ M

X

ι

OO

f=inclusion

<<xxxxxxxxx
fι = f

In the diagram above the module F is free on the set X (note that if X
is finite then F is finitely generated). We have an induced homomorphism
f : F −→ M and X ⊂ im(f) therefore since X is a generating set, im(f) = M
and this gets the first statement. Also as was pointed out earlier, if M is finfitely
generated (that is, X my be chosed to be finite) then F is finitely generated.

Here we do a little specialization to the case of vector spaces.

Lemma 6.5.4. A maximal linearly independent subset of a vector spcae V over
a division ring D is a basis of V .

Proof. Let X be a maximal linearly independent subset (how do we know such
an animal exists...we don’t yet, but will later see that in important cases these
do exist). Let W be a subspace of V spanned by X. If W = V then we are
done so we selesct a ∈ V \W . Of course {a}

⋃
X must be linearly dependent,

so we have an equation of the form

ra+
∑

rixi = 0

with xi ∈ X, r, ri ∈ R and r 6= 0 (if the last condition does not hold then the
linear independence of the set X would force all of the ri’s to be 0 as well).

Manipulating this equation gives us that

a =
∑
−r−1rixi ∈ V
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which is a contradiction. Hence there is no a ∈ V \W and so V = W and we
are done.

Here is a big module structure theorem for modules over a division ring
(vector spaces). This is why “linear algebra” is much easier that modules in
general...over a field modules are always free.

Theorem 6.5.5. Every vector space V over a division ring D has a basis and
is therefore free. More generally, every linearly independent subset of V is con-
tained in a basis of V .

Before we prove this theorem, we also remark that if every unitary module
over a ring with identity, D, is free, then D is a division ring.

We also point out that this business about “every linearly independent subset
of V is contained in a basis for V ” does not extend to free modules over a general
ring. Indeed if you consider the simple example of Z as a Z module, consider the
maximal linearly independent subset {2}. This set is not contained in a basis
for Z, because any two element subset of the integers is linearly independent.
The problem here is that {2} does not span Z and we immediately see the
contrasting situation of a ring not being a division ring (i.e., we can see that we
somehow need 1

2 to be an integer for the set {2} to have a chance of spanning
Z).

Proof. We will prove the more general statement and capture it all at once.
Suppose that X is a linearly independent subset of V (note that such a

set has to exist in a nonzero vector space). Consider the collection of linearly
independent subsets of V that contain X (and we will call it Γ). This is a
partially ordered set under inclusion. Let {Ci} be a chain in Γ. Note that
C =

⋃
i Ci is linearly independent (verify!) and hence is an upper bound for

the chain in Γ. Thus Zorn’s Lemma gives the existence existence of a maximal
element and this establishes the theorem.

Remark 6.5.6. If R is a ring that has a division ring as a homomorphic image
(e.g. any commutative ring with identity), then R has the invariant dimension
property. That is for any free module F over R, any two bases have the same
cardinality. If R has the invariant dimension property, then two free modules E
and F are isomorphic if and only if they have the same rank. For an example
of a ring which does not have the invariant dimension property consider K, a
field, and F = ⊕∞n=1K. If R = HomK(F, F ). For any n, R ∼= ⊕nm=1R (check
this).

In closing we look at a couple of familiar properties of vector spaces. The
proofs are left as exercises.

Theorem 6.5.7. Let W be a subspace of V .

a) dimD(W ) ≤ dimD(V ).

b) If dimD(W ) = dimD(V ) and dimD(V ) is finite, then W = V .



94 CHAPTER 6. MODULES

c) dimD(V ) = dimD(W ) + dimD(V/W ).

d) If f : V −→W is a linear transformation then dimD(V ) = dimD(ker(f))+
dimD(im(f)).

e) If V and W are finite dimensional then dimD(V )+dimD(W ) = dimD(V
⋂
W )+

dimD(V +W ).

Example 6.5.8. Build a 2× 2 matrix and examine the above theorem.

6.6 Projective and Injective Modules

We will define and prove some of the analogous results for projectives and injec-
tives. Please note the “dual” (arrow reversing) nature of some of the definitions
and results. For many projective (respectively injective) results there is a very
similar injective (resp. projective) result.

Definition 6.6.1. Consider the following diagram of R−modules with the bot-
tom row exact.

P
h

��~
~

~
~

f

��
A g

// B // 0

We say that P is projective if there is an R−module homomorphism h : P −→ A
such that gh = f .

Definition 6.6.2. Consider the following diagram of R−modules with the top
row exact.

0 // A
g //

f

��

B

h��~
~

~
~

I

We say that I is injective if there is an R−module homomorphism h : B −→ I
such that hg = f .

We will now investigate some of the consequences of these definitions in
tandem.

Theorem 6.6.3. Every (unitary) free module over R is projective.

Proof. Consider the following diagram

F

f

��
A g

// B // 0
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Let F be free on the set X (and we will denote the canonical injection from
X into F by ι : X ↪→ F ). Since g is onto, there is ai ∈ A such that g(ai) = fι(xi)
for all i. Therefore we have a function f∗ : X −→ A such that f∗(xi) = ai.
Since F is free, this induces an R−module homomorphism h : F −→ A such
that hι(xi) = ai. Therefore ghι(xi) = g(ai) = fι(xi) and hence gh = f . Hence
F is projective.

Definition 6.6.4. Let D be an abelian group. We say that D is divisible if
given d ∈ D and 0 6= n ∈ Z, there exists a d′ ∈ D such that nd′ = d.

Basically, in a divisible group we can divide by any nonzero integer.

Lemma 6.6.5. D is divisible if and only if D is an injective Z−module.

Proof. (⇐=) Let D be injective and d ∈ D and n be a nonzero integer. Consider
the diagram

0 // 〈n〉 ⊆ //

f

��

Z

h~~~
~

~
~

D

Let d′ = h(1) and therefore nd′ = nh(1) = h(n) = f(n) = d and hence D is
divisible.

The other direction is an exercise.

Note that in the parallel results coming up many of the proofs are dual (in
some places the proofs are more different).

Theorem 6.6.6. The following conditions on the R−module P are equivalent.

a) P is projective.

b) Every short exact sequence of the form 0 //A //B //P //0 is
split exact.

c) There is an R−module K and a free module F such that F ∼= P ⊕K.

Theorem 6.6.7. The following conditions on the R−module I are equivalent.

a) I is injective.

b) Every short exact sequence of the form 0 //I //B //C //0 is
split exact.

c) I is a direct summand of any module of which it is a submodule.

Proof. We will provide a proof of the projective result. Try to do the injective
one yourself.

For a) implies b) consider the short exact sequence 0 //A
f //B

g //P //0.
We now consider the diagram
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P
h

��~
~

~
~

1P

��
B g

// P // 0

Since P is projective, there exists h : P −→ B such that gh = 1P , and hence
the short exact sequence splits.

For b) implies c), we assume b) and assume that P is our given projective
module. We know that any R module is the homomorphic image of a free

module F (i.e. we have the onto map F
φ //P //0. Hence we have the

short exact sequence

0 //ker(φ) //F
φ //P //0.

Since the sequence must split, we have that F ∼= P ⊕ ker(φ) and we have
established b) implies c).

For the implication c) implies a) consider the following diagram.

P

g

��
B

f
// P // 0

Keeping in mind that there is a free module F with F ∼= K ⊕P , we expand the
diagram

F ∼= K ⊕ P

π

��
h∗

������������������

P

ι

OO

g

��
A

f
// B // 0

where π(k, p) = p and ι(p) = (0, p) (note πι = 1P ). Since any free module is
projective there is an h∗ : F −→ A such that fh∗ = gπ. Now consider the map
P −→ A given by h∗ι. Note that f(h∗ι) = gπι = g and hence P is projective.

We note here the the proof of the dual injective theorem requires the result
that will be recorded later that says that every R−module can be embedded in
an injective R−module.

Corollary 6.6.8. Let {Pi}i∈I be a family of R−modules. ⊕i∈IPi is projective
if and only if Pi is projective for all i ∈ I.
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Proof. If each Pi is projective, then for all i there is a Qi such that Qi ⊕ Pi is
free. Hence we have the free module

⊕i∈I(Pi ⊕Qi) ∼= (⊕i∈IPi)⊕ (⊕i∈IQi)

and hence the module ⊕i∈IPi (being the summand of a free module) is projec-
tive.

On the other hand, assume that ⊕i∈IPi ∼= Pi⊕ (⊕j 6=iPj is projective. So we
can find an R−module K so that K⊕i∈IPi is free and hence Pi⊕(K⊕(⊕j 6=iPj))
is free and hence Pi is projective.

Corollary 6.6.9. Let {Ij}j∈Γ be a family of R−modules.
∏
j∈Γ Ij is injective

if and only if Ij is injective for all i ∈ Γ.

Proof. Very similar to the previous. Exercise.

Corollary 6.6.10. Every R−module is the homomorphic image of a projective
R−module.

Proof. Any free is projective.

Theorem 6.6.11. Every R−module M can be embedded in an injective R−module.

Proof. Exercise. As a hint, first show that M (considered as an abelian group)
can be embedded in a divisible abelian groupD. Now embedM (as anR−module)
in the R−module HomZ(R,D).

6.7 Hom

The notation HomR(A,B) will denote the set of R−module homomorphisms
f : A −→ B. The is an abelian group under the standard addition (and note
that the addition respects the standard function composition of R−module ho-
momorphisms.

We consider R−module homomorphisms γ : C −→ A and ξ : B −→ D. The
map η : HomR(A,B) −→ HomR(C,D) given by

f 7→ ξfγ

is an R−module homomorphism. We call this the homomorphism induced by
ξ and γ. Note that if B = D and ξ = 1D, then the map is f 7→ fγ (denoted
γ). If A = C and γ = 1A then the map is f 7→ ξf (and is denoted ξ). We will
motly be considering these special cases.

Theorem 6.7.1. Let R be a ring. The sequence 0 //A
f //B

g //C is
exact if and only if for all R−modules D the sequence

0 //HomR(D,A)
f //HomR(D,B)

g //HomR(D,C)
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is exact.

Additionally A
f //B

g //C //0 is exact if and only if for every R−module
D the sequence

0 //HomR(C,D)
g //HomR(B,D)

f //HomR(A,D)

is exact.

We say that the “Hom functor” is left exact.
We will prove the first statement and leave the proof of the second as an

exercise.

Proof. It would probably be helpful to see a diagram of how the induced maps on

Hom actually “work”. Suppose we have the exact sequence A
f //B

g //C //0.
This sequence induces

0 // HomR(C,D)
g // HomR(B,D)

f // HomR(A,D)

γ � // γg

η � // ηf

First we will show that g is one to one. Assume that γg is the 0−map. So
γg(b) = 0 for all b ∈ B. But since g is onto, this means that for all c ∈ C there
exists a bc ∈ B such that g(bc) = c. Hecn γ(c) = 0 for all c ∈ C (that is γ is the
0−map) and hence g is injective.

We now note that fg(γ) = f(γg) = γfg = 0 as fg is the 0−map. Hence we
have that im(g) ⊆ ker(f). We now need to show the other containment.

Let η ∈ ker(f), that is, ηf = 0. Consider the following diagram

A
f // B

g
  @@@@@@@

η // D

C

γ

OO�
�
�

basically we have to show the existence of a γ such that γg = η. As g is onto,
we have that C ∼= B/ker(g) = B/im(f). So we (need to) have

B

g ''OOOOOOOOOOOOO
η // D

B/(im(f) = ker(g))

γ

OO�
�
�
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We define γ by γ(b + ker(g)) = η(b). Note if b ∈ ker(g) = im(f) then
η(b) = ηf(a) = 0 so this map is well-defined. It is also easy to verify that this is
a homomorphism. Finally note that the diagram commutes since if b ∈ B then
γg(b) = γ(g(b) + ker(g)) = η(b).

This shows that the exactness of the original sequence gives the exactness
of the “Hom” sequence. The other direction is an exercise.

Example 6.7.2. Hom the sequences of Z−modules 0 //Z 2 //Z //Z2
//0

and 0 //Z incl //Q //Q/Z //0 .

We will see in the next thereom that split exact sequences are decidedly
more well-behaved.

Theorem 6.7.3. The following conditions on R−modules are equivalent.

a) 0 //A
f //B

g //C //0 is split exact.

b) 0 //HomR(D,A)
f //HomR(D,B)

g //HomR(D,C) //0 is split ex-
act for every D.

c) 0 //HomR(C,D)
g //HomR(B,D)

f //HomR(A,D) //0 is split ex-
act for every D.

Proof. We will show the equivalence of a) and c), the other equivalence being
left as an exercise.

For the implication a) implies b) if suffices to show that there is an h such
that gh is the identity on HomR(D,C). Since the original sequence is split exact
there exists h : C −→ B such that gh = 1C . It is easy to see that the induced
homomorphism gh = gh = 1HomR(D,C) hence g is onto and the Hom sequence
is split exact.

On the other hand, assume that the Hom sequence is split exact for all D.
Let D = C and φ : C −→ B be such that g(φ) = 1C = gφ. Note that this

implies that 0 //A //B
g //C //0 is split exact. The equivalence of

a) and c) is similar.

Theorem 6.7.4. The following conditions on the R−module P are equivalent.

a) P is projective.

b) If φ : B −→ C is onto then φ : HomR(P,B) −→ HomR(P,C) is onto.

c) If 0 //A
ψ //B

φ //C //0 is a short exact sequence then

0 //HomR(P,A)
ψ //HomR(P,B)

φ //HomR(P,C) //0 is a short
exact sequence.
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Theorem 6.7.5. The following conditions on the R−module I are equivalent.

a) I is injective.

b) If ξ : A −→ B is one to one then ξ : HomR(B, I) −→ HomR(A, I) is onto.

c) If 0 //A
ξ //B

η //C //0 is a short exact sequence then

0 //HomR(C, I)
η //HomR(B, I)

ξ //HomR(A, I) //0 is a short
exact sequence.

We will prove the first “projective” result.

Proof. For a) implies b) we assume that P is projective and φ : B −→ C is onto
and α ∈ HomR(P,C). Consider the diagram

P
h

��~
~

~
~

α

��
B

φ
// C // 0

.

That is there is an h such that φh = α and hence φ is onto.

For the implication b) implies a), given α ∈ HomR(P,C) there exists h ∈
HomR(P,B) such that φh = α which is precisely what it means for P to be
projective.

The implication b) implies c) is easy and so we will establish the con-
verse. Suppose φ : B −→ C is onto and so we have the short exact sequence
0 //ker(φ) //B //C //0. This gives rise to the short exact sequence

0 // HomR(P, ker(φ)) // HomR(P,B) // HomR(P,C) // 0 . Hence

φ is onto.

We conclude this section with a final functorial fact about Hom (the proof
will be left as an exercise).

Theorem 6.7.6. Let A,B, {Ai|i ∈ I}, {Bj |j ∈ J} be R−modules. Then we
have the following isomorphisms.

a) HomR(⊕i∈IAi, B) ∼=
∏
i∈I HomR(Ai, B).

b) HomR(A,
∏
j∈J Bj)

∼=
∏
j∈J HomR(A,Bj).
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6.8 The Tensor Product

Although it can be done in much more generality, here we will (at least begin
with) the tensor product of modules over a commutative ring with identity.
The tensor product can be done in the more general case (but care must be
taken using left, right, and bi-modules when necessary). The tensor product
is a universal construction (it is the solution to a certain univeral mapping
problem involving bilinear maps) and it crops up all over commutative algebra
and mathematics in general (Einstein used them for example).

Definition 6.8.1. Let A,B,C be R− modules. A bilinear map F : A×B −→ C
is a function such that for all a, ai ∈ A, b, bi ∈ B and r ∈ R we have

a) f(a1 + a2, b) = f(a1, b) + f(a2, b).

b) f(a, b1 + b2) = f(a, b1) + f(a, b2).

c) f(ra, b) = f(a, rb) = rf(a, b).

We now define the tensor product of two modules.

Definition 6.8.2. Let A and B be modules over R and let F be the free abelian
group on the set A × B. Let K be the subgroup of F generated by all elements
of the form

a) (a1 + a2, b)− (a1, b)− (a2, b)

b) (a, b1 + b2)− (a, b1)− (a, b2)

c) (ra, b)− (a, rb)

where a, a1, a2 ∈ A, b, b1, b2 ∈ B and r ∈ R.
The quotient F/K is called the tensor product (over R) of A and B and is

denoted A⊗R B.

We denote the coset (a, b) +K by a⊗ b (and this is called a tensor). Prac-
tically, think of A ⊗R B as generated by tensors of the form a ⊗ b subject the
the relations a), b), and c) above.

We also point out that the map ι : A×B −→ A⊗RB given by (a, b) 7→ a⊗b
is a bilinear map (verify this).

Here is a theorem which shows where tensor product “came from.” This
theorem shows that the tensor product is the unique solution to a mapping
problem concerning bilinear maps.

Theorem 6.8.3. If A,B,C are R−modules and g : A× B −→ C is a bilinear
map then there exists a unique R−module homomorphism g : A ⊗R B −→ C
such that gι = g (where ι(a, b) = a⊗ b is the canonical bilinear map). A⊗R B
is uniquely determined up to isomorphism by this property.
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A⊗R B
g //___ C

A×B

ι

OO

g

;;wwwwwwwww

Proof. Let F be free abelian on A × B and K the subgroup described above.
The map g : A×B −→ C is bilinear and induces a homomorphism g∗ : F −→ C.
The fact that g is bilinear shows that g∗ takes every element of K to 0 (that is,
K ⊆ ker(g∗)). So g∗ induces g : F/K −→ C, that is g : A ⊗R B −→ C. Note
that gι(a, b) = g(a⊗ b) = g(a, b) and hence gι = g.

Now if h : A⊗R B −→ C is another such homomorphism then

h(a⊗ b) = g(a, b) = g(a⊗ b)

and hence h and g agree on tensors. Therefore h = g.

Here is a useful corollary which we will be building upon.

Corollary 6.8.4. Let A,A′, B,B′ be R−modules and f : A −→ A′ and g :
B −→ B′ be R−module homomorphisms, then there exists a unique homomor-
phism

A⊗R B −→ A′ ⊗B′

such that a⊗ b 7→ f(a)⊗ g(b) for all a ∈ A and b ∈ B.

Proof. One merely needs to verify that (a, b) 7→ (f(a)⊗ g(b)) is a bilinear map.

This next result is the “right exactness” of tensor product.

Theorem 6.8.5. If D is an R−module then −⊗RD is right exact. That is, if

A
f //B

g //C //0

is exact, then so is

A⊗R D
f⊗1D //B ⊗R D

g⊗1D //C ⊗R D //0

Proof. Since g is onto, every generator c⊗d of C⊗RD is of the form g(b)⊗d =
(g⊗ 1D)(b⊗ d) and hence every generator of C ⊗RD is in the image of g⊗ 1D.
So g ⊗ 1D is onto.

Now note that (g⊗ 1D)((f ⊗ 1D)(
∑n
i=1(ai ⊗ di))) = (g⊗ 1D)(

∑n
i=1(f(ai)⊗

di) =
∑n
i=1(gf(ai)⊗ di). Since gf = 0, we have that this is a sum of zeros and

hence im(f ⊗ 1D) ⊆ ker(g ⊗ 1D).
For the last bit, we have to show that ker(g ⊗ 1D) ⊆ im(f ⊗ 1D). To this

end we consider

π : B ⊗R D −→ (B ⊗R D)/(im(f ⊗ 1D)
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and we note that there exists a homomorphism ξ : (B ⊗R D)/(im(f ⊗ 1D) −→
C ⊗R D such that ξ(π(b⊗ d)) = (g ⊗ 1D)(b⊗ d) = g(b)⊗ d. It suffices to show
that ξ is an isomorphism.

Consider η : C ×D −→ (B ⊗R D)/(im(f ⊗ 1D) given by (c, d) 7→ π(b ⊗ d)
where g(b) = c. (Note if g(b1) = c then g(b − b1) = 0 and there is an a ∈ A
such that f(a) = b− b1; since f(a)⊗ d ∈ im(f ⊗ 1D, π(f(a)⊗ d) = 0 and hence
π(b ⊗ d) = π((f(a) + b1) ⊗ d) = π(b1 ⊗ d) and so the map is well-defined). It
is easy to see that η is bilinear and so there exists a unique eta : C ⊗R D −→
(B⊗RD)/im(f ⊗ 1D) such that η(c⊗ d) = π(b⊗ d). Hence given any generator
c× d, we have

ξη(c⊗ d) = ξ(π(b⊗ d)) = g(b)⊗ d = c⊗ d

and hence ξη is the identity. In a similar fashion ηξ is the identity and the proof
is complete.

Theorem 6.8.6. There is an R−module isomorphism

A⊗R R ∼= A.

Proof. The assignment (a, r) = ra is a bilinear map and so we obtain the
R−module homomorphism f : A ⊗R R −→ A with f(a ⊗ r) = ra. We now
consider the R−module homomorphism g : A −→ A⊗RR given by g(a) = a⊗1.
Note that gf = 1A⊗RR and fg = 1A, and hence f is an isomorphism.

Other properties such as (adjoint) associativity will be discussed in exercises.
We end with a couple of theorems concerning the behavior of tensor product
with free modules.

Theorem 6.8.7. Let A,Ai, B,Bj be R−modules. Then there are isomorphisms

a) (⊕i∈IAi)⊗R B ∼= ⊕i∈I(Ai ⊗R B).

b) A⊗R (⊕j∈JBj) ∼= ⊕j∈J(A⊗R Bj).

Proof. For a) consider the bilinear map ({ai}, b) 7→ {ai ⊗ b} (note that almost
every ai = 0). Show this induces the relevant isomorphism. The proof for b) is
simliar.

Corollary 6.8.8. Let F be a free R−module then

F ⊗R B ∼= ⊕i ∈ IB

where |I| = rank(F ).

Proof. Note that F ⊗R B ∼= (⊕i∈IR)⊗R B ∼= ⊕i∈I(R⊗R B) ∼= ⊕i∈IB.
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6.9 Flatness

Flatness is a certain generalization of freeness (and projectivity). A flat module
is a module that makes tensoring exact. More precisely, we have the following
definition.

Definition 6.9.1. We say that the R−module M is flat if given any short exact
sequence

0 //A
f //B

g //C //0

the corresponding sequence

0 //A⊗RM
f⊗1M //B ⊗RM

g⊗1M //C ⊗RM //0

is exact.

We note that since tensoring gets you “most” of the exact sequence for free
anyway, an equivalent characterization of a flat module M is one for which given
any one to one map f : A −→ B, the corresponding map f ⊗ 1M : A⊗RM −→
B ⊗RM is one to one.

Here is a theorem that we record to show the pecking order.

Theorem 6.9.2. Let M be an R−module. For the following list of properties,
we have the implications a) =⇒ b) =⇒ c).

a) M is free.

b) M is projective.

c) M is flat.

We leave the proof of the previous result and the next corollary as exercises.

Corollary 6.9.3. Let Mi be a family of R−modules. ⊕i∈IMi is flat if and only
if Mi is flat for each i.



Chapter 7

Modules over a PID and
the Canonical Forms

7.1 Structure of finitely generated modules over
a PID

In this section, R will be commutative with 1 (if not a PID) and all modules
are unitary.

Theorem 7.1.1. Let A be an R−module where R is an integral domain, a ∈ A
and Oa = {r ∈ R|ra = 0}.

a) Oa is an ideal of R.

b) At = {a ∈ A|Oa 6= 0} is a submodule of A.

c) R/Oa
∼= Ra.

And if R is a PID and p ∈ R is a nonzero prime.

d) If pia = 0 (that is, (pi) ⊆ Oa) then Oa = (pj) for some 0 ≤ j ≤ i.

e) If Oa = (pi) then pj 6= 0 for all j < i.

Theorem 7.1.2. Let F be a free module over a PID and M a submodule of F .
Then M is free and rank(M) ≤ rank(F ).

Corollary 7.1.3. Let R be a PID and A an n−generated R−module. Then
any submodule of A may be generated with m ≤ n elements.

Corollary 7.1.4. Let P be a module over a PID. Then P is projective if and
only if P is free.

Theorem 7.1.5. Any finitely generated torsion free module over a PID is free.
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Proof. Let X = {x1, x2, · · · , xn} be a finite set of generators of our module
A. Since A is torsion free, each xi is a singleton linearly independent subset
of A. Let {x1, x2, · · · , xk} (after reordering perhaps) be a maximal linearly
independent subset of A. So F = 〈x1, x2, · · · , xk〉 is a free submodule of A.
If F = A then we can go to the house. So we will suppose that xj /∈ F for
all k + 1 ≤ j ≤ n. Note for all k + 1 ≤ j ≤ n there is an rj ∈ R such that
rjxj =

∑n
i=1 rj,ixi (and note that rj 6= 0).

Let r =
∏n
j=k+1 rj and note that rX ⊆ F . So we have that rA ⊆ F . We

now have the map

φ : A −→ F

given by φ(a) = ra. This map is 1-1 and hence A is isomorphic to a submodule
of a free module and is free.

Corollary 7.1.6. Let A be a finitely generated module over a PID, then

A ∼= F ⊕At

where At is torsion and finitely generated, F is free of finite rank and F ∼= A/At.

So at this point it is clear that all we have to do is to understand how the
“torsion part” works.

Here is a general theorem.

Theorem 7.1.7. Let A be a torsion module over a PID, R, and let p ∈ R a
nonzero prime and Ap = {a ∈ A|pka = 0 for some k}. Then A ∼=

∑
p:primeAp

and if A is finitely generated then Ap = 0 almost everywhere.

Theorem 7.1.8. Every finitely generated torsion module, M , over a PID can
be written as ⊕ki=1Mi where each Mi is cyclic and pni

i annihilates Mi (that is
Mi
∼= R/pni

i ).

Next we have the big structure theorem.

Theorem 7.1.9. Let A be a finitely generated module over a PID, R.

a) A is the direct sum of a free module of finite rank and a finite num-
ber of cyclic torsion modules. These cyclic torsion summands (if any)
are isomorphic to R/tiR where the ti’s are nonzero nonunits of R with
t1|t2| · · · |tn (these ti’s are called the invariant factors). The free modules
and the list of invariant factors are uniquesly determined by A.

b) The torsion part of A is a direct sum of cyclic torsion modules each iso-
morphic to R/psii R (with each pi a prime of R). The list of primes
{p1, · · · , pk} and exponents {s1, · · · , sk} are uniquely determined by A (the
elements {psii are called elementary divisors).
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7.2 Decomposition of a Linear Transformation
(the Canonical Forms)

Definition 7.2.1. We say that two matrices, A and B, over a field are similar
if there is an invertible matrix P such that P−1AP = B.

Note that similarity is an equivalence relation. Two matrices that are equiv-
alent share many important invariants (eigenvalues etc.). Similar matrices can
be viewed as essentially the same linear transormation after a change of basis.

Theorem 7.2.2. Let E be an n−dimensional vector space over the field K,
φ : E −→ E a linear transformation and A an n× n matrix over K.

a) There is a unique monic polynomial qφ ∈ K[x] such that qφ(φ) = 0 and
qφ|f for all f ∈ K[x] such that f(φ) = 0.

b) There is a unique monic polynomial qA ∈ K[x] such that qA(A) = 0 and
qA|f for all f ∈ K[x] such that f(A) = 0.

c) If A is the matrix of φ relate to some basis of E then qA = qφ.

We first remark that K[x] is an infinite dimensional K−vector space whereas
Mn(K) and Hom(E,E) are both finite dimensional K−vector spaces.

Proof. We will show a) leaving the rest as exercises.
Consider the map ξφ : K[x] −→ HomK(E,E) given by ξφ(f) = f(φ). Since

HomK(E,E) is finite dimensional, ker(ξφ) 6= 0. So ker(ξφ) = (p) where p ∈
K[x]. Choose a monic generator qφ of (p) and this establishes a).

At this stage, we remark that qφ (qA) is the minimal polynomial of φ (A).
We also remark that φ induces a (left) K[x]−module structure on E. The action
is given by (with f ∈ K[x] and e ∈ E)

f ◦ e = f(φ)(e).

A K−subspace F ⊆ E is said to be φ−invariant if φ(F ) ⊆ F (equivalently,
F is a K[x]−submodule of E).

Given v ∈ E, the subspace spanned by {φi(v)|i ≥ 0} is φ−invariant. We call
this space, E(v, φ), a φ−cyclic subspace of E.

Theorem 7.2.3. Let φ : E −→ E be a linear transformation of a finite dimen-
sional vector space E over K.

a) There are monic polynomials q1, q2, · · · , qt ∈ K[x] and φ−cyclic subspaces
E1, · · · , Et of E such that E = E1 ⊕ · · · ⊕ Et and q1|q2| · · · |qt. Further-
more qi is the minimal polynomial of φ|Ei : Ei −→ Ei. The sequence
(q1, q2, · · · qt) is uniquely determined by E and φ and the minimal polyno-
mial of φ is qt.
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b) There exist monic irreducible polynomials p1, · · · , ps ∈ K[x] and φ−cyclic
subspaces E1,1, · · · , E1,k1 , E2,1, · · · , E2,k2 , E3,1, · · · , Es,ks of E such that E
is the direct sum of these subspaces and for each i there is a nonincreasing
sequence of integers mi,1



Chapter 8

Fields and Galois Theory

8.1 Field Extensions and Basic Concepts

We have seen fields before as a special (very nice) case of commutative rings
with identity. A field is a ring whose nonzero elements form an abelian group
under multiplication.

Definition 8.1.1. A field, F , is a commutative ring with identity such that (0)
is a maximal ideal.

The above definition means (as was stated before) that a field is a domain
in which every nonzero element has an inverse. Any field contains 1F and at
this juncture there are two important cases to consider. The first case is where
n1F 6= 0 for any nonzero n ∈ Z. In this case we say that the characteristic of
the field is 0 (and note that such a field must contain the rational numbers Q.

The other case to consider is when there exists a nonzero integer n such that
n1F = 0. Since our field is a domain, it is easy to see that the minimal positive
such n must be prime in Z and in this case we say that the characteristic of F
is p (char(F ) = p). In this case F muct contain Zp.

In these two cases we say that the prime subfield of F (the intersection of
all subfields of F ) is Q (if char(F ) = 0) or Zp (if char(F ) = p). We now go the
other way and consider extensions of a field F .

Definition 8.1.2. A field K is said to be an extension field of a field F if
F ⊆ K. The dimension of K over F as a vector space is [K : F ]. If E is a field
such that F ⊆ E ⊆ K then we call E an intermediate field.

Theorem 8.1.3. Let F ⊆ E ⊆ K be fields, then [K : F ] = [K : E][E : F ].

Proof. Let U = {ui| ∈ I} be a basis of E over F and V = {vj |j ∈ J} a basis of
K over E. It will suffice to show that the set X = {uivj |i ∈ I, j ∈ J} is a basis
for K over F . To see that X spans K over F , first write an arbitrary k ∈ K as

k = e1v1 + e2v2 + · · ·+ envn
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with vi ∈ V and each ei ∈ E. Since each ei is in E we can write

ei = ai,1u1 + ei,2u2 + · · ·+ ei,mum

with each ai,k ∈ F and uj ∈ U . Substituting we get that

k = e1v1+e2v2+· · ·+envn = (a1,1u1+e1,2u2+· · ·+e1,mum)v1+· · ·+(an,1u1+en,2u2+· · ·+en,mum)vn

and so the set X spans K over F .
To see that X is linearly independent, assume that

∑
i,j ri,juivj = 0. We

rewrite this sum as

0 =
∑
i,j

ri,juivj =
∑
i

=
∑
j

(
∑
i

ri,jui)vj

since the vj ’s are linearly independent over E, this means that (for all j) each∑
i ri,jui = 0, but the ui’s are linearly independent over F and hence for all i, j,

ri,j = 0. This completes the proof.

We now introduce some terminology. If X ⊆ F is a subset of the field F ,
then the subfield of F generated by X is the intersection of all subfields of F
that contain X. In the case where X is finite (say X = {a1, · · · , an}), and K
is a subfield of F then K[a1, · · · , an] (respectively, K(a1, · · · , an])) is the set of
all f(a1, · · · , an) where f is a polynomial (respectively, rational function) in n
variables over K. This can be extended to the case where |X| =∞. If n = 1 the
extension the extension K(a) is called a simple extension of K. Finally if L and
M are subfields of F then the composite of L and M is the subfield generated
by L

⋃
M and is denoted LM .

Definition 8.1.4. Let K ⊆ F be fields and let u ∈ F . We say that u is algebraic
over K if u is a root of some nonzero polynomial over K. If u is not algebraic,
we say that u is transcendental over K. If every element of F is algebraic over
K, we say that F is an algebraic extension of K. If F contains at least one
transcendatal element, we say that F is transcendental over K.

Example 8.1.5. Any field is algebraic over itself. R is trancendental over Q,
but C is algebraic over R. If x is an indeterminate and K is a field, then K(x)
is transcendental over K.

Theorem 8.1.6. If K ⊆ F and u ∈ F is transcendental over K then K(u) φ∼=K(x)
where φ is the identity on K.

Proof. Since any element of K(x) can be written as f(x)
g(x) with f(x), g(x) ∈ K[x],

we consider the map φ : K(x) −→ K(u) given by

φ(
f(x)

g(x)
) =

f(u)

g(u)
.
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We first note that φ is indeed the identity on K. Additionally, we should
worry a bit the denominator in the image. But note that if g(u) = 0 then
(since u is transcendental over K) g(x) must be the zero polynomial which is
a contradiction. It is also clear that φ is onto. For one to oneness, note that

if f(u)
g(u) = 0 then (again, since u is transcendental) that f(x) = 0 and we have

injectivity.

Here are some results that deal with algebraic extensions.

Theorem 8.1.7. Let K ⊆ F and u ∈ F algebraic over K, then

a) K(u) ∼= K[u].

b) K(u) ∼= K[x]/(f) where f(x) is the minimal (irreducible) polynomial (of
degree n) in K[x] such that f(u) = 0.

c) [K(u) : K] = deg(f) = n.

d) Every element of K(u) can be written uniquely in the form
∑n−1
i=o kiu

i with
ki ∈ K where n = deg(f).

Proof. We begin with a). Note that K[u] ⊆ K(u) so we only have to show the
other containment. To this end it suffices to show that K[u] is a field (since
K(u) is the quotient field of K[u], if K[u] is a field then we have equality). Let
I = {g(x) ∈ K[x]|g(u) = 0}. It is easy to see that I is a nonzero (since u is
algebraic) ideal of K[x]. Since K[x] is a PID, I is generated by an irreducible
polynomial f(x) ∈ K[x]; that is, I = (f(x)). Consider the map

φ : K[x] −→ K[u]

given by φ(k(x)) = k(u). This map is a surjective ring homomorphism with
kernel I and hence induces an isomorphism

K[x]/I ∼= K[u].

Since I is generated by an irreducible (prime, since K[x] is a PID) polynomial
K[x]/I is an integral domain. But more is true. Since I is a nonzero prime ideal
and K[x] is a PID, I must be maximal and hence K[x]/I ∼= K[u] is a field, and
hence a) is established.

Part b) is a shameless rip-off of a). We already know that K[u] ∼= K[x]/(f)
from the proof of part a), but also from part a) we have that K(u) ∼= K[u].

Part c) follows from part d) and so we will show part d). Of course any
element of K(u) ∼= K[u] can be written as a K−linear combination of powers
of u. It suffices to show that the set S := {1, u, u2, · · · , un−1} is a basis of
K[u] over K. We first claim that any power of u is a K−linear combination of
elements of S (note that this is clear for the first n − 1 powers of u). we show
by induction on k that un+k is a K−linear combination of elements of S.

Let f(x) = knx
n + · · ·+ k1x+ k0 with kn 6= 0. Note that since f(u) = 0 we

have that
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un = −kn−1

kn
un−1 + · · · − k1

kn
u− k0

kn

and hence un is generated by S over K.
Assume that the statement is true for k and consider un+k+1. Note that

un+k+1 = u(un+k) and by induction un+k =
∑n−1
i=0 aiu

i with ai ∈ K. This
gives

u(un+k) = u(

n−1∑
i=0

aiu
i) =

n−1∑
i=0

aiu
i+1 = an−1u

n +

n−2∑
i=0

aiu
i.

Replacing un by −kn−1

kn
un−1 + · · · − k1

kn
u− k0

kn
, we obtain

u(un+k) = −kn−1

kn
un−1 + · · · − k1

kn
u− k0

kn
+

n−2∑
i=0

aiu
i

which is a K−linear combination of elements of S and our induction is complete.
To finish off the proof, we note that the previous argument shows that K[u]

is spanned by the set S. For linear independence, assume that we have the
relation

a0 + a1u+ · · ·+ an−1u
n−1 = 0

with each ai ∈ K. This implies that u is a root of the polynomial g(x) =
a0 + a1x + · · · + an−1x

n−1 ∈ K[x]. But our f(x) of degree n was the minimal
nonzero polynomial for u and hence g(x) = 0. So ai = 0 for 0 ≤ i ≤ n− 1 and
the proof is complete.

Here is an interesting example.

Example 8.1.8. Let u be the real root of the polynomial x5−2 over the rationals.
Consider the field Q(u). This field is of degree 5. Now consider one of the
complex roots (say z) of the polynomial x5 − 2. The content of the previous
theorem shows that Q(z) ∼= Q(u), but it is interesting to note that Q(u) is a
subfield of R and Q(z) is not.

Theorem 8.1.9. Let ξ : K −→ L be an isomorphism of fields, u in some
extension field of K and v in some extension field of L. Then ξ extends to an
isomorphism K(u) ∼= L(v) taking u to v if and only if one of the following holds.

a) u is transcendental over K and v is trancendental over L.

b) u is a root of f ∈ K[x] and v is a root of ξ(f) ∈ L[x].

Proof. In any case, note that ξ can be extended to ξ∗ : K(x) ∼= L(x) (where ξ∗

takes x to x). If the first condition holds then K(u) ∼= K(x) ∼= L(x) ∼= L(v) and
the composite isomorphism takes u to v.

If the second condition holds, it is easy to see that the composite isomorphism
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K(u) //K[x]/(f)
ξ∗ //L[x]/ξ(f) //L(v)

takes u to v.
The necessity of the conditions is an exercise.

It is worth noting that if u and v are roots of f(x) ∈ K[x] where f(x) is
irreducible, then K(u) ∼= K(v).

Example 8.1.10. Let α be the real cube root of 2 and ω = −1+
√
−3

2 be the
primitive 3rd root of unity (ω2 + ω + 1 = 0). The fields Q(α),Q(ωα), and
Q(ω2α) are distinct, but isomorphic. Additionally, the intersection of the fields
is Q.

Theorem 8.1.11. Let K be a field and f ∈ K[x] a polynomial of degree n.
Then there is a simple extension field F = K(u) such that the following hold.

a) There exists u ∈ F such that f(u) = 0.

b) [K(u) : K] ≤ n and equality holds if and only if f is irreducible in K[x].

c) If f is irreducible in K[x] then K(u) is unique up to K−isomorphism (and
K(u) is called the field obtained by adjoining a root of f to K).

Proof. Suppose that in K[x] we can factor f(x) as

f(x) = p1(x) · · · pm(x)

where each pi(x) ∈ K[x] is irreducible of degree at least 1. Consider the field
K[x]/(p1(x)) (note that this is a field since p1(x) is a nonzero prime and K[x]
is a PID).

The canonical injection K −→ K[x]/(p1(x)) given by k 7→ k+ (p1(x)) shows
that K is a subfield of K[x]/(p1(x)). To find our root u that was claimed to
exist in part a) we consider the epimorphism

π : K[x] −→ K[x]/(p1(x))

given by g(x) 7→ g(x) + (p1(x))K[x]. Note that π(p1(x)) = 0 = p1(π(x)) and so
u := π(x) is an element of F = K[x]/(p1(x)) such that p1(u) = 0. Since p1(x)
divides f(x), u is a root of f(x) as well.

For part b) we see that [K(u) : K] = deg(p1(x)) ≤ deg(f) = n. If f is
irreducible, we see that p1 = f and hence we have equality. On the other hand,
if we have equality, we see that deg(p1) = deg(f) and since p1 divides f we have
equality and hence f is irreducible. The proof of c) is an exercise.

The following theorem shows that “small” field extensions behave nicely.

Theorem 8.1.12. Let K ⊆ F be finite-dimensional, then F is finitely-generated
and algebraic over K.
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Proof. Let u ∈ F and let [F : K] = n. This implies that the set {1, u, u2, · · · , un}
is linearly dependent over K. Hence

un =

n−1∑
i=0

kiu
i

and hence u is algebraic over K. Also note that if {a1, a2, · · · , an} is a basis of
F over K, then F = K(a1, a2, · · · , an) and hence F is finitely-generated over
K.

The next result shows that the property “algebraic” is transitive. It is also
quite useful in that it will help to show that algebraic elements are closed under
the standard operations (and hence algebraic elements tend to form fields).

Theorem 8.1.13. If F is algebraic over E and E is algebraic over K, then F
is algebraic over K.

Proof. Let u ∈ F . Since u is algebraic over E, we have that

enu
n + en−1u

n−1 + · · ·+ e1u+ e0 = 0

for some (not all zero) ei ∈ E. Note that the equation above actually shows
that u is algebraic over K(en, · · · , e1, e0). Consider the tower of fields

K ⊆⊆ K(e0) ⊆ K(e0, e1) ⊆ K(e0, e1, · · · , en) ⊆ K(e0, e1, · · · , en)(u).

Note that every extension above is finite-dimensional and hence the extension
K(e0, · · · , en)(u) is finite diemsional over K. Hence u is algebraic over K.

Corollary 8.1.14. Let α, β be algebraic over K. Then α + β, αβ, and alpha
β

(if β 6= 0) are algebraic over K. In particular, if F is an extension field of K
then the set of all elements of F which are algebraic over K is a subfield of F
containing K.

Proof. Consider the tower of fields

K ⊆ K(α) ⊆ K(α, β).

Since K(α) is algebraic over K and K(α, β) is algebraic over K(α), the previous
theorem, shows that K(α, β) is algebraic over K. In particular, α+ β, αβ, and
α
β (if β 6= 0) are all algebraic over K.

8.2 The Fundamental Theorem of Galois The-
ory

In this section, we will see the biggie, but it ain’t so bad and is totally cool.



8.2. THE FUNDAMENTAL THEOREM OF GALOIS THEORY 115

We begin with some set-up. Let E and F be field extensions of K. We
will call σ : E −→ F a K−homomorphism (resp. K−automorphism) if σ is a
K−module homomorphism (resp. automorphism) and a field homomorphism
(resp. automorphism).

The group of all K−automorphisms of F is called the Galois group of F
over K and is denoted Gal(F/K) = Aut(F/K) = G(F/K).

Example 8.2.1. Let F = Q(
√
d) where d is a square free integer. Then

Gal(F/K) ∼= Z2.

The next example contains almost all of the pieces of (finite) Galois theory.

Example 8.2.2. Let α be the real cube root of 2 and ω the primitive 3rd root

of 1 (ω = −1+
√
−3

2 ;ω2 + ω + 1 = 0). Let F = Q(α, ω) be the (smallest) field
extension of Q containing α and ω. It is worth noting this this is precisely the
smallest field extension of the rationals where the polynomial x3 − 2 has all of
its roots.

Verify that a basis of F over Q is given by {1, α, α2, ω, ωα, ωα2}. Consider
the following table

Automorphisms of F

φid φ(12) φ(13) φ(23) φ(123) φ(132)

1 1 1 1 1 1 1
α α ωα ω2α α ωα ω2α
α2 α2 ω2α2 ωα2 α2 ω2α2 ωα2

ω ω ω2 ω2 ω2 ω ω
ωα ωα α ωα ω2α ω2α α
ωα2 ωα2 ωα2 α2 ω2α2 α2 ω2α2

Note that each automophism φ induces a permutation of the roots of the
polynomial x3−2 (and since the action of φ on these roots completely determine
the automorphism, there are at most 6). From the table above, we see that there
are precisely 6 automorphisms (the most allowable by law here) and the Galois
group is isomorphic to S3. It is important to note that each permutation of
the roots is reflected in the subscripting in the table (the roots α, ωα, and ω2α
are numbered 1,2,3 respectively and, for example, the automorphism φ12 is the
one that interchanges roots 1 and 2 and fixes root 3). The reader is strongly
encouraged to wangle and dink with the example above to get a feel for the
interplay of permutations of roots and field automorphisms.

As a final addendum to the above example, note that if σ is aK−automorphism
of F , and r is a root in F of f(x) ∈ K[x], then σ(r) is also a root of f(x).

Example 8.2.3. Compute Gal(F/F ), Gal(Q( 3
√

2)/Q) and Gal(Q(
√

2,
√

3)/Q).

We now introduce the “prime” notation and some theorems that we will use
in the fundamental theorem of Galois theory.
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Theorem 8.2.4. Let K ⊆ E ⊆ F be fields and H a subgroup of Gal(F/K).

a) H ′ = {v ∈ F |σ(v) = v for all σ ∈ H} is an intermediate field of the
extension K ⊆ F .

b) E′ = {σ ∈ Gal(F/K)|σ(e) = e for all e ∈ E} is a subgroup of Gal(F/K).

Proof. Exercise.

We remark that H ′ is called the fixed field of H in F . Note that 1′ = F but
it is not necessarily true that Gal(F/K)′ = K (for an example of this, consider
the extension Q ⊆ Q( 3

√
2)).

Definition 8.2.5. Let K ⊆ F be fields. We say that F is Galois over K if
the fixed field of Gal(F/K) is K. Equivalently, F is Galois over K if for all
α ∈ F \K there is a σ ∈ Gal(F/K) such that σ(α) 6= α.

We remark, that we will also see later that if F = K(u) where u is a root
of some f ∈ K[x], then F is Galois over K if and only if F is seperable over K
(which will be defined later) and all roots of f are in F .

Example 8.2.6. Let ω = −1+
√
−3

2 (the primitive cube root of unity) and α =
3
√

2. As it turns out, the intermediate fields of the extension Q ⊆ Q(α, ω) are
Q,Q(ω),Q(α),Q(ωα),Q(ω2α), and Q(α, ω). The big one (Q(α, ω)) is Galois
over all the intermediate fields and Q(ω) is Galois over Q, but the other three
are not Galois over Q.

We now state the fundamental theorem of Galois theory. After the statement
of the theorem, most of the rest of the section will be devoted to developing
needed but routine technical machinery and proving the theorem.

Theorem 8.2.7. If K ⊆ F is finite and Galois, then there is a one to one
correspondence between the set of intermediate fields of the extension K ⊆ F
and the set of subgroups of Gal(F/K) (given by E 7→ E′ = Gal(E/K)) such
that the following hold.

a) If L ⊆ M are intermediate fields then [M : L] = [L′ : M ′] (in particular,
|Gal(F/K)| = [F : K]).

b) F is Galois over ever intermediate field E, but E is Galois over K if and
only if Gal(F/E) � Gal(F/K) and in this case Gal(F/K)/Gal(F/E) ∼=
Gal(E/K).

It would be instructive here for the student to make a “schematic” diagram
of the Galois correspondence.

Lemma 8.2.8. Let K ⊆ F be a Galois extension with intermediate fields L
and M . Let G = Gal(F/K) and let H and N be subgroups of G. The following
conditions hold.

a) F ′ = 1 and K ′ = G.
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b) 1′ = G.

c) If L ⊆M then M ′ ⊆ L′.

d) If H ⊆ N then N ′ ⊆ H ′.

e) L ⊆ L′′ and H ⊆ H ′′.

f) L′ = L′′′ and H ′ = H ′′′.

Proof. We leave a) and b) as exercises. For c) let σ ∈ M ′. Then σ fixes all of
M and since L ⊆M , σ fixes all of L. Hence σ ∈ L′.

For d), suppose that n ∈ N ′. Hence σ(n) = n for all σ ∈ N . In particular,
since H ⊆ N , we must have that σ(n) = n for all σ ∈ H and therefore n ∈ H ′.
We conclude that N ′ ⊆ H ′.

For e), note that L′ = {σ ∈ G|σ(l) = l for all l ∈ L} and L′′ = {l ∈ F |σ(l) =
l for all σ ∈ L′}. So if l ∈ L we have by the definitions above that σ(l) = l for all
σ ∈ L′ and hence l ∈ L′′. The other statement from e) is a similar manipulation
of the definitions.

Finally for f) Note that we have that L ⊆ L′′ and so we apply primes and
utilize part c) to obtain that L′ ⊇ L′′′. To get the other containment note that
(L′) ⊆ (L′)′′ by part e). The other statement is analogous and this concludes
the proof.

It should be noted here that F is Galois over K if and only if K = K ′′. More
generally, F is Galois over an intermediate field E if and only if E = E′′.

Here is a definition that serves to define an important class of intermediate
extensions and an important class of subgroups of the Galois group.

Definition 8.2.9. If X is a subgroup of the Galois group, G or an intermediate
field of the extension K ⊆ F we say that X is closed if X = X ′′.

As a final remark, we note that the previous lemma gives a one to one
correspondence between the closed subgroups of G and the closed subfields of F .
This correspodence is given by E 7→ E′ = Gal(F/E). So we have almost got the
first statement of the fundamental theorem of Galois theory. Our strategy from
here will be to show that if F is algebraic and Galois over K then all intermediate
fields are closed and that if F is finite dimensional then all subgroups of the
Galois group are closed.

Lemma 8.2.10. Let K ⊆ L ⊆ M ⊆ F be fields. If [M : L] < ∞ then
[L′ : M ′] ≤ [M : L]. In particular, if [F : K] <∞ then |Gal(F/K)| ≤ [F : K].

Proof. We will proceed by induction on n = [M : L] (and note that the result
is easy if n = 1). If n > 1 we will assume the conclusion for all i < n.

We now reduce the problem to a simpler case. Begin by selecting u ∈M \L.
Since [M : L] < ∞ this implies that u is algebraic over L with irreducible
polynomial f ∈ L[x] of degree k > 1. Therefore [L(u) : L] = k and [M : L(u)] =
n
k . If k < n (and so 1 < n

k < n) then



118 CHAPTER 8. FIELDS AND GALOIS THEORY

[L′ : M ′] = [L′ : (L(u))′][(L(u))′ : M ′] ≤ n

k
k = n

and hence the only case to worry is if k = n (which means that M = L(u)). We
will make this reduction and proceed.

To tackle this case, we will construct a one to one map from the set of left
cosets of M ′ in L′ (we will call this set of cosets S) to the set, T , of distinct
roots of f in L (which is of cadinality no more than n).

Let τM ′ be a coset of M ′ in L′ and σ ∈ Gal(F/M). Since u ∈ M , τσ(u) =
τ(u). This means that every element of the coset τM ′ has the same effect on u
and takes u to τ(u). This is the spark that allows us to define our map.

We define the map S −→ T by τM ′ = τ(u). By the above argument,
this map is well-defined. To see that the map is one to one, consider that if
τ(u) = τ0(u) then τ−1

0 τ(u) = u and hence (since M = L(u)) we have that τ−1
0 τ

fixes all of M . So τ−1
0 τ ∈M ′ and τ0M

′ = τM ′. This shows that the map is one
to one and completes the proof.

Here is the analogous result for the behavior of the prime operation on
subgroups of the Galois group.

Lemma 8.2.11. Let K ⊆ F be fields and H ⊆ N ⊆ Gal(F/K). If [J : H] <∞
then [H ′ : J ′] ≤ [J : H].

Proof. Many of the same ideas that worked in the previous proof are (can be)
utilized here and the proof is left as an exercise.

The next result ties together the previous lemmata and underscores our
direction.

Lemma 8.2.12. Let K ⊆ L ⊆M ⊆ F are fields and H ⊆ J ⊆ Gal(F/K).

a) If L is closed and [M : L] <∞ then M is closed and [L′ : M ′] = [M : L].

b) If H is closed and [J : H] <∞ then J is closed and [H ′ : J ′] = [J : H].

c) If F is finite-dimensional and Galois over K then all intermediate fields
and all subgroups of the Galois group are closed and |Gal(F/K)| = [F : K].

We remark here that condition b) shows that all finite subgroups of Gal(F/K)
are closed (take H = 1 and J finite).

Proof. Exercise.

At this point we have shown “most” of the fundamental theorem of Galois
theory. To deal with the second statement, we will need a couple of definitions
and results.

Definition 8.2.13. Let σ ∈ Gal(F/K) and let K ⊆ E ⊆ F . We say that:

a) E is stable if σ(E) ⊆ E for all σ ∈ Gal(F/K).
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b) τ ∈ Gal(E/K) is extendible to F if there is a σ ∈ Gal(F/K) such that
sigma|E = τ .

It should be noted in b) that E would be stable relative to this σ.

Lemma 8.2.14. Let K ⊆ E ⊆ F be fields

a) If E is stable, then E′ = Gal(F/E) � Gal(F/K).

b) If H � Gal(F/K) then H ′ is a stable intermediate extension.

Proof. For a), let u ∈ E, σ ∈ Gal(F/K) and ξ ∈ Gal(F/E). We wish to show
that sigma−1ξσ ∈ Gal(F/E) (that is, for arbitrary u ∈ E, σ−1ξσ(u) = u).
Since E is stable, σ(u) ∈ E and therefore ξσ(u) = σ(u) and the result follows.

For part b), let σ ∈ Gal(F/K) and v ∈ H ′. In this case, we wish to show
that σ(v) ∈ H ′; that is, for all ξ ∈ H, ξσ(v) = σ(v). Note that by the normality
of H, we have that σ−1ξσ ∈ H and hence σ−1ξσ(v) = v. Composing both sides
with σ we get ξσ(v) = σ(v) as desired.

Lemma 8.2.15. If F is Galois over K and E is a stable intermediate extension,
then E is Galois over K.

Proof. Let u ∈ E \K. Since F is Galois over K, then there is a σ ∈ Gal(F/K)
such that σ(u) 6= u. Note that σ|EGal(E/K) since E is stable. Since σ|E(u) 6=
u, we obtain that E is Galois over K.

Lemma 8.2.16. If K ⊆ E ⊆ F are fields such that E is algebraic and Galois
over K then E is stable.

Proof. Let u ∈ E and f ∈ K[x] the minimal irreducible polynomial of u over
K. We list the distinct roots of f in E:

u = u1, u2, · · · , ur
and note that r ≤ ndeg(f).

If ξ ∈ Gal(E/K) then ξ permutes the roots listed above which implies that
the coefficients of the monic polynomial

g = (x− u1)(x− u2) · · · (x− ur)

are fixed by every ξ ∈ Gal(E/K). Since E is Galois over K, we have that
g ∈ K[x] and hence f divides g. Since f is irreducible, we must have that f = g
(up to a multiple from the field K). This implies that all of the roots of f are
distinct and lie in E, hence σ(u) ∈ E.

The proof of the previous result was rather important and will be used later.
One should note that the assumption that E was Galois over K bought us that
the roots of the polynomial f were all distinct and in E.

Here is the final tool that we will use in the Fundamental Theorem of Galois
Theory.
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Lemma 8.2.17. Let K ⊆ E ⊆ F be fields with E stable. Then Gal(F/K)/Gal(F/E)
is isomorphic to the group of K−automorphisms of E that are extendible to F .

Proof. We define the map f : Gal(F/K) −→ Gal(E/K) by σ 7→ σ|E . The image
of this map is the subgroup of Gal(E/K) consisting of those automorphisms of
E that are extendible to F . Observe that the kernal of this map is precisely
Gal(F/E); apply the first isomorphism theorem.

We close with some remarks to explain why this finishes our proof. If E is
an intermediate field that is Galois over K (that is E′ � Gal(F/K)). Since E
and E′ are closed and G′ = K (G := Gal(F/K)), we have |G/E′| = [G : E′] =
[E′′ : G′] = [E : K]. What we have shown is that G/E′ = Gal(F/K)/Gal(F/E)
is isomorphic to a subgroup of Gal(E/K) of order [E : K]. Hence G/E′ ∼=
Gal(E/K).

Here is a more general statement to conclude this section.

Theorem 8.2.18. Let F be a field, G a group of automorphisms of F and K
the fixed field of G in F . Then F is Galois over K, and if G is finite, then F
is a finite dimensional Galois extension of K with Galois group G.

8.3 Splitting Fields and Algebraic Closures

we have already encountered the notion of an algebraic closure of a specific field.
Indeed, the subset of the complex numbers C consisting of all z ∈ C such that
z is algebraic over Q is a (countable) subfield of C and is an “algebraic closure”
of Q. This field has the property that every polynomial with coefficients in Q
has a root in this field. Such a construction can be made for any field (not just
Q) and this section will outline this via splitting fields.

Definition 8.3.1. Let f ∈ F [x] be a polynomial of positive degree. We say that
f splits in F [x] if

f = u(x− r1)(x− r2) · · · (x− rn)

with ri, u ∈ F . We say that an extension field F ⊆ F ′ is a splitting field for
f ∈ F [x] if f splits in F ′[x] and F ′ = F (r1, r2, · · · , rn).

We make a couple of remarks here. Firstly, the splitting field of f ∈ F [x] is a
field where f splits into linear factors, but the condition F ′ = F (r1, r2, · · · , rn)
is a sort of “minimality” condition (that is, F ′ is the smalest field containing
F where the polynomial f splits). We also note that we can define a splitting
field for a set, S, of polynomials in an analogous fashion (and note if the set S
is finite, then we can consider the set to be a single polynomial).

Theorem 8.3.2. If K is a field and f ∈ K[x] has degree n ≥ 1, then there is
a splitting field F of f such that [F : K] ≤ n!.
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Proof. We proceed by induction on n = deg(f). The case n = 1 being quite
easy, we will assume that if f has degree not exceeding n − 1 then there is a
splitting field for f of degree no more than (n− 1)!.

Assume deg(f) = n and let g be an irreducible factor of f of degree more
than 1 (1 < deg(g) ≤ n...note that if all irreducible factors of g are degree 1,
then the result follows easily). If u is a root of g then we know that there is an
extension K(u) of K such that [K(u) : K] = deg(g) > 1. Over the field K(u)
the polynomial f factors:

f = (x− u)h

where h ∈ K(u)[x] is of degree n− 1. By induction, there is a splitting field F
of h that contains K(u) such that [F : K(u)] ≤ (n − 1)!. Hence f splits in F
and

[F : K] = [F : K(u)][K(u) : K] ≤ (n− 1)!deg(g) ≤ n!

and this completes the proof.

The next theorem (equivalent conditions) will be the result that we use to
define “algebraically closed field”. Intuitively, this is a field where all roots of
polynomials are “already there” (or equivalently, every polynomial splits into
linear factors).

Theorem 8.3.3. Let F be a field. The following conditions are equivalent.

a) Every nonconstant polynomial f ∈ F [x] has a root in F .

b) Every nonconstant polynomial f ∈ F [x] splits over F .

c) A nonconstant polynomial f ∈ F [x] is irreducible if and only if deg(f) = 1.

d) There is no nontrivial algebraic extension field of F .

e) There is a field K ⊆ F such that F is algebraic over K and every polyno-
mial in K[x] splits in F [x].

Proof. Exercise.

We remark here that if the extension K ⊆ F is algebraic and F is alge-
braically closed, then F is the splitting field of the set of all polynomials in
K[x].

We now continue with some results concerning algebraic closures and split-
ting fields.

Theorem 8.3.4. Every field K has an algebraic closure and any two algebraic
closures of K are K−isomorphic.

Proof. We leave most of this as an exercise. We remark that the uniqueness
will follow from a theorem that we will see shortly. As a hint, to construct the
algebraic closure of K, consider the splitting field of the set of all (nonconstant)
polynomials in K[x].
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We list the following as a corollary, but the excited reader could prove it
first to derive the previous theorem.

Corollary 8.3.5. If K is a field and S a set of polynomials in K[x], then there
is a splitting field of S over K.



Chapter 9

Arithmetic Rings

9.1 Integral Closure

In this chapter, all rings are integral domains unless specifically stated otherwise.
In this section we will delve into some of the structures that are on the boundary
of commutative algebra and number theory. We first explore a central notion
referred to as “integral closure.”

Definition 9.1.1. Let R ⊆ T be a domains we say that t ∈ T is integral over
R if t is the root of a monic polynomial

xn + rn−1x
n−1 + · · ·+ r1x+ r0 ∈ R[x].

Example 9.1.2. If R is a field, then t being integral is equivalent to t being
algebraic.

Example 9.1.3. Consider the ring Z[
√
−5]. Every element of this ring is

integral over Z.

The previous two examples (and what we have done with fields) demands an
answer to the question “do elements integral over R form a ring”? The answer
to the question is yes and we will begin to develop this now.

Lemma 9.1.4. Let R ⊆ T be domains and u ∈ T . TFAE.

a) u is integral over R.

b) There is a finitely-generated R−submodule of A ⊆ T such that uA ⊆ A.

Proof. For the a) implies b) direction, suppose that u is a root of xn+rn−1x
n−1+

· · ·+ r1x+ r0 ∈ R[x]. Take A to be the module generated by {1, u, · · · , un−1}.
For the other direction, assume A is generated by {a1, a2, · · · , an}. We

obtain the system of equations

uai =
∑

λijaj .

123
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Bringing the right side to the left above, we get a matrix equation which has
u as an eigenvalue. The equation is monic and hence u is integral.

Theorem 9.1.5. Let R ⊆ T be domains. If u, v ∈ T are integral over R, then
so are u+ v and uv.

Proof. Let A and B be finitely generated modules (as per the previous) such
that uA ⊆ A and vB ⊆ B. Note that AB is also finitely generated and note
that (u+ v)AB ⊆ AB and uvAB ⊆ AB.

Corollary 9.1.6. If R ⊆ T are domains then R = {z ∈ T |z is integral over R}
is a subring of T containing R.

Proof. Follows directly from above.

Definition 9.1.7. Let R ⊆ T be domains. We say that RT = {z ∈ T |z is integral over R}
is the integral closure of R in T . If RT = R then we say that R is integrally
closed in T . If T is the quotient field of R and R is integrally closed in T then
we say that R is integrally closed.

Integrally closed rings are in general much nicer than their non-integrally
closed counterparts. Here are some basic theorems (most without proof for
now).

Theorem 9.1.8. If R is integrally closed, then so is R[x].

Theorem 9.1.9. Any UFD is integrally closed.

Proof. Let ω = a
b ∈ Q with a and b having no common prime factors. Suppose

that ω is a root of the polynomial

xn + rn−1x
n−1 + · · ·+ r1x+ r0 ∈ R[x].

Plugging in a
b and normalizing we get

an + brn−1a
n−1 + · · ·+ bn−1r1a+ bnr0 = 0.

Now suppose that p is a prime dividing b. It is easy to see that p divides
an and hence a. This would contradict the “relative primeness” of a and b, and
hence there are no primes dividing b. So b is a unit and ω ∈ R.

Here is a lemma that is sometimes useful for when working with integral
elements.

Lemma 9.1.10. Let R ⊆ T be domains and u ∈ U(T ) (that is, u is a unit of
T ). Then u−1 is integral over R if and only if u−1 ∈ R[u].
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Proof. If u−1 is integral over R then we have the equation

u−n + rn−1u
−n+1 + · · ·+ r1u

−1 + r0 = 0

with each ri ∈ R. Multiply this sucker by un and rearrange to obtain

u(rn−1 + rn−2u+ · · ·+ r0u
n−1) = −1

and we see that u−1 ∈ R[u]. The other direction is this in reverse.

Lemma 9.1.11. An arbitrary intersection of integrally closed domains is inte-
grally closed.

Proof. Let Ri be integrally closed for all i and let R :=
⋂
iRi. Let ω be an

element of the quotient field of R that is integral over R. Then ω is integral
over each Ri and hence contained in each Ri. So ω ∈ R.

9.2 Valuation domains

In a certain sense valuation domains are the next best thing to fields. They
are central in the theory of commutative algebra (and are especially important
in their own right). The term “valuation” domain comes from a map that is
associated with a valuation domain that, in some sense, behaves like a measure
of size of the elements in the valuation domain. We will ignore this aspect
(at least at first) but the interested student is pointed to Gilmer’s book on
Multiplicative Ideal Theory which gives a more thorough treatment than we
have time for now.

Proposition 9.2.1. Let V be an integral domain with quotient field K. The
following conditions are equivalent.

a) For all nonzero a, b ∈ V , either a divides b or b divides a.

b) For all α ∈ K \ {0}, either α or α−1 is an element of V .

Any domain satisfying one (hence both) of the previous conditions is called
a valuation domain.

Proof. Exercise.

We will now develop some of the fundamental properties of valuation do-
mains. We begin with a result in the spirit of the previous section.

Proposition 9.2.2. Any valuation domain is integrally closed.

Proof. Let V be our valuation domain with quotient field K and let α ∈ K be
integral (and nonzero) over V . If α ∈ V then we are done, so we will assume
that α /∈ V . Since α /∈ V and V is a valuation domain, α−1 ∈ V . Hence by an
earlier lemma, α ∈ V [α−1] = V which is our contradiction.



126 CHAPTER 9. ARITHMETIC RINGS

Theorem 9.2.3. Let V be a valuation domain. Then V has the following
properties.

a) The ideals of V are linearly ordered.

b) V is quasilocal.

c) Any radical ideal of V is prime.

d) Any finitely generated ideal is principal.

Proof. For part a) let I, J be ideals of V and suppose that there is an element
x ∈ I \ J . Our claim is that J ⊆ I. Select y ∈ J and suppose that y /∈ I. In
particular, this means that x does not divide y (if x|y then y = vx ∈ I). Since V
is a valuation domain, it must therefore be the case that y|x. Hence x = vy ∈ J
and this is our desired contradiction.

Part b) follows from a) since any two maximal ideals are comparable.
For part c), let I ⊆ V be a radical ideal and suppose that xy ∈ I. We will

say without loss of generality that x divides y in V (and write y = vx for some
v ∈ V ). Since xy ∈ I and y

x = v ∈ V then y
xyx = y2 ∈ I. Since I is radical,

y ∈ I and we are done.
We leave d) as an (inductive) exercise.

For our next result we will require the following lemma.

Lemma 9.2.4. Let R ⊆ T be domains and u a unit in T . If I is a proper ideal
of R then I survives in either R[u] or R[u−1].

Proof. Suppose not, then we will have the following two equations:

a0 + a1u+ · · ·+ anu
n = 1

and

b0 + b1u
−1 + · · ·+ bmu

−m = 1

with each ai, bj in I. We can assume that n ≥ m and that n is chosen to be
minimal. Multiply the second equation by un and rearrange to get

(1− b0)un = b1u
n−1 + · · ·+ bmu

n−m.

Now multiply the first equation by (1− b0) and substitute for (1− b0)un to get

(1− b0)a0 + (1− b0)a1u+ · · ·+ an(b1u
n−1 + · · ·+ bmu

n−m) = 1− b0.

Taking the b0 to the left side gives an equation like the first with a smaller
exponent which contradicts minimality. This concludes the proof.

Here is a rather important result about the existence of valuation overrings.
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Theorem 9.2.5. Let R be a domain with quotient field K and I ⊆ R a proper
ideal. Then there is a valuation overring of R (that is, a valuation domain V
such that R ⊆ V ⊆ K) such that I survives in V (IV 6= V ).

Proof. we will first show the existence of a maximal overring of R where I
survives. Consider the set of pairs (Rj , Ij) where each Rj is an overring of R
and each Ij is a proper ideal of Rj containing I. We partially order this set by
declaring (Ra, Ia) ≥ (Rb, Ib) if and only if Rb ⊆ Ra and Ib ⊆ Ia. It is easy to
see that any chain in this partially ordered set has an upper bound and so by
Zorn, there is a maximal element (we will call it (V, J)).

We finish u by showing that V is a valuation domain. Indeed, suppose that
α ∈ K and neither α nor α−1 is an element of V . Note that J must survive in
either V [α] or V [α−1] and this contradicts the maximality of V .

We close this section (for now) with an important characterization of the
integral closure of R.

Theorem 9.2.6. Let R be an integral domain with quotient field K and integral
closure R. Then

R =
⋂

R⊆V⊆K

V

where the intersection ranges over all valuation overrings of R.

Proof. Exercise.

9.3 Invertible ideals and Dedekind domains

Definition 9.3.1. Let R be a domain with quotient field K. We say that an
R−submodule of the quotient field (say I) is a fractional ideal if there is a
nonzero r ∈ R such that rI ⊆ R.

Definition 9.3.2. Let I be a fractional ideal. We define I−1 = {k ∈ K|kI ⊆
R}.

Note that II−1 ⊆ R by the very definition of I−1.

Definition 9.3.3. Let R be a domain with quotient field K and I a fractional
ideal of R. We say that I is invertible if II−1 = R

Here are some important examples of invertible ideals.

Example 9.3.4. Let R be a domain with quotient field K and let a be a nonzero
element of K. The R−module aR is a fractional ideal with inverse a−1R. And,
in fact, aRa−1R = R. This example shows that any principal fractional ideal is
an invertible ideal.

Theorem 9.3.5. The collection of invertible ideals of R forms an abelian group
under ideal multiplication.
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Proof. It is easy to see once you realize that the multiplicative identity is R and
the inverse of I is I−1.

Proposition 9.3.6. Let I be a fractional ideal of the domain R. The following
conditions are equivalent.

a) I is invertible.

b) There is a fractional ideal J such that IJ is principal.

Proof. a) implies b) is easy. So suppose that there is a fractional J such that
IJ = aR with a a nonzero element of K. Note that I(Ja−1R) = aRa−1R = R
and I is invertible.

This next theorem totally rocks since it is not obvious at first blush and
gives a very restrictive necessary condition for an ideal to be invertible.

Theorem 9.3.7. Any invertible ideal is finitely generated.

Proof. Let I be an invertible ideal and J = I−1. Since IJ = R, we can find
a1, a2, · · · , an ∈ I and b1, b2, · · · , bn ∈ J such that

a1b1 + a2b2 + · · ·+ anbn = 1.

Let x ∈ I and multiply the above equation by x. This gives

a1(xb1) + a2(xb2) + · · ·+ an(xbn) = x

and note that since each bi ∈ J = I−1 and x ∈ I, each xbi ∈ R. Hence the above
equation shows that each x ∈ I is an R−linear combination of the elements
a1, · · · , an and hence I = (a1, a2, · · · , an) and so is finitely generated.

Here is a last useful lemma.

Lemma 9.3.8. Let R be a domain and I a fractional ideal. I is invertible if
and only if it is locally principal (principal in RP for all primes P).

Proof. It is easy to see that if I is an invertible ideal of R and S is a multiplicative
set (not containing 0) then IS is invertible in RS . This reduces to showing that
a fractional ideal of RP is invertible if and only if it is principal. If it is principal,
we have seen that it is invertible. If I is invertible in RP then I is generated by
a1, a2 · · · , an. And the generators of I−1 (b1, b2, · · · , bn) can be chosen so that

a1b1 + · · ·+ anbn = 1.

Note that not all of the elements aibi can be in the maximal ideal of RP

and so at least one of them has to be a unit (since RP is quasilocal). WLOG,
we will say that a1b1 is a unit in R and claim that I = (a1). One containment
is easy and note that if x ∈ I and a1b1 = u is a unit then x = xu−1a1b1 =
(xu−1b1)a1 ∈ (a1). This completes the proof.
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We now introduce Dedekind domains via the following theorem.

Theorem 9.3.9. Let R be an integral domain. The following conditions are
equivalent.

a) EVery fractional ideal of R is invertible.

b) Every proper nonzero ideal of R is invertible.

c) Every nonzero proper ideal of R is a product of prime ideals.

d) R is (no more than) one-dimensional, Noetherian, and integrally closed.

e) R is Noetherian and RM is a Noetherian valuation domain for all maximal
ideals M.

Any domain satifying one hence all of the above conditions is called a Dedekind
domain.

Proof. In condition d) we will ignore the zero-dimensional situation since this
is the field case!

We will skip the equivalence of a) and b) since the proof is pretty straight-
forward.

b)=⇒ c): Note that since we know that every ideal is invertible, this means
that every ideal is finitely generated and R is Noetherian. We will show that
the nonzero I ⊆ R is a product of prime ideals. Note that since I is proper, I
is contained in a prime ideal P1, so I ⊆ P1. Since P1 is invertible we obtain
IP−1

1 ⊆ R (if we have equality, we are done and I = P1). If IP−1
1 ( R then this

ideal must be contained in a prime ideal P2 and as before we get IP−1
1 P−1

2 ⊆ R.
Continuing this process, we obtain the increasing sequence of ideals

I ⊆ IP−1
1 ⊆ IP−1

1 P−1
2 ⊆ · · · .

But, as we have observed, R is Noetherian and so this increasing chain must
stabilize (and by our construction, this chain must reach R). We obtain

IP−1
1 P−1

2 · · ·P−1
n

or

I = P1P2 · · ·Pn

and I is a product of prime ideals.
c)=⇒ b): For this implication assume that each nonzero ideal of R is a

product of primes. We will show that every prime ideal is invertible (and hence
each ideal is invertible). Suppose that Q is a prime ideal of R. Select a nonzero
q ∈ Q. The ideal (q) is, by assumption a product of prime ideals. We write

(q) = QP1P2 · · ·Pn.
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Note that (q) is principal and hence invertible. This implies that each prime
ideal in the product (and hence Q) is invertible by a previous lemma.

d)=⇒ e): Suppose that R is one-dimensional, Noetherian and integrally
closed. Since we have “Noetherian” as an assumption, we merely need to show
that RM is a Noetherian valuation domain for all maximal M. First note that
the set of elements I = {a ∈ K|aM ⊆ M} is precisely R (I is a fractional
ideal since M is finitely generated and hence I is finitely generated as R is
Noetherian...every element of I is integral over R by the characterization of
integral elements and hence, since R is integrally closed, I = R).

We now claim that M−1 properly contains R. Note that, in any case, R ⊆
M−1 and there are ideals (e.g. the principal ones) that have the property that
their inverses properly contain R. A Zorn’s lemma argument shows that there
is a maximal such ideal with this property and this ideal must be prime. We
obtain from this that R (M−1.

With this in hand, we note that MM−1 must properly contain M and be in
R. Hence MM−1 = R and M is invertible.

Now localize R at the ideal M. This ring is clearly local (quasi-local and
Noetherian). Since M is invertible in R, MRM is invertible (hence principal)
in RM. Hence R is a local domain with a unique principal prime and hence a
PID (and hence a NOetherian valuation domain).

e)=⇒ d): If R is Noetherian and RM is a Noetherian valuation domain for all
maximal M it suffices to show that R is integrally closed and one dimensional.

The one-dimensional follows rather easily since if P ( Q are two nonzero
priime ideals of R then both of these primes survive and are principal in the
PID R which is a contradiction.

For integrally closed, observe that R =
⋂

MRM and the intersection of a
family of integrally closed domains is integrally closed.

a), b), c) =⇒ d), e): If every ideal of R is invertible, then R is Noetherian.
It suffices to show that RM is a Noetherian valuation domain. But in RM every
ideal is invertible and hence principal. So RM is a PID with a unique nonzero
prime ideal, it is easy to see that this is a Noetherian valuation domain.

d), e) =⇒ a), b), c): For this direction, note that since RM is a Noetherian
valuation domain for all maximal M, every ideal of R is locally principal and
hence invertible.

Here is a last result of this ilk.

Proposition 9.3.10. Let R be a domain and I a fractional ideal. Then I is
invertible if and only if I is a projective R−module.

These observations allow us to make an interesting construction known as
the class group.

Definition 9.3.11. Consider the set Inv(R) of invertible ideals of R. The
collection Prin(R) is a subgroup. The quotient Inv(R)/Prin(R) = Cl(R) is
called the class group of R.
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More generally the Picard group of R is the collection of rank 1 projective
R modules with multiplication given by ⊗R.

Here is an application. This is a famous theorem due to L. Carlitz.

Theorem 9.3.12. Let R be a ring of algebraic integers. Then R is an HFD if
and only if the class number of the ring of integers does not exceed 2.
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