
Linear Algebra

Jim Coykendall

September 13, 2004



2



Chapter 1

Preliminaries

1.1 Basics and Definitions

This course will cover basic graduate linear algebra. In this course we will have
a view towards some algebraic K−theory (which in very loose terms can be
thought of as linear algebra over a ring). The beginning of the course will be
a quick overview of some of the basics of linear algebra (over a field). Included
will be inner product spaces and some applications. We will then delve a bit
into general module theory and then specialize again to modules over a PID to
get the canoncial forms of a matrix. We will end up with some basic category
theory (on a “need to know” basis) and introduce algebraic K−theory.

In this section we will (for completeness) record some definitions and rehash
some things that we will need to know in this course.

Definition 1.1.1. A nonempty set G is said to be a group if G is equipped with
a binary operation G×G −→ G (◦) such that the following hold.

a) x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ G.

b) There exists e ∈ G such that e ◦ x = x ◦ e = x for all x ∈ G.

c) For all x ∈ G there exists y ∈ G such that x ◦ y = y ◦ x = e.

We note that in many instances, our groups will be abellian. That is, x◦y =
y ◦ x for all x, y ∈ G (and in this case we will often write “x+ y” for “x ◦ y”).

Definition 1.1.2. A nonempty set R is said to be a ring if R is equipped with
two binary operations (+ and ◦) such that the following hold.

a) (R,+) is an abelian group.

b) x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ R.

c) x ◦ (y+ z) = x ◦ y+ x ◦ z and (x+ y) ◦ z = x ◦ z+ y ◦ z for all x, y, z ∈ R.
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Notationally, we will omit the ◦ notation for a ring and just write “xy”
instead of x ◦ y. Additionally, we will (almost always) assume that our ring is
commutative, that is xy = yx for all x, y ∈ R. Even more frequently, we will
assume that our ring has an identity (that is, an element 1R ∈ R such that
1Rx = x1R = x for all x ∈ R).

Definition 1.1.3. We say that a ring, D, with identity is a division ring if the
nonzero elements of D form a group under multiplication. If D is a commutative
division ring, we say that D is a field.

Here is an important result (hand in hand with the axiom of choice) that
will be used from time to time.

Lemma 1.1.4 (Zorn’s Lemma). Let Γ be a partially ordered set with the
property that every chain in Γ has an upper bound (in Γ). Then Γ has a maximal
element.

Just for giggles, here is an application of Zorn’s Lemma

Theorem 1.1.5. Let R be a ring with identity. Then R has a maximal (left)
ideal. What is more, any ideal I is contained in a maximal ideal M.

Proof. Let I ( R be our (left) ideal (if you merely want existence of a maximal
ideal you can take I = (0)). Let Γ = {J |J is a proper (left) ideal of R containing I}
with the partial ordering being set-theoretic containment. Note that Gamma
is nonempty as I ∈ Γ.

To apply Zorn’s Lemma, we need to verify that every chain in Γ has an
upper bound in Γ. Let C = {Ij} be a chain (that is, a linearly ordered subset
of Γ). We claim that U :=

⋃
Ij is an upper bound for C (more precisely, the

fact that it is an upper bound is clear...we merely have to show that U ∈ Γ).
To this end, we first claim that U is an (left) ideal of R. Indeed, if x, y ∈ U

then x ∈ Iα and y ∈ Iβ . Since Iα and Iβ are elements of C, then we will assume
that Iα ⊆ Iβ without loss of generality. Hence x − y ∈ Iβ ⊆ U . Showing that
rx ∈ U is similar.

To see that U is proper, note that if it is not, then 1 ∈ U and hence 1 ∈ Iα
for some α. Hence Iα is not proper which is a contradiction.

Since U is an upper bound in Γ, Zorn’s Lemma applies and hence Γ has a
maximal element M. This element M is a maximal ideal of R containing I and
we are done.

We will shortly use this technique to show that every vector space has a
basis. But before we put the cart before the horse, here is what a vector space
is.

Definition 1.1.6. Let F be a field. A vector space over F is an abelian group
(V,+) equipped with a scalar multiplication (a map from F × V −→ V ) such
that for all v, w ∈ V and α, β ∈ F

a) α(v + w) = αv + αw
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b) α(βv) = (αβ)v

c) (α+ β)v = αv + βv

d) 1Fv = v.

Example 1.1.7. Standard examples of vector spaces are Rn (over R) and Cn
(over R or C). Other examples of real vector spaces are Mn(R) and the real-
valued functions on (a, b) (or continuous functions on (a, b)).

Example 1.1.8. The set of functions f : R −→ R is a real vector space. Can
you find a basis for this vector space?
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Chapter 2

Vector Spaces and Inner
Product Spaces

2.1 The Basics of Vector Spaces

For completeness of this chapter, we recall the definition of a vector space.

Definition 2.1.1. Let F be a field. A vector space over F is an abelian group
(V,+) equipped with a scalar multiplication (a map from F × V −→ V ) such
that for all v, w ∈ V and α, β ∈ F

a) α(v + w) = αv + αw

b) α(βv) = (αβ)v

c) (α+ β)v = αv + βv

d) 1Fv = v.

Definition 2.1.2. A subset U ⊆ V of a vector space over F is said to be a
subspace, if U is an F−vector space.

Definition 2.1.3. Let V be a vector space over F and X a subset of V . We
say the set X is linearly independent if the relation

n∑
i=1

αixi = 0

(with αi ∈ F and xi ∈ X) implies that αi = 0 for all 1 ≤ i ≤ n. If the set X is
not linearly independent, we say that it is linearly dependent.

Definition 2.1.4. Let V be a vector space over the field F and X a subset of
V . We say that X spans V if every element of V can be written in the form

7
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n∑
i=1

αixi

with αi ∈ F and xi ∈ X.

We remark here that if X ⊆ V is a subset of the vector space V , then the
subspace spanned by X is precisely

U =
⋂

W⊆V,W subspace containing X

W.

In particular, X spans V precisely when U = V .

Definition 2.1.5. Let V be a vector space and X ⊆ V a subset. We say that
X is a basis of V if X is linearly independent and X spans V .

Here is a big theorem that will help us to classify all vector spaces over an
arbitrary field F.

Theorem 2.1.6. Any vector space, V , (over a division ring, D) has a basis.
Additionally, any linarly independent subset of V can be expanded to a basis of
V .

Before we prove this theorem, we introduce the following lemma.

Lemma 2.1.7. Let V be a vector space over a division ring D. Then V con-
tains a maximal linearly independent subset (and more generally, any linearly
independent subset is contained in a maximal linearly independent subset).

Proof. This one has Zorn’s Lemma written all over it. We first suppose that V
is a nonzero vector space. Let v be a nonzero vector in V . As a set unto itself,
{v} is a linearly independent subset of V (αv = 0 =⇒ α = 0). We let Γ be the
set of all linearly independent subsets of V (partially ordered by inclusion). By
the above remark, Γ is nonempty. We wish to apply Zorn’s Lemma, so let C be
a chain in Γ. Consider the set

X =
⋃
B⊂C

B.

Certainly X is an upper bound for C if X is actually in Γ (that is, if X is
linearly independent). To this end, suppose that

n∑
i=1

αixi = 0

with αi ∈ D and xi ∈ X. But each xi ∈ C and hence (since the list of xi’s
is finite and C is a chain) there is a B in the chain C such that xi ∈ B for all
1 ≤ i ≤ n. But as a member of the chain, B is a linearly independent set and
hence αi = 0 for all a ≤ i ≤ n. Hence Zorn’s Lemma applies and the proof
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is complete. (To get the parenthetical part of the Lemma, consider Γ be the
collection of linearly independent subsets of V that contain our given linearly
independent set).

We will now use this lemma to prove the previous theorem.

Proof. To prove the theorem, we will show that a maximal linearly independent
subset of V is a basis. Let X be our maximal limearly independent subset of V
(guaranteed by the previous lemma). To show that X is a basis of V , it suffices
to show that X spans V .

Suppose that X does not span V , and choose v ∈ V \ 〈X〉. Since X is
maximal with respect to being linearly independent, the set X

⋃
{v} must be

linearly dependent. Hence there exists a, a1, · · · , an ∈ D and v1, · · · , vn ∈ X
such that

av = a1v1 + · · ·+ anvn.

Multiplying the left side by a−1 (note that a 6= 0) we obtain

v = a−1a1v1 + · · ·+ a−1anvn ∈ 〈X〉

which is a contradiction.

Corollary 2.1.8. If V is a vector space and L is a linearly independent subset
of V , then L can be expanded to a basis of V .

We end this section by defining the dimension of a vector space to be the
cardinality of its basis set. Of course the basis set is not unique, but its cardi-
nality is (we have not proved this, but I’ll bet that you were betting on this).
We will formally record the definition.

Definition 2.1.9. Let V be a vector space over the field F. We define dimF(V ) =
|X| where X is a basis for V over F.

We will formally record the following theorem and leave it as an exercise for
the reader (it is in fact an interesting exercise in set theory).

Theorem 2.1.10. Let V be a vector space and let X and Y be bases for V .
Then |X| = |Y |.

2.2 Direct sums, quotients, and linear transfor-
mations

In this section we will look at an important construction called the direct sum
which will allow us to build new vector spaces from old (externally) and addi-
tionally any vector space over a field can be decomposed uniquely (internally)
in this fashion. We will also produce some standard results on quotient spaces
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and linear transformations that are usually contained in an elementary linear
algebra course to lay the groundwork for our later generalizations.

Proposition 2.2.1. If U, V are subspaces of W then U+V = {u+v|u ∈ U, v ∈
V } is a subspace of W .

This is called the sum of the subspaces U and V . We next present a way to
construct a special kind of a sum called a direct sum.

Proposition 2.2.2. Let V and W be vector spaces over F. The abelian group
V ⊕W is a vector space with scalar multiplication given by

α(v, w) = (αv, αw)

for all v ∈ V , w ∈W and α ∈ F.

Proof. Exercise.

The difference between the sum and the direct sum is that there may be
some “overlap” in a sum.

Example 2.2.3. Consider the space R3 (as an R−vector space). Let U1 =
〈(1, 0, 0), (0, 1, 0)〉, U2 = 〈(0, 0, 1)〉, U3 = 〈(1, 0, 0), (0, 1, 0)〉, and U4 = 〈(0, 1, 0), (0, 0, 1)〉.
R3 = U1 ⊕ U2 and R3 = U3 + U4 but R3 6= U3 ⊕ U4.

We now define the direct sum more generally.

Proposition 2.2.4. Let {Vi}i∈I be a collection of vector spaces over a field
F. Then the abelian group ⊕i∈IVi is a a vector space with scalar multiplication
given by α{vi}i∈I = {αvi}i∈I .

Proof. Exercise.

A natural question is when is a vector space a direct sum of two of its
subspaces? But before we answer this we need some more technical details.

Proposition 2.2.5. Let W ⊆ V be vector spaces over F. Then the abelian group
V/W is a vector space with scalar multiplication given by α(v+W ) = αv+W .

Definition 2.2.6. Let V and W be vector spaces over F. A function φ : V −→
W is called a linear transformation if

a) φ(v1 + v2) = φ(v1) + φ(v2) for all v1, v2 ∈ V and

b) φ(αv) = αφ(v) for all v ∈ V and α ∈ F.

A linear transformation is the vector space analog of an abelian group ho-
momorphism. We say that a linear tranformation is surjective (onto) if it is
surjective as a map of sets. We say that a linear transformation is injective
(1-1) if it is injective as a map of sets. A linear transformation that is both one
to one and onto is called an isomorphism.
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Definition 2.2.7. Let φ : V −→ W be a linear tranformation. Then ker(φ) =
{v ∈ V |φ(v) = 0} and im(φ) = {φ(v)|v ∈ V }.

Recall that φ is one to one if and only if ker(φ) = 0 and φ is onto if and only
if im(φ) = W .

Theorem 2.2.8. Let {Ui}i∈I be subspaces of W . Then W ∼= ⊕i∈IUi if and
only if W =

∑
i∈I Ui and Ui

⋂
(
∑
i 6=j Uj) = 0 for all i 6= j.

Before we prove this, we remark that the general sum
∑
i∈I Ui consists of

all finite sums u1 + u2 + · · ·+ un where uk ∈ Uik .

Proof. We will prove the direction (⇐=) and leave the other direction for the
energetic reader. Suppose that W is the sum of the subspaces Ui and that
Ui

⋂
Uj = 0 for all i 6= j. Consider the map

φ : ⊕i∈IUi −→W

given by φ({ui}) =
∑
ui (note that only finitely many of the terms in this

sequence are nonzero). Since W is the sum of all of the Ui’s, this map is onto.
Now suppose that {ui}i∈I ∈ ker(φ). Since only finitely many of the ui’s are
nonzero (say xi1 , xi2 , · · · , xik are the nonzero entries), this means that

xi1 + xi2 + · · ·+ xik = 0.

Note that we can assume that k ≥ 2 (otherwise we are done). This equation
implies that

xi1 = −xi2 − · · · − xik ∈ Ui1
⋂

(
∑
j 6=i1

Uj)

and hence, by assumption, xi1 = 0 which is a contradiction. This concludes the
proof.

Here is a (truly wonderful) related result. This result classifies all vector
spaces over a field F.

Theorem 2.2.9. Let V be a vector space over F. Then V ∼= ⊕i∈IF. What is
more the cardinality of I coincides with the cardinality of (any) basis of V over
F.

Proof. Let X = {xi}i∈I be a basis for V over F. We define a map φ : V −→
⊕i∈IF by φ(

∑
αixi) = {αi}i∈I . Verify that this is a linear transformation, and

is both one to one and onto.

We conclude this section with a hodge-podge of “familiar” linear algebra
results.

Proposition 2.2.10. Let V,W be vector spaces over F and φ : V −→ W a
linear transformation. Then φ induces an isomorphism φ : V/ker(φ) ∼= im(φ).
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Proof. Consider the map φ : V/ker(φ) −→ im(φ) given by φ(v+ker(φ)) = φ(v).
To see that φ is well defined, assume that v+ ker(φ) = w+ ker(φ). This means
that v − w ∈ ker(φ) and hence φ(v) = φ(w) and so the map is well defined. It
should also be noted that it is straightforward that φ is onto.

To see that φ is one to one, note that φ(v+ kerφ) = 0 implies that φ(v) = 0
and hence that v ∈ ker(φ). So φ is one to one.

Corollary 2.2.11. Let φ : V −→W be a linear transformation. Then dim(V ) =
dim(ker(φ)) + dim(im(φ)).

Proof. Exercise.

Proposition 2.2.12. Let V and W be finite deimensional vector spaces over F
with bases {v1, v2, · · · , vn} and {w1, w2, · · · , wm} respectively. If φ : V −→ W
is a linear transformation then φ can be represented as an element of Mm,n(F).

Proof. The important thing here is that φ is determined completely by its action
on the basis elements of V . We have the following system of equations:

φ(v1) = α1,1w1 + α2,1w2 + · · ·+ αm,1wm

φ(v2) = α1,2w1 + α2,2w2 + · · ·+ αm,2wm

...
φ(vn) = α1,nw1 + α2,nw2 + · · ·+ αm,nwm

With this data in hand, it is a straightforward computations to see that the
m× n matrix {αi,j} 1 ≤ i ≤ n, 1 ≤ j ≤ m is the matrix that we seek.

We note here that the set of linear transformations from V to W forms a
vector space (over the same field, F). We will call this vector space HomF(V,W ).



Chapter 3

Inner Product Spaces

In this (brief) chapter we will look at the notion of an inner product space.
In this chapter we will assume that the fields in question are either the real
numbers, R or the complex numbers C.

3.1 The basics

Definition 3.1.1. Let V be a vector space over F (= R or C). We say that V
is an inner product space if there exists a map 〈·〉 : V × V −→ F such that for
all u, v, w ∈ V and α, β ∈ F we have

a) 〈u, v〉 = 〈v, u〉

b) 〈u, u〉 ≥ 0 and 〈u, u〉 = 0 if and only if u = 0

c) 〈αu+ βv,w〉 = α〈u,w〉+ β〈v, w〉.

Note that as a consequence, we have that for all λ ∈ F, 〈u, λv〉 = λ〈u, v〉.

Example 3.1.2. Consider the standard “dot product” for Rn.

Example 3.1.3. Let V = {f : [0, 1] −→ C|f is continuous.}. This is an inner
product space with 〈f, g〉 =

∫ 1

0
f(t)g(t)dt.

Note the the second property gives us a natural way to define length.

Definition 3.1.4. Let V be an inner product space and v ∈ V . We define the
length of v to be

‖v‖ =
√
〈v, v〉.

Note that ‖v‖ = 0 if and only if v = 0.

Lemma 3.1.5. Let V be an inner product space (over F) and let v ∈ V . Then
‖αv‖ = |α| ‖v‖ for all α ∈ F.

13
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Proof. We will prove this result in the generality of the complex numbers C.
Note that ‖αv‖ =

√
〈αv, αv〉. But note that 〈αv, αv〉 = α〈v, αv〉 = α〈αv, v〉 =

αα〈v, v〉 = αα〈v, v〉.
So we have that ‖αv‖ =

√
〈αv, αv〉 =

√
αα

√
〈v, v〉 = |α| ‖v‖.

We are now going to produce and prove the famous Schwartz Inequality.
But first we will need a lemma.

Lemma 3.1.6. Let a, b, c ∈ R with a > 0 and aλ2 + 2bλ+ c ≥ 0 for all λ ∈ R
then b2 ≤ ac.

Proof. Set λ := − b
a . By assumption we have that

b2

a
− 2b2

a
+ c ≥ 0.

This gives that c ≥ b2

a and hence ac ≥ b2.

Here is the Schwartz Inequality.

Theorem 3.1.7. Let V be an inner product space and u, v ∈ V , then |〈u, v〉| ≤
‖u‖ ‖v‖.

Proof. We will assume without loss of generality that u 6= 0 (the theorem is
easily seen to be true in this case). We will also begin by assuming that 〈u, v〉 ∈
R.

Note that for all λ ∈ R wehave that 〈λu+ v, λu+ v〉 ≥ 0. This implies that
λ2〈u, u〉 + 2λu, v〉 + 〈v, v〉 ≥ 0. Let a = 〈u, u〉, b = 〈u, v〉, c = 〈v, v〉 and apply
the lemma: Since b2 ≤ ac we have that

|〈u, v〉|2 ≤ ‖u‖2 ‖v‖2

and we are done.
Generally, if α = 〈u, v〉 /∈ R then α 6= 0 and so

〈 1
α
u, v〉 =

1
α
〈u, v〉 = 1 ∈ R.

Therefore we have that 1 = |〈 1αu, v〉| ≤ ‖
1
αu‖ ‖v‖ = ‖u‖ ‖v‖

α . Hence

α = |〈u, v〉| ≤ ‖u‖ ‖v‖

and we are done.

In the next couple of examples we will produce some applications of the
Schwartz Inequality.
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Example 3.1.8. Let V = Fn (with F either R or C). Let u = (α1, · · · , αn) and
v = (β1, · · · , βn). Using the standard inner product we have that

|α1β1+α2β2+· · ·+αnβn|2 ≤ (|α1|2+|α2|2+· · ·+|αn|2)(|β1|2+|β2|2+· · ·+|βn|2).

Example 3.1.9. For this example, we will let V = {f : [0, 1] −→ F|f is continuous}.
We have seen that 〈f, g〉 =

∫ 1

0
f(t)g(t)dt is an inner product. By the Scwartz

Inequality we have that

|
∫ 1

0

f(t)g(t)dt|2 ≤
∫ 1

0

|f(t)|2dt
∫ 1

0

|g(t)|2dt.

Here is another geometric consequence of living in an inner product space.

Definition 3.1.10. Let V be an inner product space and u, v ∈ V . We say
that u and v are orthogonal if 〈u, v〉 = 0. We say that the set {xi} of nonzero
vectors is orthogonal if 〈xi, xj〉 = 0 for all i 6= j. Additionally we say that an
orthogonal set is orthonormal if 〈xi, xi〉 = 1 for all i.

This should be familiar from the “old days” of dot products.

Definition 3.1.11. Let V be an inner product space and S a subset of V . We
define S⊥ = {x ∈ V |〈x, s〉 = 0 for all s ∈ S}.

We record the following result.

Theorem 3.1.12. Let V be an inner product space and S a subset of V . Then
S⊥ is a subspace of V .

Proof. Exercise.

Proposition 3.1.13. Let W ⊂ V be inner product spaces. Then the following
hold.

a) V ⊆ V ⊥⊥.

b) V = V ⊥⊥⊥.

Proof. Exercise.

We will now show that a finite dimensional inner product space has an
orthonormal basis. The techniques used will introduce the “Gram-Schmidt”
process.

Lemma 3.1.14. If {xi} is an orthonormal set, then {xi} is a linearly inde-
pendent set. Additionally, if w =

∑
αixi and the set {xi} is orthonormal then

αi = 〈w, xi〉.
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Proof. Suppose that r1x1 + r2x2 + · · · + rnxn = 0. This implies that 〈r1x1 +
r2x2 + · · · + rnxn, xi〉 = 0. Hence ri〈xi, xi〉 = 0 and so ri = 0. This gives the
“linear independence” statement.

Finally note that

〈w, xi〉 = 〈α1x1 + α2x2 + · · ·+ αnxn〉 = αi〈xi, xi〉 = αi

and we are done.

Lemma 3.1.15. If {v1, v2, · · · , vn} is an orthonormal set in V and w ∈ V then

u = w − 〈w, v1〉v1 − 〈w, v2〉v2 − · · · − 〈w, vn〉vn

is orthogonal to {v1, v2, · · · , vn}.

Proof. Exercise.

Theorem 3.1.16. Any finite dimensional inner product space has an orthonor-
mal set as a basis.

Proof. Let {v1, v2, · · · , vn} be a basis for V over F. From this basis, we will use
the Gram-Schmidt process to construct an orthomormal set of n elements and
this will establish the theorem.

We begin by normalizing v1 by declaring

w1 =
v1
‖v1‖

.

We now let u2 = v2 − 〈v2, w1〉w1 and note that u2 ⊥ w1. Normalize again
by setting

w2 =
u2

‖u2‖
.

Assume that we have constructed the orthonormal set {w1, w2, · · · , wm}.
We let

um+1 = vm+1 − 〈vm+1, w1〉w1 − 〈vm+1, w2〉 − · · · − 〈vm+1, wm〉wm

and normalize by letting

wm+1 =
um+1

‖um+1‖
.

This completes the proof.

Theorem 3.1.17. Let V be a finite dimensional inner product space and W ⊆
V a subspace. Then V = W ⊕W⊥.
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Proof. Note first that if z ∈W
⋂
W⊥ then (since z ∈W and z ∈W⊥) we have

that 〈z, z〉 = 0 and hence z = 0. So we have W
⋂
W⊥ = 0.

It only remains to show that W+W⊥ = V . To this end, let {w1, w2, · · · , wr}
be an orthonormal basis for W , and let v ∈ V and consider

v0 = v − 〈v, w1〉 − 〈v, w2〉w2 − · · · − 〈v, wr〉wr
and note that v0 ⊥ wi for all i. Hence v0 ⊥ W and hence v0 ∈ W⊥. This
concludes the proof.

Corollary 3.1.18. Let V be a finite dimensional inner product space and W ⊆
V a subspace. Then W⊥⊥ = W .

Proof. Let w ∈ W and note that for all x ∈ W⊥ we have that 〈w, x〉 =) and
hence w ∈W⊥⊥.

Also note that V = W ⊕ W⊥ = W⊥ ⊕ W⊥⊥ and hence textdim(V ) =
dim(V ⊥⊥). Since V ⊆ V ⊥⊥ and dim(V ⊥⊥) is finite, we have that V = V ⊥⊥.

With inner product spaces come some nice geometry and this is one reason
that they are so useful in analysis. We leave this chapter with a couple of
definitions for culture.

Definition 3.1.19. A Banach space is a vector space that is complete normed
vector space.

Definition 3.1.20. A Hilbert space is a complete inner product space.
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Chapter 4

Modules

4.1 Introduction and preliminaries

The theory of modules is central in the algebra and damn near everywhere
where algebra and its techniques are useful. Modules can be thought of as a
generalization of two familiar notions: the notion of a vector space and the
notion of an abelian group.

Even in the days of calculus, we saw that the study of vector and vector
spaces were essential in being able to implement the techniques of multivariable
calculus and differential equations effectively. The notion of a vector space is
the notion of a mathematical structure that is closed under addition (the sum
of two vectors is a vector). More correctly the set of vectors form an abelian
group under addition. What sets a vector space apart from an ordinary abelian
group is the fact that the set of vectors is equipped with “scalar multiplication”
where the scalars come from a field (in elementary courses, usually R or C).

The notion of an R−module is the generalization of “vector space” where
the scalars are taken from some ring R (instead of the more specific “field”.
Since a vector space and its generalization, the R−module is first and foremost
an abelian group, we also think of R−modules as the generalization of abelian
group (e.g. an abelian group equipped with ”scalar” multiplication from R).

Since the ring R need not be commutative, we will make the definition of
left R−module first. Throughout this course there will be many theorems for
left R−modules. The reader should realize that any such theorem has an analog
theorem for right R−modules.

Definition 4.1.1. A left R− module is an abelian group (M,+) equipped with
a function R ×M → M (we write (r,m) 7→ rm) such that for all r, s ∈ R and
a, b ∈M we have

a) r(a+b)=ra+rb

b) (r+s)a=ra+sa

19



20 CHAPTER 4. MODULES

c) r(sa)=(rs)a

We remark here that if 1 ∈ R and 1Ra = a for all a ∈M then M is called a
unitary R−module (this will be the default assumption). If R is a division ring
we call M a left vector space. As an exercise verify that 0R(a) = 0M = (r)0M
for all r ∈ R and a ∈M .

Example 4.1.2. Note that any abelian group is a Z module. The set of con-
tinuous functions from [0, 1] to R is an R−vector space. If R is any ring and I
is a left ideal of R, then I is a left R−module. (It is worth noting that Z2 is a
Z− module, but not an ideal of Z.) For another example, if R ⊆ S are rings,
then S is an R−module. For a more exotic example (which we will see again
later) let F be a field and V a vector space over F and T : V −→ V a linear
transformation. Then V is an F [x] module via

f(x)v = f(T )v.

Finally, we note that the analog of R is a module. More precisely, if R is a
ring then

⊕α∈ΛR

is an R−module with “scalar” multiplication given by

r{sα}α∈Λ = {rsα}α∈Λ.

Next we generalize the familiar notion of linear transformation (abelian
group homomorphism).

Definition 4.1.3. Let A,B be R−modules and f : A −→ B be a function. We
say that f is an (left) R−module homomorphism if

a) f(x+ y) = f(x) + f(y) for all x, y ∈ A.

b) f(rx) = rf(x) for all r ∈ R, x ∈ A.

If R is a division ring, then this is called a linear transformation.

Lemma 4.1.4. φ : M −→ N is an R−module homomorphism if and only if
φ(x+ ry) = φ(x) + rφ(y) for all x, y ∈M and for all r ∈ R.

Proof. Exercise.

Example 4.1.5. If A,B are any abelian groups then “Z− module homomor-
phism” is synonomous with “abelian group homomorphism”.

Example 4.1.6. The function fn : Z −→ Z given by fn(x) = nx is a Z−module
homomorphism, but not a ring homomorphism. The same is true of the func-
tion g : R[x] −→ R[x] given by g(r(x)) = xr(x) (i.e., this is an R−module
homomorphism which is not a ring homomorphism.
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As is the case with our other morphisms, we can talk about “mono” (injec-
tive), “epi” (surjective), and bijective R−module homomorphisms. The termi-
nology will be analogous to earlier terminology in groups and rings.

It is important at this juncture to introduce an important class of abelian
groups that are, in certain important cases, also R−modules.

Proposition 4.1.7. Let M and N be R−modules. The set HomR(M,N) =
{φ : M −→ N |φ is an R−module homomorphism.} is an abelian group (un-
der pointwise addition of functions). Additionally, if R is commutative, then
HomR(M,N) is an R−module.

Proof. We will leave the fact that HomR(M,N) is an abelian group as an ex-
ercise and verify the second statement. If R is commutative then we define the
scalar multiplication by

(rφ)(x) = r(φ(x))

for all r ∈ R. Then it is easy to see that HomR(M,N) is an R−module.

Definition 4.1.8. Let M be a left R−module and N a subgroup of M . We say
that N is a (left) submodule of M if rN ⊆ N for all r ∈ R.

Proposition 4.1.9. Let R be a ring and M a (unitary) left R module. Then
N ⊆M is a left R−submodule of M if and only if N is nonempty and x+ry ∈ N
for all x, y ∈ N and r ∈ R.

Proof. The necessity of the condition is straightforward. Assume that for all
x, y ∈ N and r ∈ R, x + ry ∈ N . Choose r = −1 to see that for all x, y ∈ N ,
x−y ∈ N . So N is an abelian group. Now choose x = 0 to see that rN ⊆ N .

Example 4.1.10. If M is a Z−module then any subgroup of M is a Z−submodule
of M .

Example 4.1.11. If f : A −→ B is an R−homomorphism, then ker(f) =
{x|f(x) = 0} is an R−submodule of A. Additionally, Im(f) = {f(x)|x ∈ A} is
an R−submodule of B. If C ⊆ B is an R−submodule of B then f−1(C) = {x ∈
A|f(x) ∈ C} is an R−submodule of A.

Example 4.1.12. If X is a subset of some R−module, A, then 〈X〉 (the
R−submodule spanned by X) is the intersection of all R−submodules of A con-
taining X. That is:

〈X〉 =
⋂

X⊆M⊆A

M.

If X =
⋃
i∈I Bi where each Bi is an R−submodule of A, then 〈X〉 is called the

sum of the Bi’s and if I = {1, 2, · · · , n} then 〈X〉 = B1 +B2 + · · ·+Bn.

We conclude this section with a special and important class of R−modules.
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Definition 4.1.13. Let R be commutative with 1. An R−algebra is a ring A
with identity equipped with a ring homomorphism f : R −→ A (f(1R) = 1A)
such that f(R) is contained in the center of A.

Proposition 4.1.14. If A is an R−algebra, then A is an R−module.

Proof. We define a(r) = r(a) = f(r)a. Note that 1(a) = f(1)a = 1Aa = a. For
the second property (r + s)a = (f(r + s))a = (f(r) + f(s))a = f(r)a+ f(s)a =
ra+ sa. Also (rs)a = (f(rs))a = (f(r)f(s))a = f(r)(f(s)a) = f(r)(sa) = r(sa)
and finally r(a+ b) = f(r)(a+ b) = f(r)a+ f(r)b = ra+ rb.

Example 4.1.15. A good canonical example of an R−algebra is the matrix ring
Mn(R). The relevant homomorphism is the map that takes the element r ∈ R
to the n× n diagonal matrix with all r’s on the diagonal.

Definition 4.1.16. If A and B are R−algebras then an R−algebra homomor-
phism φ : A −→ B is a ring homomorphism such that

a) φ(1A) = 1B and

b) φ(ra) = rφ(a) for all r ∈ R and a ∈ A.

4.2 Quotient Structures and the Homomorphism
Theorems

The idea of quotient structure is the analog of what we have seen in the theory
of groups and rings. We begin with the following theorem.

Theorem 4.2.1. Let B,C ⊆ A be modules.

a) The quotient group A/B is an R−module with R−action given by r(a +
B) = ra+B.

b) The map πB : A −→ A/B given by πB(a) = a + B is an R−module
homomorphism with kernal B.

c) There is an R−module homomorphism B/(B
⋂
C) ∼= (B + C)/C.

d) If C ⊆ B then B/C ⊆ A/C and (A/C)/(B/C) ∼= A/B.

Proof. For part a) it suffices to show that the action is well-defined. Suppose
that x+ B = y + B. Hence x− y ∈ B and so r(x− y) ∈ B. We conclude that
rx+B = ry+B and the action is well-defined. Showing that the multiplication
satisfies the axioms is easy since A is an R−module. Part b) is routine. Parts c)
and d) are consequences of the next theorem and we leave them for exercises.

An application of the next result is the “best way” to prove parts c) and
d) of the above theorem. There are myriad others. This is called the first
isomorphism theorem.
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Theorem 4.2.2. Let f : A −→ B be an R−module homomorphism, then f
induces and R−module isomorphism

f : A/ker(f)
∼= //Im(f).

Proof. Define the map

f : A/ker(f) −→ Im(f)

via f(a+ ker(f)) = f(a). Since f is an R−module homomorphism, it is easy to
see that f is as well. It is also clear that f is onto the image of f . It remains to
show that f is one to one, and so assume that f(a+ ker(f)) = 0 = f(a). This
means that a ∈ ker(f) and we are done.

For our last result we will produce a corollary that shows submodule corre-
sponce in quotient structures.

Corollary 4.2.3. If R is a ring and B ⊆ A are R−modules then there is a 1-1
correspondence between submodules of A/B and submodules of A containing B.

Proof. Let C be a submodule of A containing B. We know that from a previous
result that C/B ⊆ A/B. On the other hand, assume that M is a submodule of
A/B. Consider the canonical projection

πB : A −→ A/B.

Now consider the submodule of A: π−1
B (M). Verify that M ←→ π−1

B (M)
gives pur 1-1 cprrespondence.

4.3 The Direct Product and Direct Sum

As one may expect the universal constructions of direct product and direct sum
have an important analog in the theory of modules. We will see that the central
theorems from abelian group theory carry over in this realm, and in particular
we will see later that any R−module is the homomorphic image of a particular
direct sum of special R−modules.

Theorem 4.3.1. Let {Ai}i∈I be a family of R−modules and
∏
i∈I Ai and

⊕i∈IAi be respectively the direct product and direct sum of the family as abelian
groups.

a) The direct product
∏
i∈I Ai is an R−module with R−action given by r{ai}i∈I =

{rai}i∈I .

b) The direct sum ⊕i∈IAi is an R−submodule of
∏
i∈I Ai with the inherited

R−action.

c) For all k ∈ I the canonical projection πk :
∏
i∈I Ai −→ Ak (πk({ai}) = ak)

is an R−module epimorphism.



24 CHAPTER 4. MODULES

d) For each k ∈ I the canonical injection ιk : Ak −→ ⊕i∈IAi (ιk(a) = {xi}i∈I
where xi = 0 if i 6= k and xk = a) is an R−module monomorphism.

Proof. The proof of this is extremely similar to the proof of the analog theorem
from group theory.

As was the case earlier, the direct product and direct sum are (unique)
solutions to certain universal mapping problems.

Theorem 4.3.2. If R is a ring, {Ai|i ∈ I} is a family of R−modules, C is an
R−module and {φi : C −→ Ai|i ∈ I} is a family of R−module homomorphisms
then there is a unique R−module homomorphism φ : C −→

∏
i∈I Ai such that

πiφ = φi for all i ∈ I. Additionally
∏
i∈I Ai is uniquely determined (up to

isomorphism) by this property.

C
φi //

φ ##F
F

F
F

F Ai

∏
i∈I Ai

πi

OO

Proof. φ(c) = {φi(c)}i∈I is the map (verify that this is indeed an R−module
homomorphism). Assume that ξ is another such R−module homomorphism
satisfying the universal mapping problem.

We write ξ(c) = {ci} and note that πi(ξ(c)) = ci = φi(c). Hence each
ci = φi(c) and xi ≡ φ.

We will next demonstrate that the direct product is the unique (up to iso-
morphism) solution to this universal mapping problem.

Assume that D is another solution to this universal mapping problem (i.e.
D is an R−module that has the same properties as the direct product). We
have the diagram:

C //

  @
@

@
@ Ai

D

OO

in particular, replacing C with D we obtain

D //

φ   A
A

A
A Ai

D

OO

and we note that φ = 1D is an obvious solution to this mapping problem and
so φ must be precisely 1D by uniqueness.

We now consider the augmented diagram
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D
f //___

!!C
CC

CC
CC

C
∏
Ai

g //___

πi

��

D

}}{{
{{

{{
{{

Ai

Considering the “big triangle” we see that gf = 1D must be the solution
by uniqueness. Augmenting the diagram from a different perspective (swapping
the roles of D and

∏
Ai since they are both solutions to the universal mapping

problem) we get the diagram

∏
Ai

g //___

!!D
DD

DD
DD

D D
f //___

��

∏
Ai

}}zz
zz

zz
zz

Ai

and in a similar fashion to the above, we obtain that fg = 1∏
Ai

.
In conclusion, we obtain that gf = 1D and fg = 1∏

Ai
and hence D ∼=∏

Ai.

There is a dual result with respect the direct sum (more precisely, the direct
sum rears its head as the solution to the dual mapping problem).

Theorem 4.3.3. If R is a ring, {Ai|i ∈ I} is a family of R−modules, D is an
R−module and {ψi : Ai −→ D|i ∈ I} is a family of R−module homomorphisms,
then there is a unique R−module homomorphism ψ : ⊕i∈IAi −→ D such that
ψιi = ψi for all i ∈ I. What is more, the direct sum is uniquely determined up
to isomorphism by this property.

D Ai
ψioo

ιi

��
⊕i∈IAi

ψ

ccF
F

F
F

F

Proof. The proof here is “dual” (e.g. essentially the same with the arrows
reversed) to the previous proof. The unique map in question is ψ({ai}) =∑
i∈I ψi(ai). Note that since {ai} ∈ ⊕i∈IAi all but finitely many of the ai’s are

0 and hence the sum
∑
i∈I ψi(ai) is finite and “makes sense”.

We conclude this brief look at these constructions with the following result,
which is a nice characterization of when an R− module is a direct sum of some
of its submodules.

Proposition 4.3.4. Let R be a ring and {Ai}i∈I a family of R− submodules
of A such that

a) A is the sum of the family {Ai}.
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b) For all k ∈ I, Ak
⋂
Ak = 0 where Ak is the sum of {Ai}i 6=k.

Then A ∼= ⊕i∈IAi.

Proof. Define φ : ⊕i∈IAi −→ A by φ({ai}) =
∑
i∈I ai. Since {ai} is an element

of ⊕Ai, this sum is finite. The verification that φ is an R−module homomor-
phism is routine. We will show that φ is one to one and onto.

To see that φ is one to one, suppose that {ai} ∈ ker(φ) and that at least one
of the ai’s (say ak) is nonzero. We therefore have that

−ak =
∑
i 6=k

ai

and hence ak is an element of both Ak and the submodule of A generated
by the family {Ai}i 6=k. By assumtion, this means that ak = 0 which is our
contradiction, and hence ker(φ) = 0.

For the onto-ness (what a word) let a ∈ A. Since the sum of the Ai’s is
precisely A, we know that there is a (finite) sum ai1 + · · ·+ aik that is equal to
a. Let {xj} be the sequence defined by xi1 = ai1 , · · · , xik = aik and xj = 0 for
all other indices. Note that φ({xj}) = a.

4.4 Exact Sequences

Exact sequences are the genesis of some very very important tools in commu-
tative algebra, homological algebra, algebraic K-theory, and algebraic topology.
Exact sequences of R−modules can contain such (seemingly) diverse informa-
tion as factorization information of a commutative ring and the basic genus
structure of a topological space.

Definition 4.4.1. A sequence of R−module homomorphisms

· · · //An−1
fn //An

fn+1 //An+1
// · · ·

is called exact at An if Im(fn) = ker(fn+1). We say that the sequence is exact
if it is exact at An for all n.

Definition 4.4.2. An exact sequence of the form

0 //A
f //B

g //C //0

is called a short exact sequence (SES) if f is one to one, g is onto and ker(g) =
Im(f).

As it turns out, short exact sequences are the building blocks of general
exact sequences in the following sense. If

· · · //An−1
f //An

g //An+1
// · · ·
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then this sequence can be obtained by “splicing together” certain short exact
sequences (as an exercise you should try to figure out how this is done).

Example 4.4.3. a) The sequence 0 //A
f //B is exact if and only if f

is 1-1, the sequence B
g //C //0 is exact if and only if g is onto, the

sequence 0 //A
h //B //0 is exact if and only if h is onto.

b) If n 6= 0, the sequence 0 // Z
f // Z

πn // Zn // 0 with f(k) =
nk and πn(a) = a (the reduction of a modulo n) is a short exact sequence.

c) Any sequence of the form 0 //A
f //A⊕ C

g //C //0 with f(a) =
(a, 0) and g(a, c) = c is short exact. (It should be noted that there are usu-
ally many ways to have the maps make the sequence be exact, for example
if A = C, we could also have f(a) = (a, a) and g(x, y) = x− y). This ex-
ample is a special kind of short exact sequence called a split exact sequence.
Since the middle term is the sum of the second and fourth, there are maps
h : C −→ A ⊕ C such that gh = 1C and there is a k : A ⊕ C −→ A such
that kf = 1A. In other words we could “run” the sequence in reverse. An
example of a short exact sequence that does not split is given above in b)
if n 6= 1.

We now introduce a couple of results that are fundamental if you wish to
apply the concept of exactness. The proofs of most of these will be omitted as
exercises, but all of them require an interesting (and fun) technique known as a
“diagram chase.” This technique will be demonstrated in the proof of the short
five lemma (but all of the diagram chase proofs are similar.

This first result is called the five lemma.

Proposition 4.4.4. Consider the following commutative diagram of R−module
homomorphisms with exact rows

A1
f1 //

g1

��

A2
f2 //

g2

��

A3
f3 //

g3

��

A4
f4 //

g4

��

A5

g5

��
B1

h1 // B2
h2 // B3

h3 // B4
h4 // B5

a) If g2 and g4 are onto and g5 is one to one then g3 is onto.

b) If g2 and g4 are one to one and g1 is onto then g3 is one to one.

Now we produce a corollary which is often referred to as the short five lemma.

Corollary 4.4.5. Consider the following commutative diagram of R−module
homomorphisms with exact rows
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0 // A1
f1 //

g1

��

A2
f2 //

g2

��

A3
//

g3

��

0

0 // B1
h1 // B2

h2 // B3
// 0

a) If g1 and g3 are onto then g2 is onto.

b) If g1 and g3 are one to one then g2 is one to one.

c) If g1 and g3 are isomorphisms that g2 is an isomorphism.

Before beginning the proof, we note that this follows directly from the five
lemma, but we will prove this result from scratch to demonstrate the technique
of diagram chasing.

Proof. Of course c) follows directly from a) and b) so we will only show a) and
b).

For a) let b2 ∈ B2. The only direction that we can go is to the left so let
b3 = h2(b2) ∈ B3. Since g3 is onto, there is a a3 ∈ A3 such that g3(a3) = b3.
Additionally, f2 is onto, so we can find a2 ∈ A2 such that f2(a2) = a3. Now
we consider x = g2(a2) ∈ B2 (if x = b2 we are done, but there is no guarantee
of this). Note that by commutativity of the diagram, we have that h2(x) =
b3 = h2(b2) and hence h2(b2 − x) = 0, that is, b2 − x ∈ ker(h2) = im(h1).
Consequently, there is a b1 ∈ B1 such that h1(b1) = b2 − x. Now since g1 is
onto there is an a1 ∈ A1 such that g1(a1) = b1, and by the commutativity of
the diagram g2(f1(a1)) = b2 − x. Notice that y = f1(a1) ∈ A2 and g2(y+ a2) =
g2(y) + g2(a2) = b2 − x+ x = b2 and hence g2 is onto.

For b) assume that a2 ∈ ker(g2), and hence g2(a2) = 0 and so h2(g2(a2)) =
g3(f2(a2)) = 0 by commutativity of the diagram. Since g3 is one to one, we
have that f2(a2) = 0, so a2 ∈ ker(f2) = im(f1). So we can find (a unique,
since f1 is one to one) element a1 such that f(a1) = a2. Note that g2(f1(a1)) =
0 = h1(g1(a1)) Since both h1 and g1 are one to one, a1 must be 0, and hence
a2 = f1(a1) = f1(0) = 0 and g2 is one to one. This completes the proof.

The next result is known as the 3× 3 lemma.

Theorem 4.4.6. Consider the following commutative diagram of R−module
homomorphisms
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0

��

0

��

0

��
0 // A1

//

��

A2
//

��

A3
//

��

0

0 // B1
//

��

B2
//

��

B3
//

��

0

0 // C1
//

��

C2
//

��

C3
//

��

0

0 0 0

a) If the columns and the bottom two rows are exact, then the top row is
exact.

b) If the columns and the top two rows are exact, then the bottom row is
exact.

Our final “homological theorem” is the very famous snake lemma and it is one
of the major tools of homological algebra and its applications. The important
part of the result is the existence of the well-defined homomorphism ∂ called the
boundary map which allows passage from nth homology to (n− 1)th homology.

Theorem 4.4.7. Consider the following commutative diagram with exact rows

A1
f1 //

g1

��

A2
f2 //

g2

��

A3
//

g3

��

0

0 // B1
h1 // B2

h2 // B3

then there is an exact sequence

ker(g1)
α1 //ker(g2)

α2 //ker(g3)
∂ //coker(g1)

β1 //coker(g2)
β2 //coker(g3) .

Additionally, if f1 is one to one, then so is α1 and if h2 is onto, then so is β2.

We will close out this section with a result that characterizes when a short
exact sequence is a split exact sequence.

Theorem 4.4.8. Let R be a ring and

0 //A
f //B

g //C //0

a short exact sequence of R−module homomorphisms. Then the following con-
ditions are equivalent.
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a) There is an R−module homomorphism h : C −→ B such that gh = 1C .

b) There is an R−module homomorphism k : B −→ A such that kf = 1A.

c) B ∼= A⊕ C.

We remark that this will be our formal definition of a split exact sequence;
namely a split exact sequence is a short exact sequence satisfying one, and hence
all, of the above conditions.

Proof. For a)=⇒ b) we need to find an intelligent way to associate an element
of A with a given element b ∈ B. We do this by “cleaning” b. Given a b ∈ B,
we are not guaranteed an element a ∈ A such that f(a) = b, so we consider
hg(b) ∈ B. Note that g(b − hg(b)) = g(b) − ghg(b) = g(b) − g(b) = 0. We
conclude that b − hg(b) ∈ ker(g) = im(f). With this insight, we define k(b) =
f−1(b− hg(b)). Since f is one to one, this assignment is well-defined. Suppose
that f−1(b1 − hg(b1)) = a1 and that f−1(b2 − hg(b2)) = a2 and note that
f(a1 + a2) = b1 + b2 − hg(b1 + b2). Hence we have that k(b1 + b2) = f−1(b1 +
b2 − hg(b1 + b2)) = a1 + a2 = k(b1) + k(b2). The proof that k(rb) = rk(b) is
similar. Note that kf(a1) = f−1(f(a1)−hgf(a1)) = f−1(f(a1)) = a1 and so a)
implies b).

For b)=⇒ c) consider the map φ : B −→ A⊕ C given by φ(b) = (k(b), g(b))
(verify that this is an R−module homomorphism). First let b ∈ ker(φ). So we
have k(b) = 0 and g(b) = 0. This means that b ∈ ker(g) = im(f) and so there
is an a ∈ A such that b = f(a). Therefore 0 = k(b) = k(f(a)) = a. Since a = 0,
we have that b = 0 and φ is one to one.

Now let (a, c) ∈ A ⊕ C be arbitrary. Since g is onto we can select b ∈ B
such that g(b) = c. Unifortunately, it may not be the case that k(b) = a. We
can, however, vary b by any element of ker(g) = im(f). Some computations
show that the appropriate element to choose is b − fk(b) + f(a). Indeed note
that φ(b − fk(b) + f(a)) = (k(b − fk(b) + f(a)), g(b − fk(b) + f(a)) = (k(b) −
kfk(b) + kf(a), g(b)) = (a, c) and φ is an isomorphism.

For now we leave c)=⇒ a) as an exercise.

4.5 Free Modules

Free modules are, in a certain sense, the easiest modules to picture (they are
most like the more familiar vector spaces). Free modules are also the “mothers
of all modules” in the sense that every R−module is the homomorphic image of
a free R−module. Free modules are precisely that modules that have a notion
of a basis (a very nice generating set) and we begin with the definition of a
basis.

Definition 4.5.1. A subset X of an R−module M is said to be linearly inde-
pendent if given any x1, x2, · · · , xn ∈ X, the relation
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n∑
i=1

rixi = 0

implies that ri = 0 for all 1 ≤ i ≤ n.

We remark (surprise, surprise) that a set that is not linearly independent is
called linearly dependent. Also if M is generated by X, we say that X spans
M . Finally we tie these together by saying that a linearly independent subset of
M that spans M (if such a subset of M exists) is called a basis of M . Modules
which actually have a basis are free modules that we have been alluding to.

Theorem 4.5.2. Let R be a ring with identity and F a unitary R−module.
The following conditions are equivalent.

a) F has a nonempty basis.

b) F is the (internal) direct sum of a family of cyclic R−modules each of
which is isomorphic to R as an R−module.

c) F is R−module isomorphic to a direct sum of some number of copies of
the R−module R.

d) There exists a nonempty set X and a function ι : X ↪→ F such that
given any unitary R−module M and function f : X −→ M , there exists
a unique R−module homomorphism f : F −→M such that fι = f .

F
f //___ M

X

ι

OO

f

>>}}}}}}}}

Proof. We first consider a) implies b). Let X be a basis of F . Note that if
x ∈ X then R ∼= Rx as a left R−module (since the singleton set {x} is linearly
independent). Also note that F =

∑
x∈X Rx (but the sum may not be direct

and that is what we need to show). Suppose that m ∈ Rx
⋂

(
∑
y∈X\xRy) then

we can write

rx =
∑

riyi

and hence the set X is linearly dependent.
The implication b) implies c) is easy and is left to the reader.

For c) implies d) let F ⊕ Ri with each Ri isomorphic is R via Ri
φi //R .

So (for all i we have the commutative diagram

Ri
φi //

ιi

��

R

F ∼= ⊕Ri

::vvvvvvvvvv
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Define X = {xi}i∈I where xi is such that φi(xi) = 1R. So our function iota :
X −→ F assigns to each cyclic generator its image in F . That is ι(xi) = ιi(xi)
and say that f : X −→M makes the assignment f(xi) = mi ∈M . The desired
homomorphism is the homomorphism that obeys the rule:

f(
∑

riιi(xi)) =
∑

rimi

and uniqueness is an easy exercise.
We leave the last implication to the reader.

Here is an important corollary that reflects the universal nature and impor-
tance of free modules.

Corollary 4.5.3. Every unitary module M over a ring with identity is the
homomorphic image of a free R−module. In fact, if M is finitely generated,
then the free module may be chosen to be finitely generated.

Proof. Let X be a generating set of M and consider the diagram

F
f //____ M

X

ι

OO

f=inclusion

<<xxxxxxxxx
fι = f

In the diagram above the module F is free on the set X (note that if X
is finite then F is finitely generated). We have an induced homomorphism
f : F −→ M and X ⊂ im(f) therefore since X is a generating set, im(f) = M
and this gets the first statement. Also as was pointed out earlier, if M is finfitely
generated (that is, X my be chosed to be finite) then F is finitely generated.

Here we do a little specialization to the case of vector spaces.

Lemma 4.5.4. A maximal linearly independent subset of a vector spcae V over
a division ring D is a basis of V .

Proof. Let X be a maximal linearly independent subset (how do we know such
an animal exists...we don’t yet, but will later see that in important cases these
do exist). Let W be a subspace of V spanned by X. If W = V then we are
done so we selesct a ∈ V \W . Of course {a}

⋃
X must be linearly dependent,

so we have an equation of the form

ra+
∑

rixi = 0

with xi ∈ X, r, ri ∈ R and r 6= 0 (if the last condition does not hold then the
linear independence of the set X would force all of the ri’s to be 0 as well).

Manipulating this equation gives us that

a =
∑
−r−1rixi ∈ V
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which is a contradiction. Hence there is no a ∈ V \W and so V = W and we
are done.

Here is a big module structure theorem for modules over a division ring
(vector spaces). This is why “linear algebra” is much easier that modules in
general...over a field modules are always free.

Theorem 4.5.5. Every vector space V over a division ring D has a basis and
is therefore free. More generally, every linearly independent subset of V is con-
tained in a basis of V .

Before we prove this theorem, we also remark that if every unitary module
over a ring with identity, D, is free, then D is a division ring.

We also point out that this business about “every linearly independent subset
of V is contained in a basis for V ” does not extend to free modules over a general
ring. Indeed if you consider the simple example of Z as a Z module, consider the
maximal linearly independent subset {2}. This set is not contained in a basis
for Z, because any two element subset of the integers is linearly independent.
The problem here is that {2} does not span Z and we immediately see the
contrasting situation of a ring not being a division ring (i.e., we can see that we
somehow need 1

2 to be an integer for the set {2} to have a chance of spanning
Z).

Proof. We will prove the more general statement and capture it all at once.
Suppose that X is a linearly independent subset of V (note that such a

set has to exist in a nonzero vector space). Consider the collection of linearly
independent subsets of V that contain X (and we will call it Γ). This is a
partially ordered set under inclusion. Let {Ci} be a chain in Γ. Note that
C =

⋃
i Ci is linearly independent (verify!) and hence is an upper bound for

the chain in Γ. Thus Zorn’s Lemma gives the existence existence of a maximal
element and this establishes the theorem.

Remark 4.5.6. If R is a ring that has a division ring as a homomorphic image
(e.g. any commutative ring with identity), then R has the invariant dimension
property. That is for any free module F over R, any two bases have the same
cardinality. If R has the invariant dimension property, then two free modules E
and F are isomorphic if and only if they have the same rank. For an example
of a ring which does not have the invariant dimension property consider K, a
field, and F = ⊕∞n=1K. If R = HomK(F, F ). For any n, R ∼= ⊕nm=1R (check
this).

In closing we look at a couple of familiar properties of vector spaces. The
proofs are left as exercises.

Theorem 4.5.7. Let W be a subspace of V .

a) dimD(W ) ≤ dimD(V ).

b) If dimD(W ) = dimD(V ) and dimD(V ) is finite, then W = V .
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c) dimD(V ) = dimD(W ) + dimD(V/W ).

d) If f : V −→W is a linear transformation then dimD(V ) = dimD(ker(f))+
dimD(im(f)).

e) If V and W are finite dimensional then dimD(V )+dimD(W ) = dimD(V
⋂
W )+

dimD(V +W ).

Example 4.5.8. Build a 2× 2 matrix and examine the above theorem.

4.6 Projective and Injective Modules

We will define and prove some of the analogous results for projectives and injec-
tives. Please note the “dual” (arrow reversing) nature of some of the definitions
and results. For many projective (respectively injective) results there is a very
similar injective (resp. projective) result.

Definition 4.6.1. Consider the following diagram of R−modules with the bot-
tom row exact.

P
h

��~
~

~
~

f

��
A g

// B // 0

We say that P is projective if there is an R−module homomorphism h : P −→ A
such that gh = f .

Definition 4.6.2. Consider the following diagram of R−modules with the top
row exact.

0 // A
g //

f

��

B

h��~
~

~
~

I

We say that I is injective if there is an R−module homomorphism h : B −→ I
such that hg = f .

We will now investigate some of the consequences of these definitions in
tandem.

Theorem 4.6.3. Every (unitary) free module over R is projective.

Proof. Consider the following diagram

F

f

��
A g

// B // 0
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Let F be free on the set X (and we will denote the canonical injection from
X into F by ι : X ↪→ F ). Since g is onto, there is ai ∈ A such that g(ai) = fι(xi)
for all i. Therefore we have a function f∗ : X −→ A such that f∗(xi) = ai.
Since F is free, this induces an R−module homomorphism h : F −→ A such
that hι(xi) = ai. Therefore ghι(xi) = g(ai) = fι(xi) and hence gh = f . Hence
F is projective.

Definition 4.6.4. Let D be an abelian group. We say that D is divisible if
given d ∈ D and 0 6= n ∈ Z, there exists a d′ ∈ D such that nd′ = d.

Basically, in a divisible group we can divide by any nonzero integer.

Lemma 4.6.5. D is divisible if and only if D is an injective Z−module.

Proof. (⇐=) Let D be injective and d ∈ D and n be a nonzero integer. Consider
the diagram

0 // 〈n〉 ⊆ //

f

��

Z

h~~~
~

~
~

D

Let d′ = h(1) and therefore nd′ = nh(1) = h(n) = f(n) = d and hence D is
divisible.

The other direction is an exercise.

Note that in the parallel results coming up many of the proofs are dual (in
some places the proofs are more different).

Theorem 4.6.6. The following conditions on the R−module P are equivalent.

a) P is projective.

b) Every short exact sequence of the form 0 //A //B //P //0 is
split exact.

c) There is an R−module K and a free module F such that F ∼= P ⊕K.

Theorem 4.6.7. The following conditions on the R−module I are equivalent.

a) I is injective.

b) Every short exact sequence of the form 0 //I //B //C //0 is
split exact.

c) I is a direct summand of any module of which it is a submodule.

Proof. We will provide a proof of the projective result. Try to do the injective
one yourself.

For a) implies b) consider the short exact sequence 0 //A
f //B

g //P //0.
We now consider the diagram
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P
h

��~
~

~
~

1P

��
B g

// P // 0

Since P is projective, there exists h : P −→ B such that gh = 1P , and hence
the short exact sequence splits.

For b) implies c), we assume b) and assume that P is our given projective
module. We know that any R module is the homomorphic image of a free

module F (i.e. we have the onto map F
φ //P //0. Hence we have the

short exact sequence

0 //ker(φ) //F
φ //P //0.

Since the sequence must split, we have that F ∼= P ⊕ ker(φ) and we have
established b) implies c).

For the implication c) implies a) consider the following diagram.

P

g

��
B

f
// P // 0

Keeping in mind that there is a free module F with F ∼= K ⊕P , we expand the
diagram

F ∼= K ⊕ P

π

��
h∗

����
��

��
��

��
��

��
��

P

ι

OO

g

��
A

f
// B // 0

where π(k, p) = p and ι(p) = (0, p) (note πι = 1P ). Since any free module is
projective there is an h∗ : F −→ A such that fh∗ = gπ. Now consider the map
P −→ A given by h∗ι. Note that f(h∗ι) = gπι = g and hence P is projective.

We note here the the proof of the dual injective theorem requires the result
that will be recorded later that says that every R−module can be embedded in
an injective R−module.

Corollary 4.6.8. Let {Pi}i∈I be a family of R−modules. ⊕i∈IPi is projective
if and only if Pi is projective for all i ∈ I.
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Proof. If each Pi is projective, then for all i there is a Qi such that Qi ⊕ Pi is
free. Hence we have the free module

⊕i∈I(Pi ⊕Qi) ∼= (⊕i∈IPi)⊕ (⊕i∈IQi)

and hence the module ⊕i∈IPi (being the summand of a free module) is projec-
tive.

On the other hand, assume that ⊕i∈IPi ∼= Pi⊕ (⊕j 6=iPj is projective. So we
can find an R−module K so that K⊕i∈IPi is free and hence Pi⊕(K⊕(⊕j 6=iPj))
is free and hence Pi is projective.

Corollary 4.6.9. Let {Ij}j∈Γ be a family of R−modules.
∏
j∈Γ Ij is injective

if and only if Ij is injective for all i ∈ Γ.

Proof. Very similar to the previous. Exercise.

Corollary 4.6.10. Every R−module is the homomorphic image of a projective
R−module.

Proof. Any free is projective.

Theorem 4.6.11. Every R−module M can be embedded in an injective R−module.

Proof. Exercise. As a hint, first show that M (considered as an abelian group)
can be embedded in a divisible abelian groupD. Now embedM (as anR−module)
in the R−module HomZ(R,D).

4.7 Hom

The notation HomR(A,B) will denote the set of R−module homomorphisms
f : A −→ B. The is an abelian group under the standard addition (and note
that the addition respects the standard function composition of R−module ho-
momorphisms.

We consider R−module homomorphisms γ : C −→ A and ξ : B −→ D. The
map η : HomR(A,B) −→ HomR(C,D) given by

f 7→ ξfγ

is an R−module homomorphism. We call this the homomorphism induced by
ξ and γ. Note that if B = D and ξ = 1D, then the map is f 7→ fγ (denoted
γ). If A = C and γ = 1A then the map is f 7→ ξf (and is denoted ξ). We will
motly be considering these special cases.

Theorem 4.7.1. Let R be a ring. The sequence 0 //A
f //B

g //C is
exact if and only if for all R−modules D the sequence

0 //HomR(D,A)
f //HomR(D,B)

g //HomR(D,C)



38 CHAPTER 4. MODULES

is exact.

Additionally A
f //B

g //C //0 is exact if and only if for every R−module
D the sequence

0 //HomR(C,D)
g //HomR(B,D)

f //HomR(A,D)

is exact.

We say that the “Hom functor” is left exact.
We will prove the first statement and leave the proof of the second as an

exercise.

Proof. It would probably be helpful to see a diagram of how the induced maps on

Hom actually “work”. Suppose we have the exact sequence A
f //B

g //C //0.
This sequence induces

0 // HomR(C,D)
g // HomR(B,D)

f // HomR(A,D)

γ � // γg

η � // ηf

First we will show that g is one to one. Assume that γg is the 0−map. So
γg(b) = 0 for all b ∈ B. But since g is onto, this means that for all c ∈ C there
exists a bc ∈ B such that g(bc) = c. Hecn γ(c) = 0 for all c ∈ C (that is γ is the
0−map) and hence g is injective.

We now note that fg(γ) = f(γg) = γfg = 0 as fg is the 0−map. Hence we
have that im(g) ⊆ ker(f). We now need to show the other containment.

Let η ∈ ker(f), that is, ηf = 0. Consider the following diagram

A
f // B

g
  @

@@
@@

@@
η // D

C

γ

OO�
�
�

basically we have to show the existence of a γ such that γg = η. As g is onto,
we have that C ∼= B/ker(g) = B/im(f). So we (need to) have

B

g ''OOOOOOOOOOOOO
η // D

B/(im(f) = ker(g))

γ

OO�
�
�
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We define γ by γ(b + ker(g)) = η(b). Note if b ∈ ker(g) = im(f) then
η(b) = ηf(a) = 0 so this map is well-defined. It is also easy to verify that this is
a homomorphism. Finally note that the diagram commutes since if b ∈ B then
γg(b) = γ(g(b) + ker(g)) = η(b).

This shows that the exactness of the original sequence gives the exactness
of the “Hom” sequence. The other direction is an exercise.

Example 4.7.2. Hom the sequences of Z−modules 0 //Z 2 //Z //Z2
//0

and 0 //Z incl //Q //Q/Z //0 .

We will see in the next thereom that split exact sequences are decidedly
more well-behaved.

Theorem 4.7.3. The following conditions on R−modules are equivalent.

a) 0 //A
f //B

g //C //0 is split exact.

b) 0 //HomR(D,A)
f //HomR(D,B)

g //HomR(D,C) //0 is split ex-
act for every D.

c) 0 //HomR(C,D)
g //HomR(B,D)

f //HomR(A,D) //0 is split ex-
act for every D.

Proof. We will show the equivalence of a) and c), the other equivalence being
left as an exercise.

For the implication a) implies b) if suffices to show that there is an h such
that gh is the identity on HomR(D,C). Since the original sequence is split exact
there exists h : C −→ B such that gh = 1C . It is easy to see that the induced
homomorphism gh = gh = 1HomR(D,C) hence g is onto and the Hom sequence
is split exact.

On the other hand, assume that the Hom sequence is split exact for all D.
Let D = C and φ : C −→ B be such that g(φ) = 1C = gφ. Note that this

implies that 0 //A //B
g //C //0 is split exact. The equivalence of

a) and c) is similar.

Theorem 4.7.4. The following conditions on the R−module P are equivalent.

a) P is projective.

b) If φ : B −→ C is onto then φ : HomR(P,B) −→ HomR(P,C) is onto.

c) If 0 //A
ψ //B

φ //C //0 is a short exact sequence then

0 //HomR(P,A)
ψ //HomR(P,B)

φ //HomR(P,C) //0 is a short
exact sequence.
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Theorem 4.7.5. The following conditions on the R−module I are equivalent.

a) I is injective.

b) If ξ : A −→ B is one to one then ξ : HomR(B, I) −→ HomR(A, I) is onto.

c) If 0 //A
ξ //B

η //C //0 is a short exact sequence then

0 //HomR(C, I)
η //HomR(B, I)

ξ //HomR(A, I) //0 is a short
exact sequence.

We will prove the first “projective” result.

Proof. For a) implies b) we assume that P is projective and φ : B −→ C is onto
and α ∈ HomR(P,C). Consider the diagram

P
h

��~
~

~
~

α

��
B

φ
// C // 0

.

That is there is an h such that φh = α and hence φ is onto.
For the implication b) implies a), given α ∈ HomR(P,C) there exists h ∈

HomR(P,B) such that φh = α which is precisely what it means for P to be
projective.

The implication b) implies c) is easy and so we will establish the con-
verse. Suppose φ : B −→ C is onto and so we have the short exact sequence
0 //ker(φ) //B //C //0. This gives rise to the short exact sequence

0 // HomR(P, ker(φ)) // HomR(P,B) // HomR(P,C) // 0 . Hence

φ is onto.

We conclude this section with a final functorial fact about Hom (the proof
will be left as an exercise).

Theorem 4.7.6. Let A,B, {Ai|i ∈ I}, {Bj |j ∈ J} be R−modules. Then we
have the following isomorphisms.

a) HomR(⊕i∈IAi, B) ∼=
∏
i∈I HomR(Ai, B).

b) HomR(A,
∏
j∈J Bj) ∼=

∏
j∈J HomR(A,Bj).
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4.8 The Tensor Product

Although it can be done in much more generality, here we will (at least begin
with) the tensor product of modules over a commutative ring with identity.
The tensor product can be done in the more general case (but care must be
taken using left, right, and bi-modules when necessary). The tensor product
is a universal construction (it is the solution to a certain univeral mapping
problem involving bilinear maps) and it crops up all over commutative algebra
and mathematics in general (Einstein used them for example).

Definition 4.8.1. Let A,B,C be R− modules. A bilinear map F : A×B −→ C
is a function such that for all a, ai ∈ A, b, bi ∈ B and r ∈ R we have

a) f(a1 + a2, b) = f(a1, b) + f(a2, b).

b) f(a, b1 + b2) = f(a, b1) + f(a, b2).

c) f(ra, b) = f(a, rb) = rf(a, b).

We now define the tensor product of two modules.

Definition 4.8.2. Let A and B be modules over R and let F be the free abelian
group on the set A × B. Let K be the subgroup of F generated by all elements
of the form

a) (a1 + a2, b)− (a1, b)− (a2, b)

b) (a, b1 + b2)− (a, b1)− (a, b2)

c) (ra, b)− (a, rb)

where a, a1, a2 ∈ A, b, b1, b2 ∈ B and r ∈ R.
The quotient F/K is called the tensor product (over R) of A and B and is

denoted A⊗R B.

We denote the coset (a, b) +K by a⊗ b (and this is called a tensor). Prac-
tically, think of A ⊗R B as generated by tensors of the form a ⊗ b subject the
the relations a), b), and c) above.

We also point out that the map ι : A×B −→ A⊗RB given by (a, b) 7→ a⊗b
is a bilinear map (verify this).

Here is a theorem which shows where tensor product “came from.” This
theorem shows that the tensor product is the unique solution to a mapping
problem concerning bilinear maps.

Theorem 4.8.3. If A,B,C are R−modules and g : A× B −→ C is a bilinear
map then there exists a unique R−module homomorphism g : A ⊗R B −→ C
such that gι = g (where ι(a, b) = a⊗ b is the canonical bilinear map). A⊗R B
is uniquely determined up to isomorphism by this property.
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A⊗R B
g //___ C

A×B

ι

OO

g

;;wwwwwwwww

Proof. Let F be free abelian on A × B and K the subgroup described above.
The map g : A×B −→ C is bilinear and induces a homomorphism g∗ : F −→ C.
The fact that g is bilinear shows that g∗ takes every element of K to 0 (that is,
K ⊆ ker(g∗)). So g∗ induces g : F/K −→ C, that is g : A ⊗R B −→ C. Note
that gι(a, b) = g(a⊗ b) = g(a, b) and hence gι = g.

Now if h : A⊗R B −→ C is another such homomorphism then

h(a⊗ b) = g(a, b) = g(a⊗ b)

and hence h and g agree on tensors. Therefore h = g.

Here is a useful corollary which we will be building upon.

Corollary 4.8.4. Let A,A′, B,B′ be R−modules and f : A −→ A′ and g :
B −→ B′ be R−module homomorphisms, then there exists a unique homomor-
phism

A⊗R B −→ A′ ⊗B′

such that a⊗ b 7→ f(a)⊗ g(b) for all a ∈ A and b ∈ B.

Proof. One merely needs to verify that (a, b) 7→ (f(a)⊗ g(b)) is a bilinear map.

This next result is the “right exactness” of tensor product.

Theorem 4.8.5. If D is an R−module then −⊗RD is right exact. That is, if

A
f //B

g //C //0

is exact, then so is

A⊗R D
f⊗1D //B ⊗R D

g⊗1D //C ⊗R D //0

Proof. Since g is onto, every generator c⊗d of C⊗RD is of the form g(b)⊗d =
(g⊗ 1D)(b⊗ d) and hence every generator of C ⊗RD is in the image of g⊗ 1D.
So g ⊗ 1D is onto.

Now note that (g⊗ 1D)((f ⊗ 1D)(
∑n
i=1(ai ⊗ di))) = (g⊗ 1D)(

∑n
i=1(f(ai)⊗

di) =
∑n
i=1(gf(ai)⊗ di). Since gf = 0, we have that this is a sum of zeros and

hence im(f ⊗ 1D) ⊆ ker(g ⊗ 1D).
For the last bit, we have to show that ker(g ⊗ 1D) ⊆ im(f ⊗ 1D). To this

end we consider

π : B ⊗R D −→ (B ⊗R D)/(im(f ⊗ 1D)
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and we note that there exists a homomorphism ξ : (B ⊗R D)/(im(f ⊗ 1D) −→
C ⊗R D such that ξ(π(b⊗ d)) = (g ⊗ 1D)(b⊗ d) = g(b)⊗ d. It suffices to show
that ξ is an isomorphism.

Consider η : C ×D −→ (B ⊗R D)/(im(f ⊗ 1D) given by (c, d) 7→ π(b ⊗ d)
where g(b) = c. (Note if g(b1) = c then g(b − b1) = 0 and there is an a ∈ A
such that f(a) = b− b1; since f(a)⊗ d ∈ im(f ⊗ 1D, π(f(a)⊗ d) = 0 and hence
π(b ⊗ d) = π((f(a) + b1) ⊗ d) = π(b1 ⊗ d) and so the map is well-defined). It
is easy to see that η is bilinear and so there exists a unique eta : C ⊗R D −→
(B⊗RD)/im(f ⊗ 1D) such that η(c⊗ d) = π(b⊗ d). Hence given any generator
c× d, we have

ξη(c⊗ d) = ξ(π(b⊗ d)) = g(b)⊗ d = c⊗ d

and hence ξη is the identity. In a similar fashion ηξ is the identity and the proof
is complete.

Theorem 4.8.6. There is an R−module isomorphism

A⊗R R ∼= A.

Proof. The assignment (a, r) = ra is a bilinear map and so we obtain the
R−module homomorphism f : A ⊗R R −→ A with f(a ⊗ r) = ra. We now
consider the R−module homomorphism g : A −→ A⊗RR given by g(a) = a⊗1.
Note that gf = 1A⊗RR and fg = 1A, and hence f is an isomorphism.

Other properties such as (adjoint) associativity will be discussed in exercises.
We end with a couple of theorems concerning the behavior of tensor product
with free modules.

Theorem 4.8.7. Let A,Ai, B,Bj be R−modules. Then there are isomorphisms

a) (⊕i∈IAi)⊗R B ∼= ⊕i∈I(Ai ⊗R B).

b) A⊗R (⊕j∈JBj) ∼= ⊕j∈J(A⊗R Bj).

Proof. For a) consider the bilinear map ({ai}, b) 7→ {ai ⊗ b} (note that almost
every ai = 0). Show this induces the relevant isomorphism. The proof for b) is
simliar.

Corollary 4.8.8. Let F be a free R−module then

F ⊗R B ∼= ⊕i ∈ IB

where |I| = rank(F ).

Proof. Note that F ⊗R B ∼= (⊕i∈IR)⊗R B ∼= ⊕i∈I(R⊗R B) ∼= ⊕i∈IB.
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4.9 Flatness

Flatness is a certain generalization of freeness (and projectivity). A flat module
is a module that makes tensoring exact. More precisely, we have the following
definition.

Definition 4.9.1. We say that the R−module M is flat if given any short exact
sequence

0 //A
f //B

g //C //0

the corresponding sequence

0 //A⊗RM
f⊗1M //B ⊗RM

g⊗1M //C ⊗RM //0

is exact.

We note that since tensoring gets you “most” of the exact sequence for free
anyway, an equivalent characterization of a flat module M is one for which given
any one to one map f : A −→ B, the corresponding map f ⊗ 1M : A⊗RM −→
B ⊗RM is one to one.

Here is a theorem that we record to show the pecking order.

Theorem 4.9.2. Let M be an R−module. For the following list of properties,
we have the implications a) =⇒ b) =⇒ c).

a) M is free.

b) M is projective.

c) M is flat.

We leave the proof of the previous result and the next corollary as exercises.

Corollary 4.9.3. Let Mi be a family of R−modules. ⊕i∈IMi is flat if and only
if Mi is flat for each i.
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