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1. INTRODUCTION AND NOTATION

In this paper R will denote an integral domain with quotient field K. The
following is a list of some commonly used notation in this paper:

Z,Q,R -the rings of integers, rational numbers, and real numbers, respectively.
R[x1, ..., xn] - the polynomial ring over R in n variables.
ι - the inclusion map.
εy=a - the map from a polynomial ring given by the substitution y=a.
U(R) - the group of units of R.
f∗ - the map induced by the functor Pic().
f ] - the map induced by the unit functor.
degx - the degree in the variable x of the given monomial.
NPicRn - the kernel of the map ε∗xn=0 between PicR[x1, ..., xn] and

PicR[x1, ..., xn−1].

We recall that an R-submodule I of K is called a fractional ideal of R if there
is a nonzero a∈R such that aI⊆R. If I is a nonzero fractional ideal of R, we de-
fine I−1={x∈K|xI⊆R}. Clearly II−1 ⊆R, and we say I is invertible if II−1=R.
The set Inv(R)={I|I is an invertible ideal of R} forms an abelian group under
the usual multiplication of ideals; moreover, Prin(R)={xR|x∈K∗} is a subgroup of
Inv(R). The quotient group Inv(R)/Prin(R) is defined to be the class group of R,
denoted C(R). For a commutative ring R with identity, Pic(R) is defined to be the
set of isomorphism classes of rank 1 finitely generated projective R-modules with
[P]·[Q]=[P⊗RQ]. More generally, Pic is a functor from the category of commuta-
tive rings with identity to the category of abelian groups. In the case of domains,



however, C(R) and Pic(R) are equivalent notions, so here we will use them inter-
changeably. A good reference for this background material is either [3] or [9]. For
more information on Picard groups of polynomial rings see [2], [4], [5], [7], [10].

Results similar to some of the ones in this paper were done by B. Dayton
and C. Weibel in [6]. Their paper is an excellent reference for a more “modern”
approach to this material. Although the results achieved there are sharper in a
certain sense, they are achieved in a more restricted environment and with very
different techniques than we wished to use here. We would like to thank Dr. Weibel
for making us aware of their results.

2. SEMINORMALITY AND THE SPLITTING OF PicR[x1, ..., xn]

Consider the following sequence of ring homomorphisms:
R

ι
↪→R[x]εx=0−→R.

Clearly ει=1R and as Pic is a functor, this implies that ε∗ι∗=1Pic(R). So we have:

Pic(R) ι∗−→PicR[x]
ε∗x=0−→Pic(R).

Therefore we have the well-known result:
PicR[x]∼=Pic(R)⊕NPicR1.

In general we have:
R[x1, ..., xn]

ι
↪→R[x1, ..., xn, xn+1]

εxn+1=0
−→ R[x1, ..., xn],

and as above we obtain:
PicR[x1, ..., xn+1]∼=PicR[x1, ..., xn]⊕NPicRn+1,

and inductively:
PicR[x1, ..., xn+1]∼=PicR⊕NPicR1⊕...⊕NPicRn+1.

At this stage we would like to present an example to demonstrate that NPicRn

is not zero in general, but first we need some machinery.

DEFINITION 2.1. Let R be an integral domain with quotient field K. If a∈K and
a2,a3∈R⇒a∈R, then we say R is seminormal. We will say that a is nonseminormal
with respect to R if a∈K\R, but a2,a3 ∈R.

THEOREM 2.2. PicR∼=PicR[x1,...,xn]⇐⇒R is seminormal.

Proof: See [7].

EXAMPLE 2.3. Let R=k[s2,s3] with k a field and s an indeterminate. Clearly
R is not seminormal. Let I=(1+sx,s2x2) and J=(1-sx,s2x2). It is easy to check

that J=I−1 and that 06=[I]∈ker(PicR[x]
ε∗x=0−→PicR). As R is seminormal⇐⇒R[x] is

seminormal (see [5] or Theorem 2.2 above), we can see that NPicRn 6=0 for all n>0.

EXAMPLE 2.4. Another example of a nonseminormal integral domain is the set of
all analytic functions on the real line such that f′(0)=0. To see this merely think in
terms of (convergent) power series.



EXAMPLE 2.5. Consider the ring R=Z+Zx+x2Q[x]. It is easy to see that R is
not seminormal, but this example is distinguished from 2.3 by the fact that the
ideal P=(1+x

2 t,x2

4 t), the analog of I above, is of finite order in NPicR1 (see proof
of Theorem 5.1).

3. THE CHARACTERIZATION OF NPicRn

DEFINITION 3.1. A commutative diagram of ring homomorphisms:

A
g1−→ B

g0

y yf1

C f0−→ D

is called Cartesian if for every pair (b,c) in B×C such that f1(b)=f0(c), there is a
unique a∈A such that g1(a)=b and g0(a)=c.

THEOREM 3.2. If the diagram

A
g1−→ B

g0

y yf1

C f0−→ D

is a Cartesian square of commutative ring homomorphisms with either f1 or f0
surjective, then we have the following exact sequence:

0−→U(A)−→U(B)⊕U(C)−→U(D)−→Pic(A)−→Pic(B)⊕Pic(C)−→Pic(D).

Proof: See [3] or [9].

REMARK 3.3. The maps in the above exact sequence are the maps in the Mayer-
Vietoris sequence.

Now we will use the above to explore some of the properties of the above-
mentioned “NPics”. Let A⊆B be subrings of an integral domain D, and let I be an
additive subgroup of D such that:

1. jI⊆I for all j∈I
2. bI⊆I for all b∈B, and
3. B

⋂
I={0}.

Then we have that A+I⊆B+I are both subrings of D with common ideal I. Consider
the sequence:

B
ι
↪→B+I ε−→B

with ε(b+i)=b. As ει=1B , we have Pic(B+I)∼=Pic(B)⊕Ker(ε∗) and the analogous
result for Pic(A+I).



THEOREM 3.4. The above situation induces a split exact sequence:
0−→Pic(A+I)−→Pic(A)⊕Pic(B+I)−→Pic(B)−→0.

Moreover, Ker(ε∗)∼=Ker((ε|A+I)∗).

Proof: Consider the Cartesian square:

A + I ↪→ B + Iy yε
A ↪→ B.

From Theorem 3.2 we have the following exact sequence:
0−→U(A+I)−→U(A)⊕U(B+I)

β−→U(B)−→
−→Pic(A+I)−→Pic(A)⊕Pic(B+I) α−→Pic(B).

For the first part of the theorem, it suffices to show that both α and β are
surjective. β(x,y)=ι](x)ε](y), where ι] and ε] are induced by the unit functor. As
ει=1B , we have that ε] is surjective. Therefore, the restriction β|U(B+I) is onto,
hence β is onto. An identical argument gives the surjectivity of α. The fact that
ει=1B shows that it splits. Thus we have established the existence of the split exact
sequence:

0−→Pic(A+I)
f−→Pic(A)⊕Pic(B+I)

g−→Pic(B)−→0.
Now we wish to show that Ker(ε∗)∼=Ker((ε|A+I)∗). Consider µ∈Ker((ε|A+I)∗).

Let f(µ)=(0,b)∈Pic(A)⊕Pic(B+I). Due to the exactness of the above sequence,
g(0,b)=ι∗A(0)+ε∗(b)=0. Therefore b∈Ker(ε∗). Thus we may define

ξ:Ker((ε|A+I)∗)−→Ker(ε∗)
by ξ(µ)=b. Clearly ξ is injective as f is injective. To show that ξ is surjective, let
b∈Ker(ε∗). Therefore (0,b)∈Ker(g)=Im(f), so there is an x∈Pic(A+I) such that
f(x)=(0,b). Therefore x∈Ker((ε|A+I)∗), and we have established the theorem.

COROLLARY 3.5. Let A⊆B be subrings of an integral domain. Then we have
Pic(A+xB[x])∼=Pic(A)⊕NPicB1.

More generally,
Pic(A[x1, ..., xn]+xn+1B[x1, ..., xn, xn+1])∼=Pic(A[x1, ..., xn])⊕NPicBn+1.

COROLLARY 3.6. If Pic(A)∼=Pic(B), then Pic(A+I)∼=Pic(B+I).

The proofs of the previous two corollaries are immediate.

REMARK 3.7. Classically in the case of rings of algebraic integers, the Picard
group is considered a measure of how far a ring misses being a unique factorization
domain (UFD); and, in fact, it is well-known that Pic(R) is trivial if R is a UFD.
The above corollary allows us to construct many examples of rings that have trivial
Picard group but are not UFD’s. For example, consider the ring Q+xR[x]. By the
above, this ring has trivial Picard group, but it is easily seen that this ring is not



a UFD (consider possible factorizations of x2); for a Noetherian example replace R
with a finite extension of Q. Divisibility properties of integral domains of the form
A+xB[x] have been studied extensively in [1].

We know that Pic(R[x1, ...xn])∼=Pic(R)⊕NPicR1⊕...⊕NPicRn. We can now
give a theorem which will help to elucidate the structure of these “NPics”.

THEOREM 3.8. Let R be an integral domain. Then

NPicRn
∼=

{
Pic(Z+xnR[x1, ..., xn]) if char(R)=0
Pic(Z/pZ+xnR[x1, ..., xn]) if char(R)=p:prime.

Proof: If char(R)=0, then Z⊆R, so we can apply Corollary 3.5 to obtain:
Pic(Z[x1, ..., xn−1]+xnR[x1, ..., xn])∼=Pic(Z[x1, ..., xn])⊕NPicRn.

But as Pic(Z[x1, ..., xn−1])∼=Pic(Z)=0 (Z is, of course, seminormal), Corollary 3.6
implies that

Pic (Z+xnR[x1, ..., xn])∼=Pic(Z[x1, ..., xn]+xnR[x1, ..., xn])∼=NPicRn.
This establishes the characteristic 0 case; the proof of the characteristic p case is
similar.

4. THE TWO VARIABLE CASE

Consider the polynomial ring in two variables R[x,y]. In this section, we will al-
ways assume that char(R)=0, but all the theorems will hold for prime characteristic
also. In section 3, we found that

NPicR1
∼=Pic(Z+xR[x]).

Now consider the following sequence of ring homomorphisms:
Z+xR[x]

ι
↪→Z+xR[x,y]

εy=0−→Z+xR[x].
Clearly εy=0ι=1Z+xR[x]; therefore we can apply the Pic functor to obtain via The-
orem 3.8 that

NPicR2
∼=Pic(Z+xR[x,y])∼=NPicR1⊕Ker((εy=0)∗).

Consider the following Cartesian square:

Z+xyR[x,y] ι−→ Z+xR[x,y]y y
Z ↪→ Z+xR[x].

Applying Theorems 3.4 and 3.8, we have the following split exact sequence:

0−→Pic(Z+xyR[x,y])−→Pic(Z)⊕NPicR2

ε∗y=0−→NPicR1 −→0.
As Pic(Z)=0, we have that

NPicR2
∼=NPicR1⊕Pic(Z+xyR[x,y]).

We note here that this iterative process can in general be repeated once more.
Consider:

Z+xR[x]
φ:x7→xy−→ Z+xyR[x,y]

εy=1−→Z+xR[x].
As before, εy=1φ=1Z+xR[x], so:

Pic(Z+xyR[x,y])∼=NPicR1⊕Ker((εy=1)∗).



Now consider the Cartesian square:

Z+xy(y-1)R[x,y] −→ Z+xyR[x,y]y y
Z −→ Z+xR[x].

We conclude that Ker((εy=1)∗) ∼=Pic(Z+xy(y-1)R[x,y]), and thus
NPicR2

∼=NPicR1⊕NPicR1⊕Pic(Z+xy(y-1)R[x,y]).
This fact gives the following theorem:

THEOREM 4.1. NPicRn contains 2n−1 copies of NPicR1 as direct summands.

Proof: The above can be reworked using Theorem 3.8 to show NPicRn contains two
copies of NPicRn−1 as direct summands. The rest is a trivial induction argument.

REMARK 4.2. In general, it does not seem that we are able to continue the
above process and inject an infinite number of copies of NPicR1 into NPicR2 as
direct summands. A sufficient criterion for n steps of this iterative process to be
successfully completed is that (n-1)! is a unit of R. In other words, if (n-1)! is a unit
of R, then we can inject n copies of NPicR1 into NPicR2 as direct summands, and
hence in this case NPicRm contains nm−1 copies of NPicR1 as direct summands.
If R contains Q, then NPicR2 contains an infinite number of copies of NPicR1 as
direct summands, see [6]). However, this condition is not necessary in general as it
is trivially unnecessary when R is seminormal.

THEOREM 4.3. The homomorphism ϕ:Z+xR[x,y]−→Z+xyR[x,y] given by
ϕ(z+xr(x,y))7→z+xyr(xy,y)

induces an injective homomorphism ϕ∗:Pic(Z+xR[x,y])−→Pic(Z+xyR[x,y]).

To approach the proof of this theorem, we need to develop some facts about
the structure of Z+xyR[x,y].

LEMMA 4.4. Z+xyR[x,y]=Ix+Iy with Iy={p ∈ Z + xyR[x, y]|every monomial of
p has degy ≥ degx}

⋃
{0} and Ix={p ∈ Z + xyR[x, y]|every monomial of p has

degx > degy}
⋃
{0}

Proof: Trivial.

REMARK 4.5. Z+xyR[x,y]=Iy⊕Ix as an abelian group, and additionally,
a,b∈Ix ⇒ab∈Ix. The same multiplicative self-closure holds for Iy.

LEMMA 4.6. Any f∈Z+xyR[x,y]=Iy⊕Ix can be written as (f1, f2) with f1 ∈Iy and
f2 ∈Ix. If (f1, f2)(g1, g2)=(k,0), then either f2=0 or g2=0.



Proof of Lemma 4.6: Assume both f2, g2 6=0. Pick mf ,mg nonzero monomials of
f (respectively g) such that degx−degy is maximized (this maximum degree differ-
ence is positive as f2, g2 are nonzero), and we stipulate that if there is more than
one monomial of f (resp. g) with this property, then we pick the one with the

greatest total degree. Thus we can write f and g as f=
_

f+mf and g=
_
g+mg. Then

fg=
_

f
_
g +mf

_
g +mg

_

f +mgmf . Clearly the monomial mgmf maximizes the dif-
ference degx(m)−degy(m) among all monomials of fg, and among the maximizing
monomials, it has the greatest total degree. Therefore fg has at least one nonzero
monomial in Ix, which gives a contradiction.

Proof of Theorem 4.3: The map ϕ∗:Pic(Z+xR[x,y])−→Pic(Z+xyR[x,y]) is given
by ϕ∗([I])=[Ie], where Ie denotes the extension of the ideal I with respect to the
homomorphism ϕ. We first note that ϕ∗ is well-defined, for if [I]=[J], then I=aJ
with a in the quotient field of Z+xR[x,y]. But Ie=(aJ)e=(a)eJe. Therefore [Ie]=[Je],
so we have established that ϕ∗ is well-defined. Also note that as (IJ)e=IeJe, ϕ∗ is a
homomorphism from Pic(Z+xR[x,y]) to Pic(Z+xyR[x,y]). It now suffices to show
that ϕ∗ is injective. Let [I]∈ Pic(Z+xR[x,y]) be such that ϕ∗([I])=[Z+xyR[x,y]].
Without loss of generality, we pick our representative I of [I] such that I⊆Z+xR[x,y].
Therefore Ie=(p)⊆Z+xyR[x,y].

Consider (pc)−1I, where pc is the image of p under the change of variables
x7→ x

y and y7→y. Therefore as pc is in the quotient field of Z+xR[x,y], (pc)−1I=J is
an invertible ideal in [I]. Note that ϕ∗([J])=[Z+xyR[x,y]]. To show that [I] is the
principal class, it is enough to show that J=Z+xR[x,y].

As J is invertible, it is finitely generated, so we can write J=(f1, f2, ..., fn). We
can also find generators of J−1=(α1, α2, ..., αn) such that αifj ∈Z+xR[x,y] for all
1 ≤ i, j ≤ n and α1f1 +α2f2 + ...+αnfn=1. By the above, ϕ∗([J−1]) = (ϕ∗([J]))−1.
As ϕ∗([J])=[Z+xyR[x,y]], this means (ϕ∗([J]))−1=[Z+xyR[x,y]]. Combining the
above observations we obtain two important facts. First of all, the image of
fi, αi ∈Z+xyR[x,y] for all 1 ≤ i ≤ n, and secondly, the image of αifj ∈Iy for
all 1 ≤ i, j ≤ n.

We denote the image of αi as (αi,1, αi,2) and the image of fi as (fi,1, fi,2) with
the first coordinate in Iy and the second in Ix. By the above remark,

(αi,1, αi,2)(fj ,1, fj ,2)=(γi,j ,0) for all 1 ≤ i, j ≤ n.
Now assume that we have fi,2 6=0 for some i. Therefore, as

(αj ,1, αj ,2)(fi,1, fi,2) = (γj,i, 0) for all 1 ≤ j ≤ n,
this implies (by Lemma 4.6) that αj ,2 = 0 for all 1 ≤ j ≤ n. Also note that for
all j, (αj ,1, 0)(fi,1, fi,2) = (γj,i, 0) implies that αj ,1fi,2 ∈Iy because of the additive
closure of Iy. Therefore, as degx(m)>degy(m) for all monomials m of fi,2, we have
that degy(n)>degx(n) for all monomials n of αj ,1. In particular, no term on the
left hand side of the equation:

(α1,1, 0)(f1,1, f1,2) + ...+ (αi,1, 0)(fi,1, fi,2) + ...+ (αn,1, 0)(fn,1, fn,2) = 1
has a constant term, which is an obvious contradiction. Thus fi,2 = 0 for all i, and
the same proof gives that αi,2 = 0 for all i. Therefore, as the images of both αi and
fi are in Iy, the change of variables x7→ x

y shows that αi and fi are in Z+xR[x,y]



for all i. Hence (pc)−1I=Z+xR[x,y] and the theorem is established.

LEMMA 4.7. If G,H,K are groups such that G∼=H⊕K and there exists an injective
homomorphism ψ:G−→H, then G contains (an isomorphic copy of)

⊕∞
i=1K.

Proof: G=K1⊕H1 with K1 and H1 isomorphic to K and H respectively. Then H1 has
a subgroup G1=K2⊕H2 with K2 and H2 isomorphic to K and H respectively. Thus
K1⊕K2⊕H2 is a subgroup of G. Continuing this process we get that K1⊕K2⊕K3⊕...
is a subgroup of G isomorphic to

⊕∞
i=1K.

Combining our previous results with the above lemma, we obtain the following
theorem.

THEOREM 4.8. NPicR2 ⊇Pic(Z+xyR[x,y])⊕(
⊕∞

i=1NPicR1). In general,
NPicRn ⊇

⊕∞
i=1NPicRn−1 ⊇

⊕∞
i=1NPicR1.

REMARK 4.9. From a group-theoretic standpoint, there is no reason to sus-
pect that NPicR2

∼=Pic(Z+xyR[x,y])⊕(
⊕∞

i=1NPicR1). For example, consider the
abelian groups

G=Z/2Z⊕Z/2Z⊕(
⊕∞

i=1Z/4Z),
H=Z/2Z⊕(

⊕∞
i=1Z/4Z), and

K=Z/2Z.
In this example it is certainly true that G∼=H⊕K, but G merely contains the

direct sum of an infinite number of copies of K as a subgroup. For a torsion-free
example, replace each Z/2Z above with Z and replace each Z/4Z with Z3 (the 3-
adic integers). However, we have deduced that NPicRn is either 0 (the seminormal
case) or very large.

5. THE RELATIONSHIP BETWEEN Pic(R) AND NPicR1

As we have seen in the previous sections, NPicR1
∼=Pic(Z+xR[x]) when

char(R)=0. In this context, it would seem natural to induce a map from NPicR1 to
Pic(R) from the obvious evaluation map from Z+xR[x] to R. Any evaluation map
induces a well-defined map from NPicR1 to Pic(R). Unfortunately, this homomor-
phism is neither injective nor surjective in general.

THEOREM 5.1. If R is not seminormal, then NPicR1 is not finitely generated.

In order to prove Theorem 5.1 we will need the following lemma.

LEMMA 5.2 For each n≥1, let In=(1+sxn,s2x2n) with s a fixed nonseminormal
element of K. Then each In represents a distinct equivalence class in Pic(R[x]).

Proof of Lemma 5.2: Recall that I−1
n =(1−sxn,s2x2n). So if [In]=[Im] for some



n6=m, then [InI−1
m ] is the principal class. A system of generators for J=InI−1

m

is {1+sxn−sxm−s2xn+m,s2x2m+s3x2m+n,s2x2n−s3x2n+m,s4x2n+2m}. Immediately
we see that if J is principally generated, then it must be generated by a monomial
in x (as J contains a monomial). Also, as J contains an element with a constant
coefficient, the generating monomial r must have degree 0 (i.e., it must be in K).
Since r is generated by the above set over R[x], it must be in R. But this is a con-
tradiction as the first element of the generating set is not in R[x]. Thus we have
established the lemma.

Proof of Theorem 5.1: Let {In} be as in the previous lemma. We have shown that
each In represents a distinct equivalence class in Pic(R). As NPicR1 is an abelian
group, it suffices to show that the group generated by {In} is not finitely generated.

Case 1: s is such that ms/∈R for all nonzero m∈Z.
Assume that Ia1

n1
Ia2
n2

...Iar
nr

=(1). This is impossible if any of the ais are nonzero, as
the left hand side of this equation would then contain elements with nonseminormal
linear terms (by the binomial theorem), and therefore the above product cannot be
principally generated by the same argument as in the proof of Lemma 5.2. Thus in
this case, each In has infinite order and {In} forms a basis for this subgroup which is
infinitely generated free abelian. Hence in case 1, NPicR1 is not finitely generated.

Case 2: There is a nonzero m∈Z such that ms∈R.
In this case, Imn =(1) for all n. To see this, we first note that by the binomial theorem,
Imn ⊆R for any n. We also note that (Imn )−1=(I−1

n )m is also contained in R by the
binomial theorem. Therefore Imn is an ideal in R whose inverse is in R, and thus
Imn =(1) for all n≥1. Therefore as In has finite order for all n, the group generated
by {In} cannot be finitely generated. Hence we have established Case 2 and the
theorem.

EXAMPLE 5.3. Let R=Z[
√
−5], the ring of integers of the field Q(

√
−5), and

T=R[s2,s3]. It is well-known that the class number of R is 2 and that I=(2,1+
√
−5)

is a representative of the non-trivial coset in Pic(R). I is an invertible ideal of R;
hence it extends to an invertible ideal of T (which we shall denote by I∗). Here we
will show that I∗ is not in the image of φ∗:NPicT1 −→Pic(T), where φ:Z+xT[x]−→T
by φ(f(x))=f(a) with a an element of R.

Consider the following commutative diagram:

Z+xT[x] εs=0−→ Z+xR[x]
φ
y yφR

T εs=0−→ R.

In this diagram, the two homomorphisms denoted εs=0 set the nonseminormal
element equal to 0; φ is just evaluation of x at some element of R; and φR is just
this evaluation map restricted to Z+xR[x]. It is easy to see that this is indeed a
commutative diagram. This gives rise to the following commutative diagram:



NPicT1 −→ NPicR1y y
Pic(T) −→ Pic(R).

Now assume J is in NPicT1 such that [J] maps to [I∗] in Pic(T). Clearly [I∗]
maps to [I] in Pic(R) (as the image of I∗ must contain I but be non-trivial, and
I is maximal). Notice however that if we “follow” [J] the other way, we get [R]
as NPicR1 is trivial (as R is integrally closed, hence seminormal). So we have a
contradiction. Hence we have that these evaluation-induced maps are not generally
surjective.

It is easier to see that these maps are not generally injective. Modifying Exam-
ple 2.3, we can let I=(1-sx(x-a),s2(x(x-a))2) for an example of a non-trivial invertible
ideal that is in the kernel of the map induced by evaluation at a.
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