This problem is based on a question that I received from a former student in the summer of 2002. He was working as an engineer and needed to be able to find the following volume.

Consider the (3-dimensional) torus pictured below (one picture is the whole torus and the other is the torus "cut in half"). Assume that the radius of the inner circle of the torus is r (see the picture of the torus cut in half) and the the distance from the center of the torus to the center of the smaller circle is $R(R>r)$. This inner tube (torus) is standing vertically (as in a tire swing) and has some water in it (say the height of the water as measured from the bottom of the torus is $h)$. When my former student asked me the question intitially, the height of the water was less than the radius of the smaller circle, r, (and in any case $h \leq 2(r+R)$ which is the total height of the torus). But see if you can find a formula for the volume of the water in the torus for any value of h such that $0 \leq h \leq 2(r+R)$.

