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Abstract

Promotion is a bijection from the set of linear extensions of a finite
partially ordered set to itself. Total promotion is when promotion is it-
erated p times, where p is the number of elements in the poset. Certain
special classes of posets, such as rectangles, have all their linear extensions
fixed by total promotion. In this paper, we explore total promotion for
general posets.

1 Introduction

Promotion was first studied along with a related operator called evacuation by
Schützenberger [6]. Though originally intended primarily for Young tableaux,
the definitions are general enough to be easily extended to general posets, and
were presented by Schutzenberger in this level of generality. For Young dia-
grams, promotion is an operation that takes one standard Young tableaux to
another via jeu de taquin slides. Total promotion is when the operation of
promotion is done n times, where n is the number of boxes in the Young dia-
gram. It is known that any Young tableuax associated to a rectangle is fixed by
total promotion. This result is credited to Schützenberger as it follows immedi-
ately from his work, though the result was never actually stated. Edelman and
Greene [1] showed that for staircases, total promotion gives the transpose of the
original labeling. Later, Haiman [2] showed that, along with rectangles, all la-
belings of shifted double staircases and shifted trapezoids are also fixed by total
promotion. Haiman and Kim [3] almost concurrently showed that among con-
nected shapes, staircases were the only symmetric shapes that were transposed
by total promotion, and rectangles, shifted staircases, and shifted trapezoids
were the only shapes fixed by total promotion. From these results, it is natu-
ral to ask if there are any other infinite classes of posets like rectanges, shifted
double staircases, and shifted trapezoids that are fixed by total promotion, and
also what can be said about which posets in general are fixed by total promotion.
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2 Basic Definitions

We will lay out the basic definitions and groundwork for studying promotion,
mostly following the same path and notation as Stanley [8]. Let (P,<) be a
partially ordered set with p elements. We say that b covers a, or al b if a < b
and there is no c such that a < c < b. The order dual of P (denoted (P ∗, >))
is the poset with the same vertex set as P , but we have x ≤ y in P ∗ if and
only if y ≤ x in P . We say that P is self-dual if it is isomorphic to its order
dual. A linear extension (or labelling) of a p-element poset P is a bijective
mapping f : P → {1, . . . , p} such that x ≤ y in P implies that f(x) ≤ f(y)
in Z. Let L(P ) be the set of linear extensions of P . The operation of promo-
tion, which takes one linear extension to another, is best defined algorithmically.

Definition 1 (Promotion). Promotion is given by the following algorithm:

1. Find the element whose label is 1, call it x1. Remove its label.

2. If xi is unlabeled and not a maximal element, then let xi+1 be the element
that covers xi with the smallest label. Then we “promote” the label of xi+1

to xi (also known as a jeu de taquin slide), so now xi+1 is left unlabeled.

3. Repeat this process until a maximal element is left unlabeled, call it xn.
Then give xn the label p+ 1, and reduce the label of every element in the
poset by 1 (so the labels are restandardized to 1, . . . , p).

If L ∈ L(P ) is the initial linear extension, then we define ∂(L) to be the
new linear extension obtained by promotion. It is clear that x1 l . . .l xn will
be a maximal chain, and we call this the chain of promotion. An example of
promotion is shown in Figure 1 with the chain of promotion highlighted.
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Figure 1: a) The chain of promotion b) The result of sliding c) The relabeling
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Evacuation is another operator, which is best described algorithmically in
terms of promotion.

Definition 2 (Evacuation). Evacuation is given by the following algorithm:

1. Apply promotion to P . If x is the maximal element in the chain of pro-
motion, then we “freeze” x with the label p, and let P1 := P − x.

2. Now, apply promotion the p − 1 element poset P1. If y is the maximal
element in the chain of promotion, then we freeze y with the label p − 1
and let P2 := P1 − y.

3. Repeat this process until all the labels of P have been frozen, and you are
left with a new linear extension of P .

If L ∈ L(P ) is the initial linear extension, then we will define ε(L) to be its
evacuation. In Figure 2 is an example of evacuation, with the chain of promotion
highlighted and the “frozen” elements circled.

////////

��������

��������

////////

•

•

• •

1

2 3

4

// ////////

��������

��������

////////

•

•

• •

1

3 2

4 '!&"%#$

// ////////

��������

��������

////////

•

•

• •

1

2 3 '!&"%#$

4 '!&"%#$

// ////////

��������

��������

////////

•

•

• •

1

2 '!&"%#$ 3 '!&"%#$

4 '!&"%#$

// ////////

��������

��������

////////

•

•

• •

1 '!&"%#$

2 '!&"%#$ 3 '!&"%#$

4 '!&"%#$

Figure 2: An example of evacuation.

Both of these operators have a very similar dual operator. For dual promo-
tion, we remove the the largest label, and repeatedly slide the largest label of all
the elements that the unlabeled element covers. When we reach a minimal ver-
tex, we give it the label 0 and then add 1 to all the labels to get a standardized
linear extension. It is not hard to see that dual promotion is in fact the inverse
to promotion, and thus we shall denote the dual promotion of a linear extension
L ∈ L(P ) as ∂−1(L). Dual evacuation is defined the same as evacuation, but
with repeated application of dual promotion. We shall denote dual evacuation
as ε∗.
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Schutzenberger proved some basic relations between promotion and evacua-
tion, which are given here.

Theorem 1. [6] For P a p-element poset,

1. ε2 = 1, i.e., evacuation is an involution,

2. ε∗ε = ∂p,

3. ∂ ◦ ε = ε ◦ ∂−1.

We will present proofs of these three facts that are rather intuitive once
the necessary machinery has been built. We will do so using growth diagrams,
following the example of Fomin in Appendix 1 of [7].

First, we consider an alternate intepretation of promotion. An ideal I ⊆ P
is a subset of P such that if x < y and y ∈ I, then x ∈ I. The ideals of P can
be given a partial order by containment, and we call this the lattice of order
ideals, denoted by J(P ). We can establish a bijection between linear extensions
of P and maximal chains in the lattice of order ideals. If we’re given a linear
extension of P , we can define xi to be the ideal of all elements of P with labels
less than or equal to i. Then x0 l x1 l · · · l xp is a maximal chain in J(P ).
Conversely, given a maximal chain x0 l x1 l · · ·l xp in J(P ), we can define a
linear extension by giving the element that’s in xi but not xi−1 the label i. It is
easy to see that these two correspondences are inverse to each other, and thus
define a bijection. So now we may define promotion as a permutation of the set
of maximal chains in J(P ).

Growth diagrams are best defined with a picture. A growth diagram is an
array on maximal chains that is very useful in understanding promotion and
evacuation. We start with a maximal chain, which is written on a diagonal up
and to the right. Then to the right of any chain, we write the maximal chain
that corresponds to the promotion of the previous one. We also add a line
connecting the ith element of one maximal chain to the (i− 1)st element of the
next maximal chain. We can also extend the diagram in the opposite direction
by placing the dual promotion of a maximal chain to it’s left, and adding the
associated lines. As promotion has finite order, the pattern of maximal chains is
periodic. Because of this, its possible to think of the growth diagram as existing
on a cylinder, but it’s generally easiest to think of the diagram as extending in
both directions indefinitely. All of the examples shown will use Young diagrams
as the underlying poset, since it is easy to represent the order ideals as partitions,
but the theory applies equally well to general posets.

One useful fact about growth diagrams is that they have a local condition
which encapsulates the jeu de taquin slides and makes it easier to compute
promotions in this setting.
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Figure 3: A linear extension of a poset, and the corresponding maximal chain
the lattice of order ideals, where filled in circles represent elements of the order
ideal.

Theorem 2. If
ρ
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ν

is a section of a growth diagram, then exactly one of the following two state-
ments is true.

1. If λ is the only order ideal that contains ν and is contained in ρ, then
µ = λ

2. There is a unique order ideal that contains ν and is contained in ρ differing
from λ, and it is µ

We will think of λ and ρ as being parts of an original maximal chain, and
ν and µ as being parts of the original maximal chain’s promotion. It is not
immediately obvious that ν is necessarily contained in λ, or that µ is contained
in ρ.. This happens because every element x in µ with some label k either has
the label k − 1 after promotion, or get’s promoted and gives the label k − 1 to
some element beneath it. This means that the set of elements with labels less
than k after promotion is contained in the set of elements with labels less than
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Figure 4: An example of a growth diagram for the Young diagram associated
to the partition 3+2+2

k+ 1 before promotion, which is the same as saying that ν is contained in λ, or
µ is contained in ρ.

Once we have this, it is not hard to verify that one of these two situations
must occur. ρ is obtained from ν by adding two elements, call them x1 and
x2. If the two elements are comparable (WLOG x1 < x2), then the only way
we can get from µ to ρ would be through ν ∪ {x1}, and then we would have
λ = ν ∪ {x1} = µ. Otherwise, the two elements are incomparable, and if
(WLOG) λ = ν ∪ {x1}, then the unique other way to build ρ from µ is through
µ ∪ {x2}.

Now, we want to show that this local condition must be true. It suffices to
consider the case where ρ, λ, and ν are known. This is because if ρ, µ, and ν
are known, we have at most two options for λ. If there’s only one option, then
λ = µ, and there’s nothing to show. If there are two possibilities for λ, then the
first case requires that λ and µ be different, so there is again only one choice
for λ.

To do this, we show the element that’s in an order ideal λ but not in the order
ideal that’s down and to the right from λ (for consistency, call it µ) represents
an element that’s in the chain of promotion for the maximal chain containing
λ.

Lemma 3. If λ is an element of a growth diagram, and ν is the element down
and to the right from λ, then the element contained in λ not contained in ν
is part of the chain of promotion for the labeling corresponding to the maximal
chain containing λ.

Proof. We will prove this lemma by induction. The base case is when ν is
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empty. Then λ contains a single element, which will be the element labeled 1,
and by definition is in the chain of promotion of the maximal chain containing
it. Now, we assume that the element contained in λ and not in ν is in the
chain of promotion for the maximal chain containing λ, and we will show that
the element that lies in ρ and not in µ is in the chain of promotion for the
maximal chain containing ρ. To try and keep the notation tidy, we will say that
λ=ν ∪ {x}, µ = ν ∪ {y}, and ρ = λ ∪ {w} = µ ∪ {z}. Our assumption is that
x is in the chain of promotion for the maximal chain containing λ and ρ, and
we want to show that z is also in the chain of promotion. One case is where w
covers x. Say x has the label k, so w has the label k+ 1. Then since x is in the
chain of promotion, and w must have the smallest label of elements covering x,
then w must also be in the chain of promotion. Additionally, this means that
x will have the label of k after promotion, which is to say that x will be the
element we add to ν to get µ. This means we have y = x 6= w, so w is also the
element of ρ not contained in µ. The other case would be when w doesn’t cover
x. This implies that w will not be part of the chain of promotion, and thus will
have the label of k after promotion. w having the label of k after promotion is
the same as saying w = y. So x will be the element of ρ not contained in µ, and
by assumption x is part of the chain of promotion.

Theorem 4. Inherent in the proof of the lemma is the proof of the local condi-
tion. If there is only one way to build ρ from ν, this means that w must cover
x, and in that case we saw that y = x, so in particular λ = µ. If there are two
ways to build ρ from ν, then x and w must be incomparable, and in that case
we saw that y = w 6= x. Since y is not x, and there are only two order ideals
between ν and ρ, this means that µ is the unique order ideal between ν and ρ
that is not equal to λ.

If we’re given a maximal chain arranged in an upward diagonal, we can use
local condition to generate the promotion of that maximal chain by using the
fact that any maximal chain in J(P ) starts with the empty set.

As was originally shown by Fomin, this growth diagram also generates the
evacuation operator. If instead of using the local condition to all of the next
maximal chain, we only use it to generate the first p elements of the next maxi-
mal chain, then the first p− 1 element of the next adjacent maximal chain, and
so on, we end up with a triangular diagram. The shortening of the maximal
chains is analagous to the “freezing” of labels in the linear extension. So if we
look at the diagonal going up and to the left, we see that it corresponds to
the evacuation of the original maximal chain. However, the local condition is
symmetric in λ and µ. Therefore, if we start with the evacuation of the original
maximal chain and repeat the same process, we will get the mirror image of the
previous growth diagram, which shows that evacuation is an involution. This
proves part 1 of Theorem 1.

So now we have a very graphical way of intepreting the various operators in
terms of this diagram, as shown in Figure 6. Say we’re given a maximal chain, Q,
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Figure 5: If the maximal chain on the left side of the triangle corresponds to
a linear extension L, then the maximal chain on the right side of the triangle
corresponds to ε(L).

and compute the associated growth diagram. Then promotion corresponds to a
shift to the right for maximal chains written up and to the right (resp. to the left
for maximal chains written up and to the left), and dual promotion corresponds
to a shift to the left for maximal chains written up and to the right (resp. a
shift to the right for maximal chains written up and to the left). Evacuation
corresponds to the the unique maximal chain that slants the opposite direction
as the original one, and meets the original one at the top of the growth diagram,
and dual evacuation is the unique diagonal going the opposite direction as the
original maximal chain that meets the original one at the bottom on the growth
diagram.

So say we start with a maximal chain, Q, written up and to the right. Then
the evacuation of this chain will be the unique diagonal going up and to the
left that ends at the same place as Q, and one can easily see that the minimal
element of ε(Q) will be p units to the right of Q. Then dual evacuation will
give us a maximal chain slanted in the same direction as Q, but shifted p units
to the right, which corresponds to ∂p. Thus, we can see that ε∗ε = ∂p, which
proves part 2 of Theorem 1.

Similarly, if we start with a maximal chain Q going up and to the right,
doing evacuation and then dual promotion gives the diagonal up and to the left
that ends one unit to the left of where Q ends. If we instead do dual promotion
and then evacuation, we see that we end up on the same diagonal, and thus
proving the third part of Theorem 1.

This method of approaching promotion and evacuation seems to be a power-
ful tool, but it is not clear how to exploit it further beyond proving these basic
relations.
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Figure 6: If the first maximal chain corresponds to a linear extension Q, then
we can graphically see what ∂(Q), ∂−1(Q), ε(Q), and ε∗(Q) are in the growth
diagram.

3 Total promotion

Now, we begin to study specifically total promotion. We say that a p-element
poset P is fixed by total promotion if every linear extension of P is fixed by ∂p.
We start with a basic theorem that relates the order of promotion of a poset to
the order of promotion of its dual.

Theorem 4. A p-element poset is fixed by k promotions if and only if its order
dual P ∗ is fixed by k promotions. In particular, total promotion fixes P if and
only if total promotion fixes P ∗.

Proof. If we can show that P being fixed by k promotions implies that P ∗ is
fixed by k promotions, then we can get the reverse direction by replacing P with
P ∗, and using the fact that (P ∗)∗ = P . Thus, it suffices to prove the forward
direction.

We will call ∆ the dual operator, which takes a linear extension of P to
a linear extension of P ∗. If L gives an element x the label l when considered
as an element of P , then ∆(L) (also refered to as L∗) will give the element
x the label p − l + 1 when considered as an element for P ∗. Clearly, this
operation is an involution (i.e., ∆(∆(L)) = L, or (L∗)∗ = L), and also provides
a bijection between L(P ) and L(P ∗). By looking at the definitions, one can see
that ∂−1

P = ∆ ◦ ∂∗P ◦∆. That is to say, dual promotion on a linear extension L
of P is the same as doing dual promotion on L∗ with respect to P ∗, and then
taking the dual linear extension. As ∆ is an involution, ∂−nP = ∆ ◦ ∂nP∗∆ for
all n. Thus, if ∂kP (L) = L, then L = ∂kP (L) = ∆(∂kP (∆(L))) = ∆(∂kP (L∗)).
Applying ∆ to both sides of the equation yields L∗ = ∂kP∗(L), which says that
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Figure 7: Graphical visualization of the relation ε∗ ◦ ε = ∂p.

L∗ is fixed by k promotions. Since ∂kP (L) = L for all L ∈ L(P ) by assumption,
and ∆ is a bijection between L(P ) and L(P ), we know that ∂kP∗ fixes all linear
of P ∗, as desired.

Next, we show that the concept of being fixed by total promotion is com-
patible with disjoint unions.

Theorem 5. A poset P is fixed by total promotion if and only if all of its
connected components are fixed by total promotion.

Proof. First, we’ll show that if P is fixed by total promotion, then its connected
components are also fixed by total promotion. Let Q be a connected component
with q elements in a p-element poset P that is fixed by total promotion. We can
define an induced linear extension of Q from a linear extension L of P by giving
the element of Q with the smallest label under L the label 1, the element with
the next smallest label under L the label 2, and so on. This linear extension
will be called the restriction of L to Q, and will be denoted by L|Q. Essentially,
it keeps track of the relative order of the labels.

Fix a linear extension L′ of Q. Let L be a linear extension of P such that
L|Q = L′. By assumption, ∂pP (L) = L. When we apply promotion to any
linear extension L oif P , the chain of promotion will be entirely contained in
the connected component containing the element labeled 1. So if Q doesn’t
contain the element labeled 1, then applying promotion to L will just decrease
the labels of the elements in Q by 1, and we’ll have ∂P (L)|Q = L|Q. If Q does
contain the element labeled 1, as the chain of promotion only depends on the
relative order of the labelelings, the chain of promotion for L will be the same
as the chain of promotion for L|Q, and we’ll have ∂P (L)|Q = ∂Q(L|Q).
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Now, consider the set of labels in the connected component Q. We notice
that promotion only shifts positions of labels and then decreases them by 1,
except for the label 1 which is ultimately replaced by the label p. Thus, we
can see that the set of labels for a connected component are cyclically shifted
modulo p by promotion. As Q contains q elements, we can see that after p cyclic
shifts that the set of labels of Q will contain 1 exactly q times. Combining this
with the above paragraph, we see if we do p promotion to L, we’ll only change
the relative order of the labels of Q q times. This means that M ′ = M |Q =
∂pP (M)|Q = ∂qQ(M ′). Thus, the linear extension of M ′ of Q is fixed by total
promotion.

Secondly, we prove the reverse direction. It suffices to show that the disjoint
union of two connected posets that are fixed by total promotion is again fixed
by total promotion. Let P be a p-element poset fixed by total promotion, and
let Q be a q element poset fixed by total promotion. Consider an arbitrary
linear extension of P + Q, L. As we observed in the first half of the proof,
when we do p+ q promotions to the disjoint union, we only change the relative
order of the labels in P p times, and similarly for Q. As P and Q are both
fixed by total promotion, this means that after p+ q promotions to the disjoint
union, the relative ordering of each connected component will be the same as
it originally was. And as the set of labels for a connected component cyclically
shifts modulo p+ q, after p+ q promotions each connected component will have
the same set of labels as it originally had. Since each connected component end
ups with the same relative ordering it originally had, and the same set of labels
it originally had, then the labelling we end up after p + q promotions must be
the same labeling we started out with.

This theorem shows us that in order to study posets that are fixed by total
promotion, it suffices to understand connected posets that are fixed by total
promotion.

4 Enumeration of Posets Fixed Under Total Pro-
motion

Using Maple and John Stembridge’s Posets package [9], we are able to com-
pletely enumerate all posets fixed by total promotion with less than 9 elements.
The following table lists how many connected posets there are for each number
of vertices satisfying various properties.

The properties in the Table 2 can only be satisfied by a connected poset.
The properties in the Table 1 also apply to non-connected posets, and a non-
connected poset satisfies those properties if and only if all of the connected
components satisfy the property.

Remark 1. By Theorem 5, we know that every poset satisfying total promotion
comes from a disjoint union of connected posets that satisfy total promotion.
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Number of All Ranked Graded Self Dual Total number of
elements connected posets

1 1 1 1 1 1
2 1 1 1 1 1
3 1 1 1 1 3
4 5 5 5 3 10
5 1 1 1 1 44
6 42 38 29 8 238
7 7 3 1 1 1650
8 195 155 83 23 14512
9 88 42 28 12 163341

Table 1: A count of how many connected posets fixed by total promotion sat-
isfy various properties, along with the total number of connected posets for
comparison.

So if R is a property that’s compatible with disjoint union, in the sense that
the statement “A poset satisfies property R if and only if all its connected
components satisfy R” is true, then we can count the total number of posets
fixed by total promotion satisfying such a property by looking just at connected
posets. The formula for the total number of posets with n elements fixed by total
promotion satisfying some property R that’s compatible with disjoint union is∑

λ=λ1≥λ2...

∏
i

f(λi),

where λ is a partition of n and f(k) is the number of connected posets with k
elements satisfying property R.

Therefore, we can construct a similar table for all posets using the data for
just the connected ones, as is done in Table 3.

5 Building Larger Posets

We have already seen that all posets fixed by total promotion can be built up
from connected posets that satisfy total promotion, so now we focus our study
on connected posets fixed by total promotion. We will look at what happens
to total promotion when we take the ordinal sum of two posets. The ordinal
sum of two posets P and Q, P

⊕
Q , has elements P ∪Q and x ≤ y in P + Q

if x, y ∈ P and x ≤ y in P , x, y ∈ Q and x ≤ y in Q, or x ∈ P and y ∈ Q.
One important property of an ordinal sum is that each minimal element of Q
covers each maximal element of P . This means that for any linear extension of
P +Q, if P has p elements and Q has q elements, then the elements that came
from Q will have labels 1 . . . q and the elements coming from P will have labels
q + 1 . . . q + p. When we apply the promotion operator to the ordinal sum, a
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Number of Bounded Eulerian Lattice Distributive
elements
1 1 0 1 1
2 1 1 1 1
3 1 0 1 1
4 2 1 2 2
5 1 0 1 1
6 10 1 9 5
7 3 0 3 1
8 44 1 28 10
9 30 0 22 2
10 206 1 119 23
11 45 0 25 1

Table 2: A count of how many posets fixed by total promotion satisfy proper-
ties which require the poset to be bounded (i.e., have a minimal and maximal
element).

Number of Total Ranked Graded Self Dual Total number
elements of posets

1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 5
4 9 9 9 7 16
5 11 11 10 9 63
6 60 56 42 22 318
7 74 66 46 28 2045
8 334 282 140 72 16999
9 484 378 178 102 183321

Table 3: A count of how many total (not necessarily connected) posets are fixed
by total promotion and additionally satisfy each property.

minimal element of Q will cover each of the maximal elements of P , so the next
element in the chain will be the smallest labeled maximal element of P , just as
if we did “sub-promotion” on P . This means that for a given linear extension
of P ∪Q that the chain of promotion will be the concatenation of the chain of
promotion for Q with the induced linear extension and the chain of promotion
for P with its induced linear extension (which can be standardized by removing
q from all the labels). So each time we apply the promotion operator to P ∪Q,
we are functionally applying the promotion operator to a copy of P and a copy
of Q at the same time.

Remark 2. The ordinal sum of two posets is always connected, even if the two
“summands” aren’t connected. So it’s possible to build up a connected poset
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fixed by total promotion from smaller pieces that aren’t connected via ordinal
sum.

This is slightly different from disjoint union, where only one of the two
sub-posets would experience promotion each time we applied promotion to the
union. So under disjoint union, the number of vertices scales additively, and
the order of promotion likewise scales additively, which is why things work out
so nicely. With an ordinal sum, the number of vertices still scales additively,
but the order of promotion scales multiplicatively (specifically, it is the least
common multiple of the orders of promotion of P and Q). This means we can
create a poset with p elements that’s fixed by total promotion by taking an
ordinal sum of posets such that the order of promotion of each poset is a divisor
of p, and the total number of elements in all the posets combined adds up to p.

One simple way of generating a large number of connected posets fixed by
total promotion in this manner comes from compositions. A composition of a
number n is a partition of n where the order of the parts matter (for example,
1+2+1 is a different composition than 2+1+1). Let [n] be the poset of n in-
comparable elements, called the anti-chain of n elements. All anti-chains are
fixed by total promotion, as they are a disjoint union of singletons, which are
trivially fixed by total promotion. Define a strictly divisible composition of n to
be a composition of n with the property that all of its parts properly divide n,
and let Dn be the set of all such strictly divisible compositions.

Theorem 6. If f is the map that takes a composition α = α1 + α2 + . . . to the
poset [α1] + [α2] + . . ., then f takes elements of Dn to posets that are fixed by
total promotion.

+++++++
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•

• •

•

1+2+1
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• •

•
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•

• •

2+1+1

+++++++++++++
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• •

• •
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•

•

•

1+1+1+1

Figure 8: Strictly divisible compositions of 4 and the corresponding posets of 4
elements fixed by total promotion.

6 Minuscule Posets

One class of objects studied by Proctor are minuscule posets [4][5]. We say
that ρ, a finite dimensional irreducible representation of a Lie algebra g with
highest weight λ, is a minuscule representation if every weight is of the form
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wλ for some w ∈ W . The set of weights of a minuscule representation has a
standard partial order, but Proctor uses the dual of this order, where ω ≥ µ if
and only if ω−µ is a sum of positive roots. The poset derived from the weights is
called an irreducible minuscule lattice, which Proctor proves is indeed a lattice.
Finally, the poset of join-irreducible elements of an irreducible minuscule lattice
is called an irreducible minuscule poset. As the minuscule representations of
complex simple Lie algebras are classified, there is a complete classification of
the irreducible minuscule posets. We will use n to denote the n-chain. Then the
minuscule posets are m×n, J(2×n), Jn(2×2), 2n, J2(2×3), and J3(2×3).

Theorem 7. All minuscule posets are fixed by total promotion

Proof. The first class of minuscule posets listed are rectangles, which are known
to be fixed by total promotion [1][2]. The second class of minuscule posets listed
are shifted shapes, which were proved to be fixed by total promotion by Haiman
[2]. The third class is an n − 1 chain ordinal summed with two incomparable
elements, ordinal summed with another n− 1. This is the poset corresponding
to the composition n = 1 + 1 + . . . 1 + 2 + 1 + . . . + 1, which is fixed by total
promotion by Theorem 6. The fourth class is just a chain, which is clearly fixed
by total promotion (in fact, fixed by a single promotion). Finally, there are two
more minuscule posets corresponding to E6 and E7, and these were verified to
be fixed by total promotion using Stembridge’s Posets package for Maple [9].

In Proctor’s work, he also looks at Gaussian posets, which are defined to
be posets whose rank generating function takes a special form. He proved with
Stanley that all minuscule posets are Gaussian, and it is conjectured that these
are the only Gaussian posets. Therefore, it would be reasonable for us to con-
jecture that all Gaussian posets are fixed by total promotion. It is not known
if there is a direct proof that either Gaussian or minuscule posets are fixed by
total promotion that use their defining properties.
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