1. Provide the Name for the Following (6 points)

\[
\text{trans-7-methoxy-4-hepten-3-one} \quad \text{(or E)}
\]
\[
\text{(E)-7-methoxyhept-4-en-3-one}
\]
\[
\text{2-propylcyclohexanone}
\]

2. Of the following structures,
 a. Which will be “completely” (>98%) deprotonated by LDA (LiN-iPr₂)? (2 points) \(A, b, c \)
 b. Which will be “completely” (>98%) deprotonated by NaOH? (2 points) \(C \) only

3. An unknown \(X \) has formula \(C₅H₈O \). It gives 1) an orange precipitate upon treatment with 2,4-dinitrophenylhydrazine (2,4-DNP) and it gives 2) a silver mirror upon treatment with Tollen’s reagent \(\text{[Ag(NH₃)₂OH]} \). 3) It does not react with \(Br₂ \) in dichloromethane solvent. 4) Included in the \(\text{¹H NMR (incomplete)} \) is a 6H doublet at 1.2 ppm. What is \(X \)? (4 points)

\[
\begin{align*}
\text{aldehyde} & \quad \text{NMR} \rightarrow \text{isopropyl} \\
E & = 1 \\
C & = 0
\end{align*}
\]

4. Rank the rate of decarboxylation (loss of CO₂) for the following molecules upon heating, with 1 being highest, 2 being next, and 3 being not at all. [Hint: Two out of the three will react, one will not, so you should be able to identify the unreactive isomer. To compare the reactivity of the two reactive isomers, the phenyl substituent impacts the relative stabilities in the key step of the mechanism.] (2 points)

\[
\begin{align*}
\text{A} & \quad \text{B} & \quad \text{C} \\
\text{Ph} & \quad \text{Ph} & \quad \text{Ph}
\end{align*}
\]

\[
\begin{align*}
\text{not 1,3 relationship}
\end{align*}
\]
5. Synthesis Reactions. Draw the feature product of the following reactions (need not show any byproducts). NOTE: In every case, the product should be a stable, isolable product; an “intermediate” structure will not receive full credit. (2 or 3 points each; 1st 7 worth 2 points; last 5 worth 3 points each)

\[\text{PhCO} + \text{PhCONHPh} \xrightarrow{\text{H}^+} \text{ product}\]

\[\text{PhCO} \xrightarrow{1. \text{ LiAlH}_4} \text{PhCH}_2\text{OH}\]
\[\xrightarrow{2. \text{ H}_2\text{O}^+}\]

\[\text{PhCH}_2\text{OCH}_3 \xrightarrow{\text{H}_2\text{O}, \text{H}^+} \text{ product}\]

\[\text{PhCH}_2\text{COCH}_3 \xrightarrow{1. \text{ PhLi (excess)}} \text{ product}\]
\[\xrightarrow{2. \text{ H}_2\text{O}^+}\]

\[\text{Ph}_2\text{CH} \xrightarrow{1. \text{ (Sn)}_2\text{BH}} \text{ product}\]
\[\xrightarrow{2. \text{ NaOH, H}_2\text{O}_2, \text{ H}_2\text{O}}\]

\[\text{PhCH}_2\text{CHCH}_2\text{Br} \xrightarrow{\text{Br}_2, \text{excess}} \text{NaOMe, MeOH}\]

\[\text{MeOCH}_2\text{CH}_2\text{OMe} \xrightarrow{1. \text{ LDA}} \text{ product}\]
\[\xrightarrow{2. \text{ bromoethane}}\]

\[\text{PhCH}_2\text{Br} \xrightarrow{1. \text{ NaCN}} \text{ product}\]
\[\xrightarrow{2. \text{ PhMgBr}}\]
\[\xrightarrow{3. \text{ H}_2\text{O}^+}\]
6. Provide Reagents for the Following Transformations: (4 points each)

- **Hydroxy to Vinyl Group**
 1. PCC
 2. Ph$_3$P

- **Acetoacetic Ester to Ketone**
 1. HOOH_2, H$^+$
 2. Ph$_2$Br (excess)
 3. H$_2$O$^+$

- **OH to OH**
 1. H$_2$CrO$_4$

- **OH to Ketone**
 1. H$_2$CrO$_4$
 2. H$_2$, NMe$_2$, HOMe, base

Not Responsible
7. Put in the starting materials from which the following structures would be produced. Depending on the product, the appropriate starting material may be either a single molecule, two of the same molecule, or two different molecules. For the last problem, you are required to start from two separate molecules. (2 points each)

![Chemical structures and reactions]

Note: The Starting Materials are two Separate Molecules

8. Design a synthesis for the following alkene, FROM ALCOHOLS WITH NO MORE THAN 5 CARBONS. (4 points)

![Chemical structures and reactions]
9. Provide Mechanisms for the Following Transformations. [Note: Some of these do not represent “clean” reactions; the product shown might go on to further reactions, or the reaction might be reversible, or the product might not be isolable. But that shouldn’t prevent you from drawing the mechanism for the transformation indicated!] (3 points each)
10. Rank the following, with 1 being highest, or most. (2 points each)

Relative amount in the “enol” form at equilibrium

Acidity

Reactivity toward addition to propanal

Reactivity toward either MeOH/H+ or PhLi (pattern is the same with either one)