
Math 752 Fall 2015

1 Borel measures

In order to understand the uniqueness theroem we need a better under-
standing of h1(D) and its boundary behavior, as well as H1(D). We recall
that the boundary function of an element U ∈ h2(D) can be obtained from
the Riesz representation theorem for L2, which states that scalar products
are the only continuous linear functionals on L2.

To analyze h1(D), we need a description of the linear functionals acting
on C([−1/2, 1/2]), i.e., the space of continuous functions on [−1/2, 1/2]).
(Note that this is a closed space, since continuous functions on compact
intervals are already uniformly continuous.) Since this is rather crucial for
our purpose, we will first do a review of measures of finite total variation on
an interval, and then give a proof of the Riesz representation theorem for
functionals on continuous functions defined on a compact interval.

We recall the following description of positive Borel measures on R. A
positive Borel measure is a function defined on the Borel sigma algebra
B with values in [0,∞] that satisfies µ(∅) = 0 and is countably additive.
For our purpose the description of Borel measures on the real line given in
Theorem 1.16 of Folland’s Real Analysis is important. It essentially states
that the Borel measures are in 1-1 correspondence to the inreasing, right
continuous functions on R in the following sense: If F is such a function,
then µ defined on half open intervals by

µ((a, b]) = F (b)− F (a)

extends to a Borel measure on B, and in the other direction, if µ is a Borel
measure on R, then F defined by

F (x) =


µ((0, x]) if x > 0,

0 if x = 0

−µ((x, 0]) if x < 0

is a right continuous, increasing function on R. (Consider the example of
Lebesgue measure, and the example of the Dirac measure to visualize the
connection.) The measure µF is also called the Lebesgue-Stieltjes measure
of F , and F is called the distribution function of µF . Some texts use the
notation dF to mean µF .

1



Theorem 1. Let F : R→ R be increasing and define G(x) = F (x+).

1. The set of discontinuities of F is countable.

2. F and G are differentiable a.e., and F ′ = G′ a.e.

Proof. Consider F on [a, b]. Let Sm be the set of points where the jump of
F exceeds 1/m. Assume that x1 < x2 < ... < xn are in Sm (Sm might have
more points.) We have

n

m
≤
∑
j

(F (xj+)− F (xj−)) ≤ F (b)− F (a).

This gives an upper bound for n, n ≤ m(F (b)− F (a). Since ∪Sm is the set
of points where right and left limit of F do not agree, we get that there are
countably many points with this property in [a, b] and hence in R.

We note that G is increasing and right continuous, and agrees with F
except possibly at the discontinuities. Recall that the measure µG is defined
by

µG([x, y)) = G(y)−G(x).

The Lebesgue differentiation theorem implies that µG((x, x + r))/r →
f(x) for a.e. x, where f ∈ L1

loc. This implies that the derivative of G exists
a.e. (and equals f).

Define H = G − F . Consider H on [−N,N ]. From the first part H
has only countably many points xj where it is non-zero, and since F is
increasing,

H(xj) = F (xj+)− F (xj) > 0

at every such point. Can show as in part one that∑
|xj |<N

H(xj) ≤ F (N+)− F (−N) <∞.

Define
µ =

∑
j

H(xj)δxj .

Then µ is finite on compact sets, hence regular by Theorem 1.16 and
1.18. Clearly, µ is singular with respect to m. Since

|H(x+ h)−H(x)| ≤ H(x+ h) +H(x) ≤ µ((x− 2|h|, x+ 2|h|)),

the difference quotient of H goes to zero a.e. by the previous theorem.
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2 Complex measures and total variation

In order to formulate the Riesz representation theorem we require compex
valued measures, that is, set functions µ defined on the Borel sigma algebra
over R that satisfy µ(∅) = 0, that are countably additive, but in distiction to
positive measures assume values in C. (We will always assume that complex
measures are finite.)

The distribution functions of positive measures are increasing. For com-
plex valued measures it turns out that the distribution functions are func-
tions of so called bounded variation. We consider first measures with values
in R. If µ : B → R, then the Jordan decomposition theorem (Folland, page
87) implies that µ can be decomposed as

µ = µ+ − µ−,

where µ+ and µ− are unique positive Borel measures. The total variation
measure |µ| is defined to be

|µ| = µ+ + µ−.

This is a direct generalization of the corresponding decomposition for L1-
functions. In particular, the total variation measure |µ| is a generalization
of the absolute value function. However, it should be pointed out that in
general |µ(A)| ≤ |µ|(A) for a Borel set A. An important special case is the
measure µ defined by

µ(A) =

∫
A
f(x)dx,

where f is a real valued L1 function. Then µ+(A) =
∫
A f+dx (and similarly

for µ−), and we have

|µ|(A) =

∫
A
|f |dx.

Here the inequality above is clear, since |µ(A)| = |
∫
A fdx|.

For complex valued Borel measures one needs to use a polar represen-
tation to define the total variation of µ. One can show that there exists g
with |g| = 1 µ-a.e. and a positive Borel measure, such that∫

A
dµ =

∫
A
gdν.

Then ν is called the total variation measure of µ, and written as ν = |µ|. (It
is instructive to write out what g and ν are in the above example µ(A) =∫
A fdx.)
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3 The Radon-Nikodym decomposition

Let ν be a signed (complex) measure, and let µ be a positive measure.
We say that ν is absolutely continuous with respect to µ (ν � µ), if the
implication µ(E) = 0 implies ν(E) = 0 holds. (One can use |ν| instead of ν
in this defintion, see exercise 8 on page 92 of Folland.)

A straightforward way to generate a measure ν that is absolutely con-
tinuous with respect to a given measure ν is as follows. Let f ∈ L1(µ) and
define

ν(A) =

∫
A
f(x)dµ(x).

Then ν � µ. (The proof that ν � µ is evident.)
The Radon-Nikodym decomposition states that if ν is a complex measure

(in particular, this means that |ν| is finite measure) and µ is a positive σ-
finite measure, then there exist f ∈ L1(µ) and a complex measure ρ such
that

dν = fdµ+ dρ

and µ ⊥ ρ. (Recall that this means that the measure space can be written
as a disjoint union where µ is the zero measure on one set, while ρ is the
zero measure on the other set.)

For Borel measure on the real line (and on n-dimensional space) one can
further decompose the measure ρ (Folland page 106). One can write any
complex Borel measure µ on Rn as

µ = µd + µac + µs.

Here µd is a countable sum
∑

j cjδxj , µac is of the form fdm with inte-
grable f (m is Lebesgue measure), and µs is a singular measure. On R a
singular measure can be characterized by its distribution function F ; this
function is continuous, monotonically increasing, and F ′ = 0 almost every-
where. In particular dµs = dF 6= F ′dx. (The Cantor function is an example
of such an F .)

In fact, all three pieces of this decomposition can be characterized in
terms of their distribution functions; discrete measures correspond to piece-
wise constant functions, absolutely continous measures have absolutely con-
tinuous distribution functions (see Section 3.5 on page 100 in Folland), and
singular measures have continuous distribution functions with F ′ = 0 a.e.
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4 Total variation

Since we know how to calculate integrals for monotonic functions, we also
know how to calculate integrals for linear combinations of monotonic func-
tions F . It turns out that the class of complex valued distribution functions
for which we can define the Riemann Stieltjes integral is equivalent

We need the total variation of a function F . (The connection with the
above total variation for measures lies in the fact that if F is the distribution
function of µ, then the two notions of total variation turn out to be the
same.) Define

TF (x) = sup{
n∑
j=1

|F (xj)− F (xj−1)| : n ∈ N,−∞ < x0 < ... < xn = x}.

TF is called the total variation of F . We note that

TF (b)− TF (a) = sup{
n∑
j=1

|F (xj)− F (xj−1)| : n ∈ N, a = x0 < ... < xn = b}

This quantity is called the total variation of F on [a, b]. We let BV ([a, b])
be the set of functions that have finite total variation on [a, b]. Note that
if F is a distribution function of a measure µ, then the sums in the above
definition become

n∑
j=1

|µ((xj−1, xk])|,

and one can show that the supremum over this sums is just |µ|((a, b]).

1. For a bounded, increasing function on [a, b] we have TF (b)− TF (a) =
F (b)− F (a).

2. BV is a vector space.

3. If F is differentiable and F ′ is bounded, then F is in BV by the mean
value theorem.

Theorem 2. F in BV real-valued, then TF + F and TF − F are both in-
creasing functions.
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Proof. Let x < y and ε > 0. Choose x0 < ... < xn = x such that
∑
|F (xj)−

F (xj−1)| ≥ TF (x)− ε. We obtain

TF (y)− F (y) ≥
n∑
j=1

|F (xj)− F (xj−1)|+ |F (y)− F (x)|

− (F (y)− F (x))− F (x)

≥ TF (x)− ε− F (x)

which implies the claim.

Hence, real-valued functions in BV are the difference of two bounded
increasing functions (namely 1/2(TF ± F ). Since for increasing functions
the one-sided limits always exist, we obtain that for F ∈ BV the values
F (x+) and F (x−) always exist.

By the previous theorem, F has countably many discontinuities, and
its derivative exists almost everywhere and equals a.e. the derivative of
x 7→ F (x+).

We define NBV to be the space of functions in BV that are right contin-
uous and have limit zero at −∞. We have F ∈ BV implies that G defined
by

G(x) = F (x+)− F (−∞)

is in NBV . It is left as an exercise to show that

Lemma 1. F ∈ BV implies TF (−∞) = 0. If F is right continuous, then
TF is also right continuous.

Theorem 3. If µ is a complex Borel measure on R, then F defined by
F (x) = µ((−∞, x]) is in NBV . Conversely, if F is in NBV , then there
exists unique complex Borel measure µF such that

F (x) = µF ((−∞, x]),

and |µF | = µTF .

Proof. Decompose the complex measure µ as

µ = (µ+1 − µ
−
1 + i(µ+2 − µ

−
2 )

with positive finite Borel measures. Define

F±j (x) = µ±j ((−∞, x]).
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By definition, each F±j is increasing, right continuous, has limit zero at

−∞, and the limit at infinity is µ±j (R) which is finite. Hence F = F+
1 −

F−1 + i(F+
2 − F

−
2 ) is in NBV.

For the converse, decompose complex F in NBV as above with increas-
ing F±j . By Theorem 1.16 of Folland, each F±j defines a positive finite Borel

measure µ±j , which in the obvious way can be used to define µF . Exercise
28 on page 107 in Folland shows that |µF | = µTF .

Proposition 1. 1. F ∈ NBV implies F ′ ∈ L1(R).

2. µF ⊥ m (here m denotes Lebesgue measure) if and only if F ′ = 0 a.e.

3. µF � m if and only if F (x) =
∫ x
−∞ F

′(t)dt.

Proof. (Theorem numbers refer to theorems in Folland’s book.) We write

F ′(x) = lim
r→0

µF (Er)

m(Er)

with Er = (x, x + r] or Er = (x − r, x]. F ′ exists a.e. by Theorem 3.23.
It is in L1

loc by Theorem 3.22, and for the associated measure µF we have
dµF = F ′dm+ dλ. We note that λ ⊥ m implies d|µF | = |F ′|dm+ d|λ| (see
remark in the proof of Theorem 3.22). It follows that∫

|F ′|dm ≤ |µF |(R) = µTF (R) = TF (∞) <∞,

and hence F ′ must be integrable. The second statement follows from The-
orem 3.22. If µF � m, then λ = 0, i.e,

µF ((−∞, x]) =

∫
(−∞,x]

F ′(u)du,

and the left side equals F (x) by definition of µF .

Intuitively, absolutely continuous functions are those functions for which
the fundamental theorem of calculus is valid, since the above statement
implies that

F (x) =

∫
(0,x]

f(u)du.

The Lebesgue differentiation theorem provides the other direction, i.e.,
F ′ = f a.e.
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Corollary 1. 1. If f ∈ L1(R), then F (x) =
∫
(−∞,x] fdm is in NBV and

is absolutely continuous, and f = F ′ a.e.

2. If F ∈ NBV is absolutely continuous, then F ′ ∈ L1(R) and F (x) =∫
(−∞,x] F

′(x)dx.

Proof. For simplicity assume f real valued. Since

|F (xj)− F (xj−1)| ≤
∫ xj

xj−1

|f(u)|du,

F has finite total variation. From the definition of F it follows that F is right
continuous. From the previous proposition it follows that F is absolutely
continuous. Uniqueness in the Lebesgue-Radon-Nikodym theorem implies
that F ′ = f a.e. Second statement follows analogously.

Cantor’s function is continuous, monotonically increasing, satisfies f(0) =
0, f(1) = 1 and is a.e. constant. Hence, it is not equal to the integral of its
derivative. This function is continuous, but not absolutely continuous.

5 Riemann-Stieltjes integral

We start by defining the Riemann-Stieltjes integral. It is worth pointing out
that if f is continuous, then the Riemann-Stieltjes integral with respect to
a function of bounded variation and the Lebesgue integral with respect to
the corresponding Borel measure are the same.

Let [a, b] be a finite interval. For a partition P = {a = x0 < x1 < ... <
xn = b we denote by ‖P‖ the maximum distance between two consecutive
partition elements. Let F be right continuous and have finite total variation
on [a, b]. (This means that F is a finite complex linear combination of
monotonic functions.)We define∫

[a,b]
f(x)dF (x) = lim

‖P‖→0

n∑
j=1

f(x∗j )(F (xj)− F (xj−1))

if this limit exists.
Evidently, if F (x) = x, this is just the Riemann integral of f(x). Without

proof, if f(x) is continuous, then this integral exists. We note that if F is
differentiable, then by the mean value therorem the exists y between xj−1
and xj such that

F (xj)− F (xj−1) = F ′(y)(xj − xj−1).
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This leads to the question under which circumstances the formula∫
[a,b]

f(x)dF (x) =

∫
[a,b]

f(x)F ′(x)dx

is true. The problem is that the value y above depends on the end points,
but the limit defining the Riemann integral takes arbitrary points x∗j . Hence
we need to know under which conditions the two limits exist and are the
same.

It turns out that continuity of F and even uniform continuity of F are
not sufficient for this identity to hold. The correct condition is that F
be absolutely continuous. We note that a function F is called absolutely
continuous if for every ε > 0 there exists δ > 0 such that for every finite
collection of disjoint intervals (a1, b1), ..., (aN , bN ) we have

N∑
j=1

(bj − aj) < δ implies

N∑
j=1

|F (bj)− F (aj)| < ε.

Clearly, absolute continuity implies continuity by taking N = 1, but the
converse is not true. Next, we require extension to complex valued distri-
bution functions. It is worth mentioning that the decomposition of Borel
measures into three measures µ = µac + µd + µs leads to the same decom-
position for integrals; for a distribution function F we get a decomposition∫

[a,b]
f(x)dF (x) =

∫
[a,b]

f(x)F ′1(x)dx+
∑
k

ckf(xk) +

∫
[a,b]

f(x)dF2(x),

where F1 is absolutely continuous, and F2 is singular. (The middle term has
at most countably many terms and corresponds to integrations with respect
to Dirac measures.)

A useful formula is the following integration by parts formula. Let f be
continuous and F have total variation. Then∫

[a,b]
f(x)dF (x) +

∫
[a,b]

F (x)df(x) = F (b)f(b)− F (a)f(a).

To see that this is true, note that

n∑
j=1

f(xj)(F (xj)− F (xj−1) +
n∑
j=1

F (xj−1)(f(xj)− f(xj−1))

= F (b)f(b)− F (a)f(a).

and as n → ∞, the first two sums converge to the respective Riemann-
Stieltjes integrals.
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6 Riesz representation

We consider first the argument using the Riemann-Stieltjes integral notion.
The setup is the following. We are given the space C[a, b] of continu-
ous functions on [a, b] (with norm ‖f‖∞), and we are given a functional
T : C[a, b] → C that is linear and bounded (or equivalently linear and con-
tinuous). The statement is that there exists right continuous F of finite
total variation so that

Tf =

∫
[a,b]

f(x)dF (x)

for all f ∈ C[a, b]. First, we note that if this is true, then this gives an
equivalence, because every functional that is given by an integration against
a BV function is linear (property of integrals), and bounded, since

|Tf | ≤ ‖f‖∞
∫
[a,b]

dTf ,

where TF is the total variation function of F . (Use the definition of the
Riemann-Stieltjes integral to see this!) Since F is assumed to have bounded
variation, we see that T is even Lipschitz continuous on C[a, b].

If T is such a functional, what can we say about F in terms of T? We
can obtain a formula relating F and T by plugging in special functions f ,
namely spline functions. Define

fξ(x) =

{
x if x < ξ,

ξ if x ≥ ξ

Then

Tfξ =

∫
[a,b]

fξ(x)dF (x) =

∫
[a,ξ)

xdF (x) + ξ(F (b)− F (ξ)).

An integration by parts gives∫
[a,ξ)

xdF (x) = ξF (ξ)− aF (a)−
∫
[a,ξ)

F (x)dx

and hence

Tfξ = ξF (b)− aF (a)−
∫
[a,ξ)

F (x)dx.

Differentiate the whole mess with respect to ξ: We get

∂

∂ξ
[Tfξ] = F (b)− F (ξ),
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i.e.,

F (ξ) = F (b)− ∂

∂ξ
Tfξ.

The Riesz representation theorem states that there are no other func-
tionals, i.e., if T is a bounded, linear functional on C[a, b], then there exists
F ∈ BV [a, b] such that

Tf =

∫
[a,b]

f(x)dF (x)

for all f ∈ C[a, b].The proof strategy is clear: Define a function F by

F (ξ) = C − ∂

∂ξ
Tfξ,

with the functions fξ defined above, and show that (a) F has finite total
variation on [a, b], and (b) show that for a suitable choice of C the formula

Tf =

∫
[a,b]

f(x)dF (x)

is true for all f ∈ C[a, b].
Technical problem: under the above assumptions we don’t know that

Tfξ as a function of ξ is differentiable. Hence, we have to work with Tfξ
directly rather than with its derivative. Thus, for the proof of the Riesz
representation theorem we require a criterion that tells us when a given
function is the antiderivative of a function of bounded variation. The crite-
rion essentially states that the sum of the difference quotients of Tfξ has to
be uniformly bounded.

Theorem 4. Let A : [a, b] → C. Then there exists a function of bounded
variation α with

A(x) =

∫ x

0
α(u)du+A(0),

if and only if there exists C > 0 so that for all partitions of [a, b]

n−1∑
k=1

∣∣∣∣A(xk+1)−A(xk)

xk+1 − xk
− A(xk)−A(xk−1)

xk − xk−1

∣∣∣∣ ≤ C.
Sketch of proof. If A is such an antiderivative, then

A(y)−A(x) =

∫ y

x
α(u)du.
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Using this in the two fractions, it follows that the value of this sum cannot
exceed the total variation of α on [a, b].

Reverse direction: Assume that the sums in the statement of the theorem
are bounded. It follows then that the right difference quotients of A are
bounded, and hence

α(x) = lim sup
h→0,h>0

A(x+ h)−A(x)

h

exist. One can show that α has bounded variation, and that A is an an-
tiderivative of α.

The Riesz-representation theorem using the Riemann-Stieltjes integral
is as follows. For simplicity we consider an interval of the form [0, b], and
note that the general case can be done with a translation.

Theorem 5. Let T : C[a, b] → C be a continuous linear functional. Then
there exists a right continuous function F of bounded variation such that

Tf =

∫
[a,b]

f(x)dF (x)

for all f ∈ C[a, b].

Sketch of proof. For simplicity we consider a = 0 and note that the general
case can be obtained with a translation. The proof consists in combining
the ideas and theorems above. Define a function A by

A(ξ) = −Tfξ.

One needs to show that this function is the antiderivative of a function
α of bounded variation using the previous theorem. Once this is done, the
derivative of A with respect to ξ is defined a.e., and its integral is A. Define

F (x) = A′(x)−A′(b).

Since F (b) = 0, fξ(0) = 0, and A(0) = Tf0 = T0 = 0, we get for fξ that∫
[0,b]

fξdF = F (b)fξ(b)− F (0)fξ(0)−
∫
[0,b]

F (x)dfξ(x)

= −
∫ ξ

0
A′(x)dx

= −(A(ξ)−A(a))

= Tfξ.
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We note that every ’hat’ function is a linear combination of two fξ, and
hence any piecewise linear continuous function with f(a) = f(b) = 0 is a
finite linear combination of the form

f =
∑
j

cjfξj .

The final step in the proof is to show that continuous piecewise linear
functions are dense in C[a, b], and to use this to finish the proof. To see this,
let f ∈ C[a, b], and let ε > 0. Let δ > 0 be such that |x − y| < δ implies
|f(x)− f(y)| < ε. Let n be so large that h = n−1(b− a) satisfies

h < δ.

Define the points xj of a partition of [a, b] by xj = a + jh. Let ψn be
the piecewise linear continuous function obtained by connecting the points
(xj , f(xj)) by line segments. Then for x ∈ [xj−1, xj ] there exists ξx such
that ψn(x) = f(ξx) (Intermediate Value Theorem). It follows that

|ψn(x)− f(x)| = |f(ξx)− f(x)| < ε.

Note that n depends on ε, but not on x. Hence

lim
n→∞

‖f − ψn‖∞ = 0.

We have for all n that

Tψn =

∫
[a,b]

ψn(x)dF (x).

Now we can finish the proof. Let f ∈ C[a, b]. Let ε > 0. We obtain that
there exists n0 so that for n ≥ n0

|T (ψn − f)| ≤ ‖T‖‖ψn − f‖∞ < ε

and ∣∣∣∣∣
∫
[a,b]

(f − ψn)dF

∣∣∣∣∣ ≤ V (F )‖ψn − f‖∞ < ε.

Combining these, we obtain∣∣∣∣∣Tf −
∫
[a,b]

f(x)dF (x)

∣∣∣∣∣ < 2ε,

and since ε was arbitrary, we obtain the claim.
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The Riesz representation theorem when formulated via Borel measures
is the following.

Theorem 6. Let T : C([−1/2, 1/2])→ C be a continuous linear functional.
Then there exists a (complex valued) measure of finite total variation on
[−1/2, 1/2] such that for all f ∈ C([−1/2, 1/2])

T (f) =

∫
[−1/2,1/2]

f(t)dµ(t),

and ‖T‖ = |µ|. (Here ‖T‖ = sup{|Tf | : ‖f‖∞ ≤ 1}.)

Sketch of proof. Prove first that T can be decomposed as T+−T−, where T±
are positive functionals, that is, functionals with the property that T+f ≥ 0
if f is a nonnegative function.

Once this is done, the problem is reduced to showing that the Riesz
representation theorem holds for positive functionals. We would like to
define the measure µ by

µ(A) = TχA

where A is a Borel measure. This is of course not possible, since χA is not
continuous, so TχA is not defined. We note that characteristic functions
of intervals can be approximated from below by nonnegative continuous
functions (make a plot!). Hence, we define a set function ρ on intervals by

ρ((a, b]) = sup{Tf : f ≥ 0, f ≤ χ(a,b]}.

Since ρ is defined on half open intervals, it extends to a measure on [a, b].
The task is then to show that this measure satisfies Tf =

∫
fdµ.

The Riesz representation theorem for continuous functions of compact
support is valid under much more general assumptions. A version is proved
in Folland, Real Analysis, Theorem 7.17 and Corollary 7.18 on page 223. The
original paper (written in French) by F. Riesz that deals with continuous
functions on intervals, is about four pages long and completely elementary. A
translation can be found at http://nonagon.org/ExLibris/rieszs-equations-
integrales .

14


