
Math 857 Fall 2015

1 The Fourier transform

Let f ∈ L1(R). We define

f̂(t) =

∫ ∞
−∞

f(x)e−2πixtdx,

and we note that f̂(t) is always in C, since the integral converges absolutely.
Moreover, f̂ is evidently an element of L∞(R) with

‖f̂‖∞ ≤ ‖f‖1.

In functional analysis terms: F defined by F(f) = f̂ is a bounded linear
operator from L1(R) into L∞(R) with norm ≤ 1.

Goals:

1. The Fourier transform maps L1 into, but not onto L∞. In fact, we
will prove that

lim
t→∞

f̂(t) = 0

if f ∈ L1(R) (compare homework 1).

2. What is the Fourier transform of a function in L2(R)? At this point it
is not even clear how to define the Fourier transform of an L2-function!

We know that the Fourier transform can be defined on L1 ∩ L2(R),
and we will use density statements to extend it from this set to all of
L2. Along the way we will see that the limit

f̂(t) = lim
N→∞

∫ N

−N
f(x)e−2πixtdx

exists for all f ∈ L2(R), and we will prove that this limit can be taken
as the definition of the Fourier transform of f .

3. The exponentials x 7→ e−2πitx for t ∈ R are not elements of Lp for
p < ∞. Hence the Hilbert space approach via maximal orthonormal
systems cannot be used. Nonetheless,

〈f, g〉 =

∫
R
f(u)g(u)du
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defines a scalar product on L2(R), and this space is closed with respect
to the induced norm. We shall prove that even in this situation the
Fourier transform is an isometry on L2, and that

F(f̂)(x) = f(−x).

2 Basic Properties

Since we will go from L1 ∩L2 to L2, we start with properties of the Fourier
transform on L1. For f, g ∈ L1(R) and α, λ ∈ R we note the following
properties.

1. If g(x)f(x)e2πiαx, then ĝ(t) = f̂(t − α). (Follows by direct substitu-
tion.)

2. If g(x) = f(x− α), then ĝ(t) = f̂(t)e−2πiαt.

3. If h = f ∗ g, then h ∈ L1(R) and ĥ(t) = f̂(t)ĝ(t). (Fubini and substi-
tution)

4. If g(x) = f(−x), then ĝ(t) = f̂(t).

5. If g(x) = f(λx) for λ > 0, then ĝ(t) = λ−1f̂(λ−1t).

6. If g(x) = −2πixf(x) ∈ L1(R), then f̂ is differentiable, and ĝ(t) = f̂ ′(t).

For this part we note first that

f̂(s)− f̂(t)

s− t
=

∫
R
f(x)e−2πixtϕ(x, s− t)dx

where

ϕ(x, u) =
e−2πixu − 1

u
.

After multiplication and division by |x| we see that |ϕ(x, u)| ≤ C max(1, |x|)
for some positive C > 0. (In fact, it is ≤ |x|.) By assumption
|xf(x)| ∈ L1, hence we may apply dominated convergence when letting
s→ t and move the limit inside the integral.

lim
u→0

ϕ(x, u) = −2πix.

we obtain the stated identity.
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3 Inversion

Consider pointwise inversion of Fourier series. We emphasize that we did
not do this when talking about Fourier series since we were interested in
inversion in L2([0, 1]). What conditions are necessary to obtain pointwise
that

f(x) =
∑
n

cne
2πinx

when

cn =

∫ 1/2

−1/2
f(x)e−2πinxdx

is the nth Fourier coefficient? A pointwise proof requires using Fubini or
uniform convergence in the double ‘integral’∫ 1/2

−1/2

∑
n

cne
2πinxe−2πinxdx,

which is to say, we would need f ∈ L1([0, 1]) and cn ∈ `1(Z).
The corresponding condition for f ∈ L1(R) would be f̂ ∈ L1(R), but

note that the analogue of the above approach will fail since∫
R
e−2πi(x−t)udu

is not a convergent integral. We need to proceed differently. What should
happen is that the integral is ‘equal’ to the Dirac measure δ. This suggest
to employ a tool that we used now twice already, namely replacing δ by
convolution with an approximate identity, i.e., a family ϕt of nonnegative
function with integral value 1 such that

lim
t→∞

f ∗ ϕt = f

in L1. We start with the Riemann-Lebesgue lemma for Fourier transforms.
(This gives in particular that F : L1 → L∞ is not onto.)

Theorem 1. If f ∈ L1(R), then f̂ is continuous, ‖f̂‖∞ ≤ ‖f‖1 and

lim
t→∞

f̂(t) = 0
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Proof. We had shown the first inequality already. To prove continuity, let
t ∈ R and consider a sequence tn → t. We have

|f̂(t)− f̂(tn)| =
∣∣∣∣∫

R
f(x)(e−2πixt − e−2πixtn)dx

∣∣∣∣ .
Check assumptions of dominated convergence and pull the limit tn → t

inside the integral.
We could prove the limit statement in the same way as the analogous

statement for Fourier coefficients on the first assignment. We will give a
different proof using uniform convergence of the translation operator. We
note first that

f̂(t) = −
∫
R
f(x)e−2πit(x+ 1

2t
)dx = −

∫
R
f

(
x− 1

2t

)
e−2πitxdx.

Hence

f̂(t) =
1

2

∫
R

(
f(x)− f

(
x− 1

2t

))
e−2πixtdx

and it follows that

|f̂(t)| ≤ 1

2
‖f − f1/(2t)‖1,

where fy(x) = f(x−y). The proof is completed by the following lemma.

Lemma 1. If 1 ≤ p < ∞ and f ∈ Lp(R), then y 7→ fy is a uniformly
continuous mapping from R into Lp(R).

It is worthwhile to write out what this statement really means: For every
ε > 0 there exists δ > 0 so that for all s, t ∈ R

|s− t| < δ =⇒ ‖fs − ft‖p < ε.

In particular, for f ∈ L1(R),

lim
t→∞
‖f − f1/(2t)‖1 = 0.

Proof. The crucial feature is that if |s− t| < δ, then |(x−s)−(x− t)| < δ for
all x. To get this fact into the game, we approximate arbitrary L1 functions
by continuous functions with bounded support. Let ε > 0. There exists
A > 0 and continous g supported in [−A,A] such that

‖f − g‖1 < ε.
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Uniform continuity of g implies that there exists δ ∈ (0, A) such that
|s− t| < δ implies

|g(s)− g(t)| < (3A)−1/pε.

If |s− t| < δ, then |(x− s)− (x− t)| < δ for all x, so that∫
R
|g(x− s)− g(x− t)|pdx < (3A)−1εp(2A+ δ) < εp,

hence,
‖gs − gt‖p < ε.

We note that ‖ht‖p = ‖h‖p for all h ∈ Lp. We get

‖fs − ft‖p ≤ ‖(f − g)t‖p + ‖gs − gt‖+ ‖(f − g)s‖p < 3ε.

This finishes the proof.

We need a family of functions that are nonnegative, have all integral
value 1, and converge to zero uniformly away from the origin. There are
many choices. Note that ∫

R
e−2πixtdδ(x) = 1

for all t, hence a good choice for such a family has also the property that its
Fourier transforms converge to 1 from below. Recall that a function H(λt)
has transform λ−1ĥ(x/λ). So we start with a function H such that H(λt)
goes to 1 from below as λ→∞. We will use the choice H defined by

H(t) = e−2π|t|.

(Another popular choice is the Gaussian e−πx
2
.) We define

hλ(x) =

∫ ∞
−∞

H(λt)e2πitxdt

and note that

hλ(x) =
λ

π(x2 + λ2)
.

Moreover, ∫ ∞
−∞

hλ(x)dx = 1

and
ĥλ(t) = H(λt).
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We will use the family {hλ}λ>0 as our approximate identity. (We will
let λ → 0+.) Since the transform of a convolution of L1 functions is the
product of the transforms, we obtain for f ∈ L1(R) that

(f ∗ hλ)(x) =

∫ ∞
−∞

H(λt)f̂(t)e2πixtdt.

We also have for every g ∈ L∞(R) that is continuous at x0 that

lim
λ→0+

(g ∗ hλ)(x0) = g(x0).

(The proof is the usual combination of integrals. The estimation step is
simpler, since the assumptions imply that after a substitution the integrand
is bounded by 2‖g‖∞h1(s), which means that we may use dominated con-
vergence to pass to the limit under the integral sign.)

For the next theorem we need an inequality of the following form:∣∣∣∣∫
R
g(u)dµ(u)

∣∣∣∣p ≤ ∫ |g(u)|pdµ(u)

where µ is a Borel measure with µ(R) = 1. This is obtained from a useful
inequality for convex functions, namely Jensen’s inequality:

Lemma 2. Let Ω ⊆ Rn with µ(Ω) = 1. If f ∈ L1(µ) is real valued, ϕ :
(a, b)→ R is convex, and a < f < b on Ω, then

ϕ

(∫
Ω
fdµ

)
≤
∫

Ω
ϕ(f(x))dµ(x).

Proof. Some intuition first: We want to show that∫
Ω
ϕ(f(x))dµ(x)− ϕ

(∫
Ω
fdµ

)
≥ 0.

Set s = f(x) and t =
∫

Ω fdµ. If it were true that

ϕ(s)− ϕ(t) ≥ 0,

for all s and t, then plugging in the values of s and t, integrating over x,
and using that µ(Ω) = 1 would give the claim.Evidently, this can never be
true, unless ϕ is constant. However, we don’t need this inequality for all s
and t. We have with the above choices that∫

Ω
(s− t)dµ(x) =

∫
Ω
f(x)dµ(x)− t = 0,
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i.e., any occurence of s− t will not affect the inequalities that we need! This
is promising since we do have the following: convexity of ϕ implies (and is
in fact equivalent to) that for a < z < t < u < b we have

ϕ(t)− ϕ(z)

t− z
≤ ϕ(u)− ϕ(t)

u− t
.

Note that for s = f(x) we have to consider the possibilities s < t and
t < s. To do this, let

β = sup
a<z<t

ϕ(t)− ϕ(z)

t− z
,

and note the inequality above gives

β ≤ ϕ(u)− ϕ(t)

u− t

for t < u < b. Hence
ϕ(s) ≥ ϕ(t) + β(t− s)

for any s ∈ (a, b). Apply this with s = f(x). We get

ϕ(f(x))− ϕ(t)− β(f(x)− t) ≥ 0.

Integrate both sides with respect to µ and note that the term with factor
β becomes zero for our choice of t and s.

Theorem 2. If 1 ≤ p <∞ and f ∈ Lp(R), then

lim
λ→0+

‖f ∗ hλ − f‖p = 0.

Proof. Let 1 ≤ p < ∞, and note that hλ ∈ Lq(R) where p−1 + q−1 = 1.
Hence by Hölder’s inequality, f ∗ hλ is defined for every x. Since

∫
hλ = 1,

we get

f ∗ hλ(x)− f(x) =

∫
R

(f(x− u)− f(x))hλ(u)du.

We obtain from Jensen’s inequality with ϕ(t) = |t|p and dµ(x) = hλ(x)dx
that

|f ∗ hλ(x)− f(x)|p ≤
∫ ∞
−∞
|f(x− u)− f(x)|phλ(u)du.

Integration in x and application of Fubini’s theorem gives

‖f ∗ hλ − f‖pp ≤
∫
R
‖fu − f‖pphλ(u)du.
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Define
g(y) = ‖f−y − f‖pp

and note that

g ∗ hλ(0) =

∫
R
g(−u)hλ(u)du =

∫
R
‖fu − f‖pphλ(u)du.

We had shown that g is continuous and that the convolution of a contin-
uous function g with hλ converges to g pointwise. Since g(0) = 0, we obtain
that

lim
λ→0+

‖f ∗ hλ − f‖p = 0.

We are now in a position to prove the inversion theorem.

Theorem 3. If f ∈ L1(R) and f̂ ∈ L1(R), then∫ ∞
−∞

f̂(t)e2πixtdt = f(x)

almost everywhere. Moreover, f is continuous and satisfies lim|x|→∞ f(x) =
0.

Proof. Most of the work has been done. We start with

f ∗ hλ(x) =

∫ ∞
−∞

H(λt)f̂(t)e2πixtdt.

We had seen before that the left side converges in L1(R) to f . This means
that there exists a subsequence λn for which we have almost everywhere
convergence to f . It follows that for almost every x

f(x) = lim
n→∞

f ∗ hλn(x) = lim
n→∞

∫ ∞
−∞

H(λnt)f̂(t)e2πixtdt,

and since |H| ≤ 1 and f̂ ∈ L1(R), dominated convergence shows that the
right hand side converges to ∫ ∞

−∞
f̂(t)e2πixtdt,

which gives the claimed identity. The remaining statements follow from the
assumption that f̂ ∈ L1(R).
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4 Parseval’s identity

Theorem 4. Let f ∈ L2(R). There exists f̂ ∈ L2(R) such that the following
properties hold.

1. If f ∈ L1 ∩ L2(R), then f̂ is the previously defined Fourier transform
of f .

2. For every f ∈ L2(R) the identity ‖f‖2 = ‖f̂‖2 holds.

3. The mapping f 7→ f̂ is a Hilbert space isomorphism of L2(R) onto
L2(R).

4. If

ϕA(t) =

∫ A

−A
f(x)e−2πixtdx,

ψA(x) =

∫ A

−A
f̂(t)e2πixtdt,

then ‖ϕA − f̂‖2 → 0 and ‖ψA − f‖2 → 0 as A→∞.

Proof. Let f ∈ L1 ∩L2(R). (So far we know that f̂ is continuous, bounded,
and converges to zero as |t| → ∞. We do not yet know the inversion formula,
since the transform might not be integrable.)

Our first goal is ‖f‖2 = ‖f̂‖2. We recall that for h1, h2 ∈ L1(R) we have

(h1 ∗ h2)∧(t) = ĥ1(t)ĥ2(t).

Here’s a question, whose answer contains the proof for the proposed

identity: Which convolution has Fourier transform |f̂ |2 = f̂ f̂? Heuristically,
we are going to solve the identity

h1 ∗ h2(x) =

∫ ∞
−∞
|f̂(t)|2e2πitxdt, (1)

but of course we do not yet know that f̂ ∈ L2(R).
This immediately leads to the definition g = h1 ∗h2, where h1(x) = f(x)

and h2(x) = f(−x). From the properties of the Fourier transform we then

obtain ĥ2(t) = f̂(t), and the value of the convolution is

g(x) =

∫
R
f(x− u)f(−u)du.
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Let us collect properties of g. Fubini implies that g ∈ L1(R), hence this
is well defined. Moreover, for fixed x we have g(x) = 〈f, f−x〉, hence Cauchy-
Schwarz and using the assumption f ∈ L2(R) implies that g is bounded. We
recall that x 7→ f−x is a continuous mapping from R to L2(R), and that the
scalar product is continuous. Hence g is continuous. Evidently g(0) = ‖f‖22.
The question to be solved can now be reformulated as follows: Is the identity

g(0) =

∫
R
|f̂(t)|2dt

true?
As before, consider g ∗ hλ. Continuity and boundedness of g imply that

lim
λ→0

g ∗ hλ(0) = g(0) = ‖f‖22.

Since g ∈ L1(R), we have

(g ∗ hλ)(t) =

∫
R
ĝ(t)H(λt)e2πitxdt.

We emphasize that for this identity we only needed that ĝ is bounded; we
did not have to require that ĝ ∈ L1(R). We have ĝ(t) = |f̂(t)|2 ≥ 0. Crucial
fact: if x = 0, then in order to let λ→ 0 in the above identity we do not need
to use dominated convergence, we may use monotone convergence instead.
Hence

lim
λ→0+

g ∗ hλ(0) =

∫
R
|f̂(t)|2dt,

regardless of whether or not the right hand side is finite or infinite! With
the previous identity for g(0) it follows now that

‖f‖2 = ‖f̂‖2

and hence both sides must be finite, and in particular f̂ ∈ L2(R).
This was the major part of the proof. For the remaining pieces, let

Y = {f̂ : f ∈ L1 ∩ L2(R)}

We have shown that Y ⊆ L2(R). We prove next that if w ⊥ g for all
g ∈ Y , then w = 0. Note that this implies that Y is dense in L2(R) by the
decomposition for closed subspaces.

We note that t 7→ hλ(t − α) ∈ Y since this is the Fourier transform of
e2πiαxH(λx), which is in L1 ∩ L2(R). Hence∫

R
hλ(t− α)w(t)dt = 0
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for all α ∈ R. But the left side is hλ ∗ w(α), and we had shown before that

lim
λ→0
‖hλ ∗ w − w‖2 = 0.

Hence there exists a subsequence of λ’s such that the difference converges
pointwise almost everywhere, hence w = 0 a.e.

Almost done: The Fourier transform provides an isometry from the dense
subspace L1 ∩L2(R) onto the dense subspace Y of L2(R). By the extension
theorem for isometries it follows that it extends to some isometry from L2(R)
onto itself.

For the explicit representation it is enough to note that for f ∈ L2(R)
we have χ[−A,A]f ∈ L1 ∩ L2(R) for all A > 0 (and by definition ϕA =
(χ[−A,A]f)∧), and then apply the previous limit relations.
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