1 The Fourier transform

Let $f \in L^{1}(\mathbb{R})$. We define

$$
\widehat{f}(t)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x t} d x,
$$

and we note that $\widehat{f}(t)$ is always in \mathbb{C}, since the integral converges absolutely. Moreover, \widehat{f} is evidently an element of $L^{\infty}(\mathbb{R})$ with

$$
\|\widehat{f}\|_{\infty} \leq\|f\|_{1}
$$

In functional analysis terms: \mathcal{F} defined by $\mathcal{F}(f)=\widehat{f}$ is a bounded linear operator from $L^{1}(\mathbb{R})$ into $L^{\infty}(\mathbb{R})$ with norm ≤ 1.

Goals:

1. The Fourier transform maps L^{1} into, but not onto L^{∞}. In fact, we will prove that

$$
\lim _{t \rightarrow \infty} \widehat{f}(t)=0
$$

if $f \in L^{1}(\mathbb{R})$ (compare homework 1).
2. What is the Fourier transform of a function in $L^{2}(\mathbb{R})$? At this point it is not even clear how to define the Fourier transform of an L^{2}-function! We know that the Fourier transform can be defined on $L^{1} \cap L^{2}(\mathbb{R})$, and we will use density statements to extend it from this set to all of L^{2}. Along the way we will see that the limit

$$
\widehat{f}(t)=\lim _{N \rightarrow \infty} \int_{-N}^{N} f(x) e^{-2 \pi i x t} d x
$$

exists for all $f \in L^{2}(\mathbb{R})$, and we will prove that this limit can be taken as the definition of the Fourier transform of f.
3. The exponentials $x \mapsto e^{-2 \pi i t x}$ for $t \in \mathbb{R}$ are not elements of L^{p} for $p<\infty$. Hence the Hilbert space approach via maximal orthonormal systems cannot be used. Nonetheless,

$$
\langle f, g\rangle=\int_{\mathbb{R}} f(u) \overline{g(u)} d u
$$

defines a scalar product on $L^{2}(\mathbb{R})$, and this space is closed with respect to the induced norm. We shall prove that even in this situation the Fourier transform is an isometry on L^{2}, and that

$$
\mathcal{F}(\widehat{f})(x)=f(-x)
$$

2 Basic Properties

Since we will go from $L^{1} \cap L^{2}$ to L^{2}, we start with properties of the Fourier transform on L^{1}. For $f, g \in L^{1}(\mathbb{R})$ and $\alpha, \lambda \in \mathbb{R}$ we note the following properties.

1. If $g(x) f(x) e^{2 \pi i \alpha x}$, then $\widehat{g}(t)=\widehat{f}(t-\alpha)$. (Follows by direct substitution.)
2. If $g(x)=f(x-\alpha)$, then $\widehat{g}(t)=\widehat{f}(t) e^{-2 \pi i \alpha t}$.
3. If $h=f * g$, then $h \in L^{1}(\mathbb{R})$ and $\widehat{h}(t)=\widehat{f}(t) \widehat{g}(t)$. (Fubini and substitution)
4. If $g(x)=\overline{f(-x)}$, then $\widehat{g}(t)=\overline{\hat{f}(t)}$.
5. If $g(x)=f(\lambda x)$ for $\lambda>0$, then $\widehat{g}(t)=\lambda^{-1} \widehat{f}\left(\lambda^{-1} t\right)$.
6. If $g(x)=-2 \pi i x f(x) \in L^{1}(\mathbb{R})$, then \widehat{f} is differentiable, and $\widehat{g}(t)=\widehat{f^{\prime}}(t)$. For this part we note first that

$$
\frac{\widehat{f}(s)-\widehat{f}(t)}{s-t}=\int_{\mathbb{R}} f(x) e^{-2 \pi i x t} \varphi(x, s-t) d x
$$

where

$$
\varphi(x, u)=\frac{e^{-2 \pi i x u}-1}{u}
$$

After multiplication and division by $|x|$ we see that $|\varphi(x, u)| \leq C \max (1,|x|)$ for some positive $C>0$. (In fact, it is $\leq|x|$.) By assumption $|x f(x)| \in L^{1}$, hence we may apply dominated convergence when letting $s \rightarrow t$ and move the limit inside the integral.

$$
\lim _{u \rightarrow 0} \varphi(x, u)=-2 \pi i x .
$$

we obtain the stated identity.

3 Inversion

Consider pointwise inversion of Fourier series. We emphasize that we did not do this when talking about Fourier series since we were interested in inversion in $L^{2}([0,1])$. What conditions are necessary to obtain pointwise that

$$
f(x)=\sum_{n} c_{n} e^{2 \pi i n x}
$$

when

$$
c_{n}=\int_{-1 / 2}^{1 / 2} f(x) e^{-2 \pi i n x} d x
$$

is the nth Fourier coefficient? A pointwise proof requires using Fubini or uniform convergence in the double 'integral'

$$
\int_{-1 / 2}^{1 / 2} \sum_{n} c_{n} e^{2 \pi i n x} e^{-2 \pi i n x} d x
$$

which is to say, we would need $f \in L^{1}([0,1])$ and $c_{n} \in \ell^{1}(\mathbb{Z})$.
The corresponding condition for $f \in L^{1}(\mathbb{R})$ would be $\widehat{f} \in L^{1}(\mathbb{R})$, but note that the analogue of the above approach will fail since

$$
\int_{\mathbb{R}} e^{-2 \pi i(x-t) u} d u
$$

is not a convergent integral. We need to proceed differently. What should happen is that the integral is 'equal' to the Dirac measure δ. This suggest to employ a tool that we used now twice already, namely replacing δ by convolution with an approximate identity, i.e., a family φ_{t} of nonnegative function with integral value 1 such that

$$
\lim _{t \rightarrow \infty} f * \varphi_{t}=f
$$

in L^{1}. We start with the Riemann-Lebesgue lemma for Fourier transforms. (This gives in particular that $\mathcal{F}: L^{1} \rightarrow L^{\infty}$ is not onto.)
Theorem 1. If $f \in L^{1}(\mathbb{R})$, then \widehat{f} is continuous, $\|\widehat{f}\|_{\infty} \leq\|f\|_{1}$ and

$$
\lim _{t \rightarrow \infty} \widehat{f}(t)=0
$$

Proof. We had shown the first inequality already. To prove continuity, let $t \in \mathbb{R}$ and consider a sequence $t_{n} \rightarrow t$. We have

$$
\left|\widehat{f}(t)-\widehat{f}\left(t_{n}\right)\right|=\left|\int_{\mathbb{R}} f(x)\left(e^{-2 \pi i x t}-e^{-2 \pi i x t_{n}}\right) d x\right|
$$

Check assumptions of dominated convergence and pull the limit $t_{n} \rightarrow t$ inside the integral.

We could prove the limit statement in the same way as the analogous statement for Fourier coefficients on the first assignment. We will give a different proof using uniform convergence of the translation operator. We note first that

$$
\widehat{f}(t)=-\int_{\mathbb{R}} f(x) e^{-2 \pi i t\left(x+\frac{1}{2 t}\right)} d x=-\int_{\mathbb{R}} f\left(x-\frac{1}{2 t}\right) e^{-2 \pi i t x} d x
$$

Hence

$$
\widehat{f}(t)=\frac{1}{2} \int_{\mathbb{R}}\left(f(x)-f\left(x-\frac{1}{2 t}\right)\right) e^{-2 \pi i x t} d x
$$

and it follows that

$$
|\widehat{f}(t)| \leq \frac{1}{2}\left\|f-f_{1 /(2 t)}\right\|_{1}
$$

where $f_{y}(x)=f(x-y)$. The proof is completed by the following lemma.
Lemma 1. If $1 \leq p<\infty$ and $f \in L^{p}(\mathbb{R})$, then $y \mapsto f_{y}$ is a uniformly continuous mapping from \mathbb{R} into $L^{p}(\mathbb{R})$.

It is worthwhile to write out what this statement really means: For every $\varepsilon>0$ there exists $\delta>0$ so that for all $s, t \in \mathbb{R}$

$$
|s-t|<\delta \Longrightarrow\left\|f_{s}-f_{t}\right\|_{p}<\varepsilon
$$

In particular, for $f \in L^{1}(\mathbb{R})$,

$$
\lim _{t \rightarrow \infty}\left\|f-f_{1 /(2 t)}\right\|_{1}=0
$$

Proof. The crucial feature is that if $|s-t|<\delta$, then $|(x-s)-(x-t)|<\delta$ for all x. To get this fact into the game, we approximate arbitrary L^{1} functions by continuous functions with bounded support. Let $\varepsilon>0$. There exists $A>0$ and continous g supported in $[-A, A]$ such that

$$
\|f-g\|_{1}<\varepsilon .
$$

Uniform continuity of g implies that there exists $\delta \in(0, A)$ such that $|s-t|<\delta$ implies

$$
|g(s)-g(t)|<(3 A)^{-1 / p} \varepsilon
$$

If $|s-t|<\delta$, then $|(x-s)-(x-t)|<\delta$ for all x, so that

$$
\int_{\mathbb{R}}|g(x-s)-g(x-t)|^{p} d x<(3 A)^{-1} \varepsilon^{p}(2 A+\delta)<\varepsilon^{p}
$$

hence,

$$
\left\|g_{s}-g_{t}\right\|_{p}<\varepsilon
$$

We note that $\left\|h_{t}\right\|_{p}=\|h\|_{p}$ for all $h \in L^{p}$. We get

$$
\left\|f_{s}-f_{t}\right\|_{p} \leq\left\|(f-g)_{t}\right\|_{p}+\left\|g_{s}-g_{t}\right\|+\left\|(f-g)_{s}\right\|_{p}<3 \varepsilon
$$

This finishes the proof.
We need a family of functions that are nonnegative, have all integral value 1 , and converge to zero uniformly away from the origin. There are many choices. Note that

$$
\int_{\mathbb{R}} e^{-2 \pi i x t} d \delta(x)=1
$$

for all t, hence a good choice for such a family has also the property that its Fourier transforms converge to 1 from below. Recall that a function $H(\lambda t)$ has transform $\lambda^{-1} \widehat{h}(x / \lambda)$. So we start with a function H such that $H(\lambda t)$ goes to 1 from below as $\lambda \rightarrow \infty$. We will use the choice H defined by

$$
H(t)=e^{-2 \pi|t|}
$$

(Another popular choice is the Gaussian $e^{-\pi x^{2}}$.) We define

$$
h_{\lambda}(x)=\int_{-\infty}^{\infty} H(\lambda t) e^{2 \pi i t x} d t
$$

and note that

$$
h_{\lambda}(x)=\frac{\lambda}{\pi\left(x^{2}+\lambda^{2}\right)}
$$

Moreover,

$$
\int_{-\infty}^{\infty} h_{\lambda}(x) d x=1
$$

and

$$
\widehat{h}_{\lambda}(t)=H(\lambda t)
$$

We will use the family $\left\{h_{\lambda}\right\}_{\lambda>0}$ as our approximate identity. (We will let $\lambda \rightarrow 0+$.) Since the transform of a convolution of L^{1} functions is the product of the transforms, we obtain for $f \in L^{1}(\mathbb{R})$ that

$$
\left(f * h_{\lambda}\right)(x)=\int_{-\infty}^{\infty} H(\lambda t) \widehat{f}(t) e^{2 \pi i x t} d t
$$

We also have for every $g \in L^{\infty}(\mathbb{R})$ that is continuous at x_{0} that

$$
\lim _{\lambda \rightarrow 0+}\left(g * h_{\lambda}\right)\left(x_{0}\right)=g\left(x_{0}\right)
$$

(The proof is the usual combination of integrals. The estimation step is simpler, since the assumptions imply that after a substitution the integrand is bounded by $2\|g\|_{\infty} h_{1}(s)$, which means that we may use dominated convergence to pass to the limit under the integral sign.)

For the next theorem we need an inequality of the following form:

$$
\left|\int_{\mathbb{R}} g(u) d \mu(u)\right|^{p} \leq \int|g(u)|^{p} d \mu(u)
$$

where μ is a Borel measure with $\mu(\mathbb{R})=1$. This is obtained from a useful inequality for convex functions, namely Jensen's inequality:

Lemma 2. Let $\Omega \subseteq \mathbb{R}^{n}$ with $\mu(\Omega)=1$. If $f \in L^{1}(\mu)$ is real valued, φ : $(a, b) \rightarrow \mathbb{R}$ is convex, and $a<f<b$ on Ω, then

$$
\varphi\left(\int_{\Omega} f d \mu\right) \leq \int_{\Omega} \varphi(f(x)) d \mu(x)
$$

Proof. Some intuition first: We want to show that

$$
\int_{\Omega} \varphi(f(x)) d \mu(x)-\varphi\left(\int_{\Omega} f d \mu\right) \geq 0
$$

Set $s=f(x)$ and $t=\int_{\Omega} f d \mu$. If it were true that

$$
\varphi(s)-\varphi(t) \geq 0
$$

for all s and t, then plugging in the values of s and t, integrating over x, and using that $\mu(\Omega)=1$ would give the claim. Evidently, this can never be true, unless φ is constant. However, we don't need this inequality for all s and t. We have with the above choices that

$$
\int_{\Omega}(s-t) d \mu(x)=\int_{\Omega} f(x) d \mu(x)-t=0
$$

i.e., any occurence of $s-t$ will not affect the inequalities that we need! This is promising since we do have the following: convexity of φ implies (and is in fact equivalent to) that for $a<z<t<u<b$ we have

$$
\frac{\varphi(t)-\varphi(z)}{t-z} \leq \frac{\varphi(u)-\varphi(t)}{u-t}
$$

Note that for $s=f(x)$ we have to consider the possibilities $s<t$ and $t<s$. To do this, let

$$
\beta=\sup _{a<z<t} \frac{\varphi(t)-\varphi(z)}{t-z}
$$

and note the inequality above gives

$$
\beta \leq \frac{\varphi(u)-\varphi(t)}{u-t}
$$

for $t<u<b$. Hence

$$
\varphi(s) \geq \varphi(t)+\beta(t-s)
$$

for any $s \in(a, b)$. Apply this with $s=f(x)$. We get

$$
\varphi(f(x))-\varphi(t)-\beta(f(x)-t) \geq 0
$$

Integrate both sides with respect to μ and note that the term with factor β becomes zero for our choice of t and s.

Theorem 2. If $1 \leq p<\infty$ and $f \in L^{p}(\mathbb{R})$, then

$$
\lim _{\lambda \rightarrow 0+}\left\|f * h_{\lambda}-f\right\|_{p}=0
$$

Proof. Let $1 \leq p<\infty$, and note that $h_{\lambda} \in L^{q}(\mathbb{R})$ where $p^{-1}+q^{-1}=1$. Hence by Hölder's inequality, $f * h_{\lambda}$ is defined for every x. Since $\int h_{\lambda}=1$, we get

$$
f * h_{\lambda}(x)-f(x)=\int_{\mathbb{R}}(f(x-u)-f(x)) h_{\lambda}(u) d u
$$

We obtain from Jensen's inequality with $\varphi(t)=|t|^{p}$ and $d \mu(x)=h_{\lambda}(x) d x$ that

$$
\left|f * h_{\lambda}(x)-f(x)\right|^{p} \leq \int_{-\infty}^{\infty}|f(x-u)-f(x)|^{p} h_{\lambda}(u) d u
$$

Integration in x and application of Fubini's theorem gives

$$
\left\|f * h_{\lambda}-f\right\|_{p}^{p} \leq \int_{\mathbb{R}}\left\|f_{u}-f\right\|_{p}^{p} h_{\lambda}(u) d u
$$

Define

$$
g(y)=\left\|f_{-y}-f\right\|_{p}^{p}
$$

and note that

$$
g * h_{\lambda}(0)=\int_{\mathbb{R}} g(-u) h_{\lambda}(u) d u=\int_{\mathbb{R}}\left\|f_{u}-f\right\|_{p}^{p} h_{\lambda}(u) d u
$$

We had shown that g is continuous and that the convolution of a continuous function g with h_{λ} converges to g pointwise. Since $g(0)=0$, we obtain that

$$
\lim _{\lambda \rightarrow 0+}\left\|f * h_{\lambda}-f\right\|_{p}=0
$$

We are now in a position to prove the inversion theorem.
Theorem 3. If $f \in L^{1}(\mathbb{R})$ and $\widehat{f} \in L^{1}(\mathbb{R})$, then

$$
\int_{-\infty}^{\infty} \widehat{f}(t) e^{2 \pi i x t} d t=f(x)
$$

almost everywhere. Moreover, f is continuous and satisfies $\lim _{|x| \rightarrow \infty} f(x)=$ 0 .

Proof. Most of the work has been done. We start with

$$
f * h_{\lambda}(x)=\int_{-\infty}^{\infty} H(\lambda t) \widehat{f}(t) e^{2 \pi i x t} d t
$$

We had seen before that the left side converges in $L^{1}(\mathbb{R})$ to f. This means that there exists a subsequence λ_{n} for which we have almost everywhere convergence to f. It follows that for almost every x

$$
f(x)=\lim _{n \rightarrow \infty} f * h_{\lambda_{n}}(x)=\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} H\left(\lambda_{n} t\right) \widehat{f}(t) e^{2 \pi i x t} d t
$$

and since $|H| \leq 1$ and $\widehat{f} \in L^{1}(\mathbb{R})$, dominated convergence shows that the right hand side converges to

$$
\int_{-\infty}^{\infty} \widehat{f}(t) e^{2 \pi i x t} d t
$$

which gives the claimed identity. The remaining statements follow from the assumption that $\widehat{f} \in L^{1}(\mathbb{R})$.

4 Parseval's identity

Theorem 4. Let $f \in L^{2}(\mathbb{R})$. There exists $\widehat{f} \in L^{2}(\mathbb{R})$ such that the following properties hold.

1. If $f \in L^{1} \cap L^{2}(\mathbb{R})$, then \widehat{f} is the previously defined Fourier transform of f.
2. For every $f \in L^{2}(\mathbb{R})$ the identity $\|f\|_{2}=\|\widehat{f}\|_{2}$ holds.
3. The mapping $f \mapsto \widehat{f}$ is a Hilbert space isomorphism of $L^{2}(\mathbb{R})$ onto $L^{2}(\mathbb{R})$.
4. If

$$
\begin{aligned}
\varphi_{A}(t) & =\int_{-A}^{A} f(x) e^{-2 \pi i x t} d x \\
\psi_{A}(x) & =\int_{-A}^{A} \widehat{f}(t) e^{2 \pi i x t} d t
\end{aligned}
$$

then $\left\|\varphi_{A}-\widehat{f}\right\|_{2} \rightarrow 0$ and $\left\|\psi_{A}-f\right\|_{2} \rightarrow 0$ as $A \rightarrow \infty$.
Proof. Let $f \in L^{1} \cap L^{2}(\mathbb{R})$. (So far we know that \widehat{f} is continuous, bounded, and converges to zero as $|t| \rightarrow \infty$. We do not yet know the inversion formula, since the transform might not be integrable.)

Our first goal is $\|f\|_{2}=\|\widehat{f}\|_{2}$. We recall that for $h_{1}, h_{2} \in L^{1}(\mathbb{R})$ we have

$$
\left(h_{1} * h_{2}\right)^{\wedge}(t)=\widehat{h}_{1}(t) \widehat{h}_{2}(t)
$$

Here's a question, whose answer contains the proof for the proposed identity: Which convolution has Fourier transform $|\widehat{f}|^{2}=\widehat{f} \widehat{\widehat{f}} ?$ Heuristically, we are going to solve the identity

$$
\begin{equation*}
h_{1} * h_{2}(x)=\int_{-\infty}^{\infty}|\widehat{f}(t)|^{2} e^{2 \pi i t x} d t \tag{1}
\end{equation*}
$$

but of course we do not yet know that $\widehat{f} \in L^{2}(\mathbb{R})$.
This immediately leads to the definition $g=h_{1} * h_{2}$, where $h_{1}(x)=f(x)$ and $h_{2}(x)=\overline{f(-x)}$. From the properties of the Fourier transform we then obtain $\widehat{h}_{2}(t)=\widehat{\widehat{f}}(t)$, and the value of the convolution is

$$
g(x)=\int_{\mathbb{R}} f(x-u) \overline{f(-u)} d u
$$

Let us collect properties of g. Fubini implies that $g \in L^{1}(\mathbb{R})$, hence this is well defined. Moreover, for fixed x we have $g(x)=\left\langle f, f_{-x}\right\rangle$, hence CauchySchwarz and using the assumption $f \in L^{2}(\mathbb{R})$ implies that g is bounded. We recall that $x \mapsto f_{-x}$ is a continuous mapping from \mathbb{R} to $L^{2}(\mathbb{R})$, and that the scalar product is continuous. Hence g is continuous. Evidently $g(0)=\|f\|_{2}^{2}$. The question to be solved can now be reformulated as follows: Is the identity

$$
g(0)=\int_{\mathbb{R}}|\widehat{f}(t)|^{2} d t
$$

true?
As before, consider $g * h_{\lambda}$. Continuity and boundedness of g imply that

$$
\lim _{\lambda \rightarrow 0} g * h_{\lambda}(0)=g(0)=\|f\|_{2}^{2} .
$$

Since $g \in L^{1}(\mathbb{R})$, we have

$$
\left(g * h_{\lambda}\right)(t)=\int_{\mathbb{R}} \widehat{g}(t) H(\lambda t) e^{2 \pi i t x} d t .
$$

We emphasize that for this identity we only needed that \widehat{g} is bounded; we did not have to require that $\widehat{g} \in L^{1}(\mathbb{R})$. We have $\widehat{g}(t)=|\widehat{f}(t)|^{2} \geq 0$. Crucial fact: if $x=0$, then in order to let $\lambda \rightarrow 0$ in the above identity we do not need to use dominated convergence, we may use monotone convergence instead. Hence

$$
\lim _{\lambda \rightarrow 0+} g * h_{\lambda}(0)=\int_{\mathbb{R}}|\widehat{f}(t)|^{2} d t
$$

regardless of whether or not the right hand side is finite or infinite! With the previous identity for $g(0)$ it follows now that

$$
\|f\|_{2}=\|\widehat{f}\|_{2}
$$

and hence both sides must be finite, and in particular $\widehat{f} \in L^{2}(\mathbb{R})$.
This was the major part of the proof. For the remaining pieces, let

$$
Y=\left\{\widehat{f}: f \in L^{1} \cap L^{2}(\mathbb{R})\right\}
$$

We have shown that $Y \subseteq L^{2}(\mathbb{R})$. We prove next that if $w \perp g$ for all $g \in Y$, then $w=0$. Note that this implies that Y is dense in $L^{2}(\mathbb{R})$ by the decomposition for closed subspaces.

We note that $t \mapsto h_{\lambda}(t-\alpha) \in Y$ since this is the Fourier transform of $e^{2 \pi i \alpha x} H(\lambda x)$, which is in $L^{1} \cap L^{2}(\mathbb{R})$. Hence

$$
\int_{\mathbb{R}} h_{\lambda}(t-\alpha) \overline{w(t)} d t=0
$$

for all $\alpha \in \mathbb{R}$. But the left side is $h_{\lambda} * \bar{w}(\alpha)$, and we had shown before that

$$
\lim _{\lambda \rightarrow 0}\left\|h_{\lambda} * \bar{w}-\bar{w}\right\|_{2}=0 .
$$

Hence there exists a subsequence of λ 's such that the difference converges pointwise almost everywhere, hence $w=0$ a.e.

Almost done: The Fourier transform provides an isometry from the dense subspace $L^{1} \cap L^{2}(\mathbb{R})$ onto the dense subspace Y of $L^{2}(\mathbb{R})$. By the extension theorem for isometries it follows that it extends to some isometry from $L^{2}(\mathbb{R})$ onto itself.

For the explicit representation it is enough to note that for $f \in L^{2}(\mathbb{R})$ we have $\chi_{[-A, A]} f \in L^{1} \cap L^{2}(\mathbb{R})$ for all $A>0$ (and by definition $\varphi_{A}=$ $\left.\left(\chi_{[-A, A]} f\right)^{\wedge}\right)$, and then apply the previous limit relations.

