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Abstract. For functions that are piecewise equal to one-sided Laplace
transforms of signed measures we construct interpolations that are en-
tire functions with interpolation points that are zeros of Laguerre-Pólya
entire functions.

If the interpolated function f is sufficiently regular, these interpola-
tions are best approximations in L1-norm to f by functions of fixed
exponential type. This is demonstrated for the example fa,b(x) =
eax(1 + ebx)−1 with 0 < a < b.

1. Introduction

An entire function f is of exponential type η > 0 iff for every ε > 0 there
exists a constant Cε > 0 with |f(z)| ≤ Cεe

|z|(η+ε) for every z ∈ C. We define
A(η) to be the class of all entire functions of exponential type at most η.

We study an instance of the problem of finding the best L1(R)-approximation
in A(η) to given f ∈ L1(R). E. Carneiro and J. D. Vaaler [3], [4] investigated
this problem for functions of the form

f(x) =
∫ ∞

0
e−λ|x|dν(λ),(1)

where ν is a positive measure. To obtain a solution they constructed the
extremal functions for x 7→ e−λ|x| and then integrated over the parameter
λ.

In this article we consider certain signed measures ν. For a signed measure
ν of finite total variation we define

fν(z) =


∫

t>0
e−ztdν(t) for <z > 0,

−
∫

t<0
e−ztdν(t) for <z < 0.

(2)

The function f is normalized by setting f(0) = 2−1{f(0+) + f(0−)}.
The construction of explicit best approximations of exponential type to

“special” functions goes back to B. Sz.-Nagy [15] and M. G. Krein [10], an
account of their methods can be found in A. F. Timan [16].

The interpolation method employed in this paper has been introduced in
connection with the problem of one sided approximation. We refer to S. W.
Graham and J. D. Vaaler [8], Vaaler [17], Littmann [11, 12], E. Carneiro
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et. al. [2]. An extension of the Krein-Nagy method was given recently in
M. I. Ganzburg [6]. For approximations in different norms we refer to D.
Lubinsky [13] and Ganzburg and Lubinsky [7]. For the analogous problem
on the torus see T. Ganelius [5].

It is well known (Timan [16, p. 84, 2.12.6]) that if there exist A ∈ A(η)
and α ∈ R with the property that

A(x)− fν(x)
sin η(x− α)

≥ 0(3)

for all real x, then A is a best approximation from A(η) to fν .
Let F be a Laguerre-Pólya entire function and let g be the Laplace inverse

transformation of 1/F (z) in a vertical strip containing the origin (see Section
2); in particular, F has only real zeros. For signed measures ν that are
supported on a bounded set and have finite total variation an interpolation
method is given in Section 3 that constructs an entire function Gν,F with
the property that

fν(z)−Gν,F (z) = F (z)Hν,F (z)(4)

for all z with <z 6= 0, where

Hν,F (z) =


∫ 0

−∞
e−zt{g ∗ dν}(t)dt if <z < 0,

−
∫ ∞

0
e−zt{g ∗ dν}(t)dt if <z > 0,

here g ∗ dν(t) =
∫

R g(t− u)dν(u).
If F (z) = sinπη(z−α) then Gν,F is in A(η). The factorization (4) reduces

investigation of (3) to the problem of finding out if Hν,F is of one sign on
the real line. This in turn is accomplished by an investigation of g ∗ dν.
The function g can be explicitly calculated; if F (z) = sinπη(z − α) with
0 < α < 1, then (cf. Section 2) gα is given by

gα(t) = eαt(et + 1)−1.(5)

The function gα is an example of a so-called variation diminishing function
(explained in Definition 2.1), for certain ν this property can be used to bound
the number of sign changes of gα ∗dν. Section 2 contains results of this kind
for certain special measures ν.

For practical purposes the conditions on ν imposed so far are too restric-
tive. Often, ν has neither finite total variation, nor is its support bounded.
In such a case an approximation of ν by measures νm that are of finite vari-
ation and have bounded support may lead to a sequence of entire functions
that converges to the desired best approximation. We consider in Section 4
the following example. Assume that 0 < a < b. Define

fa,b(z) = eaz(ebz + 1)−1,(6)
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which satisfies (2) with

νa,b =
∞∑

n=−∞
(−1)n+1δbn−a.(7)

Since ν is a distribution, the interpolation theorems are applied after trun-
cating the series. Let Ka,b be given by

Ka,b(z) =
sinπ(z − b−1a)

π

∞∑
n=−∞

(−1)n+1 fa,b(n+ b−1a)
z − n− b−1a

.(8)

We show in Theorem 4.3 that Ka,b = Gνa,b,F where F is a translate of
z 7→ sinπz. The results from Section 2 and (4) are used to show that
z 7→ Kη−1a,η−1b(ηz) is the best approximation in L1(R) to fa,b from A(ηπ),
and we compute the error of approximation.

2. Periodic analogues of variation diminishing functions

Definition 2.1. Denote by S−[a1, ..., an] the number of changes of sign in
the real sequence a1, ..., an. Zero values do not count as changes of sign,
we have S−[1, 0, 1] = 0 and S−[1, 0,−1] = 1. For functions f : R → R we
extend this definition to open intervals I ⊆ R via

S−I [f ] := sup{S−[f(x1), ..., f(xn)] |x1 < ... < xn, xi ∈ I, n ∈ N}.
For intervals of the form I = [a, b) we define

S−I [f ] = inf{S−(a−ε,b)[f ] | ε > 0},

and similarly for left-open and closed intervals. (In particular, S−{a}[f ] ∈
{0, 1,∞}.)

A non-negative, integrable function g : R → R is said to be variation
diminishing if S−R [ϕ ∗ g] ≤ S−R [ϕ] for every bounded continuous function
ϕ : R → R.

The next two lemmas collect some simple and useful inequalities for sign
change counts.

Lemma 2.2. Let ψ, ψk (k ∈ N) be real functions defined on R, and let n be
a non-negative integer. If ψk → ψ pointwise and S−[ψk] ≤ n for all k ∈ N,
then S−[ψ] ≤ n.

Proof. This is Lemma IV.2.1b in [9]. �

Lemma 2.3. Let I be an interval (possibly infinite). Let f, g : I → R be
continuous functions. Let m be the infimum of the local maxima of |f | on
I. If m > 0 and |f − g| < m on I, then S−I [f ] ≤ S−I [g].

Proof. If y is a sign change of f , then there are x1 and x2 in I such that
|f(xi)| ≥ m, f(x1)f(x2) < 0, and x1 < y < x2, and no other sign change of
f is in (x1, x2). The bounds on g imply that g must have a sign change in
(x1, x2) as well. �
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The significance of variation diminishing functions for our topic is the
fact that these functions are the Laplace inverse transforms of reciprocals of
certain entire functions having only real zeros. The zero sets of such entire
functions serve as interpolation nodes in the next section.

We denote by E the class of Laguerre-Pólya entire functions, that is, all
entire functions of the form

F (z) = C exp(−cz2 + dz)zκ
∞∏

k=1

(
1− z

ak

)
exp(z/ak),(9)

where c ≥ 0, κ ∈ N0, d, ak(k ∈ N) and C are real, and
∑∞

k=1 a
−2
k <∞. We

define

SF := {b ∈ R : F (b) = 0} ∪ {±∞}.(10)

The reciprocals of all elements in E , except the pure exponentials, have
representations as Laplace transforms. We omit the discussion of functions
F ∈ E having none or a single simple root since they are not needed in the
later sections.

Lemma 2.4. Let F ∈ E with F (0) 6= 0, and assume that F has at least two
zeros. There exists an integrable function g : R → R such that

1
F (z)

=
∫ ∞

−∞
e−ztg(t)dt(11)

in a vertical strip containing the origin. The integral is absolutely convergent
in the largest open vertical strip that contains the origin and no zeros of F .
The function g has no sign changes and its sign equals the sign of F (0).

Proof. This is Corollary 5.4 in chapter III of [9]. �

The connection between variation diminishing functions and Laplace in-
verse transforms of reciprocals of elements in E mentioned above is as follows.

Lemma 2.5. An integrable function G : R → R is variation diminishing if
and only if G = g a.e., where g satisfies (11) in an open strip containing
the origin for some F ∈ E.

Proof. This is shown by I. J. Schoenberg [14]; see also chapter IV in [9],
Theorem 2.1 and Theorem 4.1. �

An important example of an element in E is the function z 7→ π sinπ(z−
α). From [9] Chapter III.9 we get for α ∈ R that

− π

sinπ(z − α)
=
∫ ∞

−∞
e−zt eαt

et + 1
dt for α− 1 < <z < α,(12)

in particular, t 7→ eαt(et + 1)−1 is variation diminishing for 0 < α < 1.
Let a < b be two consecutive elements in SF and c ∈ (a, b). Then z 7→

[F (z − c)]−1 has a representation as in Lemma 2.4. It follows that the
reciprocal of F can be represented as a two-sided Laplace transform in a <
<z < b.
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Lemma 2.6. Let F ∈ E have at least two zeros. Let a < b be two consecutive
elements in SF (defined in (10)), and let g satisfy (11) for a < <z < b. If a
and b are both finite, then for any n ∈ N0 there are polynomials Pn and Qn

such that

g(n)(t) = O(Pn(t)eat) as t→∞,

g(n)(t) = O(Qn(t)ebt) as t→ −∞.

If a = −∞, then g(n)(t) = O(e−Kt) for all K > 0 as t → ∞, and if
b = ∞, then g(n)(t) = O(eKt) for all K > 0 as t→ −∞.

Proof. This can be found in Theorem 2.1 in chapter V of [9]. �

We estimate now the sign changes of convolutions of certain distributions
with variation diminishing functions. Recall that S− is given in Definition
2.1. We let S be the space of infinitely differentiable functions that decay
faster than any polynomial.

Definition 2.7. Let 0 ≤ r1 < ... < rn < 1, let aj ∈ R, and let η0 :=∑n
j=1 ajδrj . Define the cyclic sign-changes of η0 by

V[η0] := S−[{a1, ..., an, a1}].
We define a linear functional η with a slight abuse of notation by∫

A
ϕdη =

∑
k∈Z

∫
A
ϕdη0(k +A) (ϕ ∈ S),

where k+A = {k+a | a ∈ A}. Let g : R → R such that g(t) = O((1+|t|)−1−c)
as |t| → ∞ with some positive c. We define g ∗ dη by

g ∗ dη(x) :=
∫

R
g(x− t)dη(t) =

∑
k∈Z

n∑
j=1

ajg(x− k − rj).

Theorem 2.8. Let g : R → R be variation diminishing and analytic in a
horizontal strip containing R. Let η and g ∗dη be as in Definition 2.7. Then
S−[0,1)[g ∗ dη] ≤ V[η0].

Proof. The statement is trivially true if g∗dη is the zero function, so through-
out this proof we assume that this is not the case.

Let ν = V[η0] and assume to the contrary that S−[0,1)[g ∗ dη] ≥ ν + 1. It
follows that for every integer ` we have

S−[−`,`)[g ∗ dη] ≥ 2(ν + 1)`.(13)

Consider

γ`(x) :=
`−1∑

k=−`

n∑
j=1

ajg(x− k − rj).

We show the existence of d > 0 independent of ` so that γ` has at least
2(ν + 1)(` − d) sign changes in [d − `, ` − d]. To obtain a contradiction an
approximate identity is used to obtain the inequality S−R [γ`] ≤ 2ν`.
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From Lemma 2.5 and Lemma 2.6 we obtain the existence of c1 > 0 and
a > 0 with |g(t)| ≤ c1 exp(−a|t|) and hence |g ∗ η0(t)| ≤ c2 exp(−a|t|). For
t ≤ k we obtain |g ∗ dη0(t− k)| ≤ c2e

a(t−k) and hence for t ≤ `− 1∣∣∣ ∞∑
k=`−1

g ∗ dη0(t− k)
∣∣∣ ≤ c2e

ate−a`(1− e−a)−1.

Similarly, for t > −`∣∣∣ −∑̀
k=−∞

g ∗ dη0(t− k)
∣∣∣ ≤ c3e

−ate−a`(1− e−a)−1.

There exists therefore c > 0 so that for all ` and t with −` < t < `

|g ∗ dη(t)− γ`(t)| ≤ ce−a` cosh(at).(14)

Since g is assumed to be analytic in a horizonal strip S containing the real
line, g ∗ dη is analytic in S as well, hence the derivative of g ∗ dη is analytic
in S and can have only finitely many zeros in [0, 1] (recall that g ∗ dη is
assumed to be not identically zero). Since g ∗ dη is periodic, the minimum
m of the local maxima of |g ∗ dη| on [0, 1] and hence on R is positive and
independent of `.

Inequality (14) implies for t > 0 that |g ∗ dη(t) − γ`(t)| < m holds for
a(t− `) < log(m/c), hence with d := −a−1 log(m/c)

t ≤ `− d.

A similar calculation for t < 0 gives |g ∗ dη − γ`| < m for t > −` − d.
Hence (13) implies

S−R [γ`] ≥ S−[−`−d,`+d)[g ∗ dη] ≥ 2(ν + 1)(`− d).(15)

To derive a contradiction, let k be given by k(t) = (1− |t|)1[−1,1](t), and
define the approximate identity kε by kε(t) = ε−1k(t/ε) where ε > 0. Let
ε > 0 be small enough so that the supports of the functions t 7→ kε(t−rj−k)
where 0 ≤ j ≤ n and −` ≤ k < ` are pairwise disjoint. Let h`,ε be given by

h`,ε(t) =
`−1∑

k=−`

n∑
j=0

ajkε(t− rj − k),

and note that since g is continuous and bounded, the function g ∗ h`,ε con-
verges (uniformly on compact subsets of R) to γ`. The function h`,ε satisfies
S−R [h`,ε] = 2`ν by definition of ν and choice of ε. Since g is variation di-
minishing, g ∗ h`,ε has at most 2`ν changes of sign. Lemma 2.2 implies
S−R [γ`] ≤ 2`ν. For sufficiently large ` this is a contradiction to (15). �

With a similar argument the following proposition can be proved:

Proposition 2.9. Let ϕ be a continuous 1-periodic function and g as in
Proposition 2.8. Then

S−[0,1)[g ∗ ϕ] ≤ S−[0,1)[ϕ].
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We require the following example in the final section. Recall that for
0 < a < b the distribution νa,b is defined by

νa,b =
∑
k∈Z

(−1)k+1δbk−a.(16)

Lemma 2.10. Let g ∈ C2(R) be variation diminishing. If g ∗ dνa,b is not
identically zero, then

S−[0,2b)[g ∗ dνa,b] = 2,

and the two sign changes are the only zeros of g ∗ dνa,b on [0, 2b).

Proof. Apply Theorem 2.8 to t 7→ g ∗ dνa,b(2bt) to obtain the inequality

S−[0,2b)[g ∗ dνa,b] ≤ 2.(17)

Since g ∗ dνa,b is 2b-periodic, the number of sign changes in [0, 2b) cannot
be odd. If g ∗ dνa,b has no sign changes then g ∗ dνa,b must be identically
equal to zero since g ∗ dνa,b has mean value zero on [0, 2b].

Define τε to be the piecewise constant function satisfying τε(t) = ε−2 for
−ε ≤ t < 0, τε(−t) = −τε(t), and τε(t) = 0 for |t| > ε. We note that

g′ ∗ dνa,b(t) = lim
ε→0+

g ∗ ϕε(t),(18)

where ϕε(t) =
∑

k(−1)k+1τε(t− bk + a).
Since for sufficiently small ε > 0 the function t 7→ τε(t− a)− τε(t+ b− a)

has two sign changes on [0, 2b), the derivative of g ∗ dνa,b cannot have more
than two sign changes by (18), Lemma 2.2, and Theorem 2.8. Since the
assumption that g ∗ dνa,b has a (by (17) necessarily even) additional zero
would imply that its derivative has more than two sign changes, the two
sign changes are the only zeros. �

3. Entire Interpolations

Recall that fν : R → R is given by

fν(z) =


−
∫

(−∞,0)
e−szdν(s) for z < 0,∫

[0,∞)
e−szdν(s) for z > 0

(19)

and

fν(0) =
1
2
(fν(0−) + fν(0+)) =

1
2

∫
R

sgn(s)dν(s).

Let F be a Laguerre-Polyá entire function. We consider in this section
measures ν that have finite total variation and are supported on a bounded
set. An entire function Gν,F is constructed that satisfies (4).

The function Gν,F is initially defined in (22) in a vertical strip −c < <z <
c. Proposition 3.3 gives the analytic continuations to <z > 0 and <z < 0.
In Propositions 3.5 and 3.6 the special case F (z) = sinπ(z − a) for a ∈ R
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is considered, and it is shown that Gν,F in these cases is an interpolating
series of fν .

Definition 3.1. We define Mb to be the class of signed measures on R that
have finite total variation and are supported on a bounded set. For technical
reasons we assume that

ν({0}) = 0.(20)

Lemma 3.2. Let ν ∈ Mb, let F be a Laguerre-Pólya entire function, and
let g satisfy (11) in an open vertical strip a < <z < b containing the origin.
Then there exists c > 0 so that

(21) g ∗ d|ν|(t) = O
(
e−c|t|

)
.

Proof. Let 0 < c < min(|a|, |b|). Lemma 2.6 implies that g(t) = O(e−c|t|).
By assumption, there exists m > 0 so that supp(ν) ⊆ [−m,m]. We have for
any real t∣∣g ∗ d|ν|(t)∣∣ = ∣∣∣ ∫ m

−m
g(t− u)d|ν|(u)

∣∣∣ ≤ ( max
u∈(t−m,t+m)

g(u)
)
|ν|(R)

= O
(
ec(m−|t|)

)
,

which finishes the proof. �

Proposition 3.3. Let ν, F , and G satisfy the assumptions of Lemma 3.2.
Let 0 < c < min(|a|, |b|) and define for −c < <z < c

Gν,F (z) := F (z)
(∫ 0

−∞
e−zt

∫ ∞

0+
g(t− u)dν(u)dt

+
∫ ∞

0
e−zt

∫ 0−

−∞
g(t− u)dν(u)dt

)
.

(22)

Then Gν,F extends to an entire function, and the analytic continuations to
the half planes are given by

Gν,F (z) = fν(z) + F (z)
∫ 0

−∞
e−zt{g ∗ dν}(t) dt (<z < 0),

Gν,F (z) = fν(z)− F (z)
∫ ∞

0
e−zt{g ∗ dν}(t) dt (<z > 0).

(23)

Proof. The estimate (21) implies that fν is analytic in <z < 0 and in <z > 0.
Throughout this proof we write G0 for the right hand side of (22), and we
write G1 and G2 for the expressions on the right in (23). The estimate (21)
implies that G0 is analytic in −c < <z < c, G1 is analytic in <z < 0, and
G2 is analytic in <z > 0. Equations (22) and (23) claim that

Gν,F (z) =


G0(z) if − c < <z < c,

G1(z) if <z < 0,
G2(z) if <z > 0.



L1-APPROXIMATION TO LAPLACE TRANSFORMS OF SIGNED MEASURES 9

Hence, we have to show that G0 = G1 in the strip −c < <z < 0, and
G0 = G2 in the strip 0 < <z < c. Since each of the half-planes in (23) has
non-empty intersection with the strip in which (22) holds, and their union
is all of C, it will follow that Gν,F is entire.

Define two signed measures ν− and ν+ by

ν+(A) = ν(A ∩ {x > 0})
ν−(A) = −ν(A ∩ {x < 0})

and recall that ν({0}) = 0. Consider z with −c < <z < 0. Equations (19)
and (11) imply the representation

fν(z) = −
∫ 0−

−∞
e−zsdν(s) =

∫ ∞

−∞
e−zsdν−(s)

= F (z)
∫ ∞

−∞
e−ztg(t)dt

∫ ∞

−∞
e−ztdν−(t)

= F (z)
∫ ∞

−∞
e−zt{g ∗ dν−}(t) dt,

(24)

since the assumptions on g∗d|ν| imply that Fubini is applicable to the double
integral. Equations (22) and (24) imply for z with −c < <z < 0

G0(z)− fν(z) = F (z)
(∫ 0

−∞
e−zt{g ∗ dν+}(t) dt+

∫ ∞

0
e−zt{g ∗ dν−}(t) dt

−
∫ ∞

−∞
e−zt{g ∗ dν−}(t) dt

)
= F (z)

(∫ 0

−∞
e−zt{g ∗ dν+}(t) dt−

∫ 0

−∞
e−zt{g ∗ dν−}(t) dt

)
= F (z)

∫ 0

−∞
e−zt{g ∗ dν}(t) dt

= G1(z)− fν(z),

and hence G0(z) = G1(z) for all z with −c < <z < 0.
Similarly, in 0 < <z < c

fν(z) = F (z)
∫ ∞

−∞
e−zt{g ∗ dν+}(t) dt

and hence

G0(z)− fν(z) = F (z)
(∫ 0

−∞
e−zt{g ∗ dν+}(t) dt+

∫ ∞

0
e−zt{g ∗ dν−}(t) dt

−
∫ ∞

−∞
e−zt{g ∗ dν+}(t) dt

)
= −F (z)

∫ ∞

0
e−zt{g ∗ dν}(t) dt

= G2(z)− fν(z),
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which implies that G0(z) = G2(z) for all z with 0 < <z < c. By the remarks
at the beginning of the proof, the proposition is established. �

Lemma 3.4. Let ν ∈Mb. We have in the region <w < <z < 0

fν(z)− fν(w)
z − w

= −
∫

(−∞,0)

∫ 0

s
e−τze(τ−s)wdτdν(s)

and in the region <z < 0 < <w

fν(z)− fν(w)
z − w

=
(∫

(−∞,0)

∫ s

−∞
+
∫

(0,∞)

∫ 0

−∞

)
e−τze(τ−s)wdτdν(s).

Proof. The integrals with respect to τ on the right can be evaluated without
changing the order of integration. �

The following two propositions establish identities between interpolating
series and the entire functions of Proposition 3.3.

Proposition 3.5. Let ν ∈ Mb and let 0 < α < 1. We define Fα(z) =
−π−1 sinπ(z − α). For all z ∈ C

Gν,Fα(z) = Fα(z)
∑
n∈Z

(−1)n fν(n+ α)
z − n− α

.(25)

Proof. Denote by G(z) the right-hand side of (25). The functions z 7→
Fα(z)(z − n− α)−1 are entire functions that are bounded in every compact
subset of C, and fν(n+ α) decays exponentially as n→ ±∞ since ν ∈Mb.
Hence G is an entire function. By Proposition 3.3 the function Gν,F is entire
as well. In order to prove that G = Gν,F it suffices to show that G = Gν,F in
a vertical strip to the left of the origin, since analytic continuation implies
that the two entire functions agree on C once they agree on a set with a
limit point.

It is possible to show this claim directly using (22), but the calculations
are very involved. It is technically easier to use one of the representations
of (23). We consider therefore fν −G and show that it equals fν −Gν,Fα in
α− 1 < <z < 0 where 0 < α < 1.

The partial fraction expansion [1, (4.3.93) on p. 75]

lim
N→∞

2N−1∑
n=−2N

(−1)n+1

z − n
= − π

sinπz
(26)

implies after substituting z − α for z

fν(z)−G(z)
Fα(z)

= lim
N→∞

2N−1∑
n=−2N

(−1)n+1 fν(z)− fν(n+ α)
z − n− α

.(27)

Let α− 1 < <z < 0. If n ≤ −1 then

n+ α ≤ α− 1 < <z < 0,
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hence Lemma 3.4 gives for n ≤ −1

fν(z)− fν(n+ α)
z − n− α

= −
∫∫

s<τ<0
e(τ−s)(n+α)e−τzdτdν(s)(28)

and for n ≥ 0

fν(z)− fν(n+ α)
z − n− α

=
(∫∫

τ<s<0
+
∫∫

τ<0≤s

)
e(τ−s)(n+α)e−τzdτdν(s).(29)

Recall that gα(t) = eαt(et + 1)−1 and note that

(e−2N |t| − 1)gα(t) =


−

−1∑
n=−2N

(−1)n+1e(n+α)t for t > 0,

2N−1∑
n=0

(−1)n+1e(n+α)t for t < 0.

(30)

We multiply (28) and (29) by (−1)n+1, sum (28) over −2N ≤ n ≤ −1,
and sum (29) over 0 ≤ n ≤ 2N − 1. After moving the finite sums inside
the integrals we apply (30) with t = τ − s. In (28) we have τ − s > 0 and
in both integrals of (29) we have τ − s < 0. The assumptions of Lebesgue
dominated convergence can be checked directly. After taking the limit N →
∞, summation of the resulting three integrals gives in α− 1 < <z < 0

fν(z)−G(z) = −Fα(z)
∫

R

∫ 0

−∞
e−τzgα(τ − s)dτdν(s).

Since ν has bounded support, gα ∗d|ν| decays exponentially, hence Fubini
implies in α− 1 < <z < 0

fν(z)−G(z) = −Fα(z)
∫ 0

−∞
e−zt{gα ∗ dν}(t) dt

= fν(z)−Gν,Fα(z)

by (12), Lemma 2.5, and Proposition 3.3. By the remarks at the beginning
of the proof, (25) is shown. �

We encounter a technical difficulty when considering

F0(z) = −π−1 sinπz.

The Laplace inverse transformation of F0(z)−1 is not integrable, and an
integration by parts becomes necessary to obtain a representation in the
strip −1 < <z < 1 as a Laplace transform of an integrable function. To set
this up, we define

h(t) =

{
−(1 + et)−1 if t < 0,
(1 + e−t)−1 if t ≥ 0.

(31)
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We set h′(0) = h′(0+). Since −(1+et)−1 = −1+(1+e−t)−1, the function
h′ is analytic for |=t| < 1

2 . We have the Radon-Nikodym decomposition

dh(t) = h′(t)dt+ dδ.(32)

Since ν is a measure of bounded variation with bounded support and |h|
decays exponentially, the function h ∗ dν has bounded variation, and (32)
implies for any measurable set A ⊆ R

∫
A
d{h ∗ dν}(t) =

∫
A
h′(t)dt+

∫
A
dν(t).(33)

Proposition 3.6. Let ν ∈ Mb. Define E(z) = −(πz)−1 sinπz. Then for
all z ∈ C

Gν,E(z) = F0(z)
( ∞∑

n=−∞
n6=0

(−1)n+1 fν(n)
z − n

+
{h ∗ dν}(0)

z

)
(34)

Proof. We define

G(z) := F0(z)
∞∑

n=−∞
n6=0

(−1)n+1 fν(n)
z − n

.

The partial fraction expansion (26) implies

fν(z)−G(z)
F0(z)

= lim
N→∞

2N∑
n=−2N

n6=0

(−1)n+1 fν(z)− fν(n)
z − n

− fν(z)
z

.(35)

Let −1 < <z < 0. We note

−(1− e−2N |t|)h(t) =


−

−1∑
n=−2N

(−1)n+1ent if t > 0,

2N∑
n=1

(−1)n+1ent if t < 0.
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An expansion of the summands in (35) using Lemma 3.4 with α = 0 and
an application of dominated convergence gives (recall ν({0}) = 0)

fν(z)−G(z)
F0(z)

+
fν(z)
z

= lim
N→∞

( −1∑
n=−2N

(−1)n+1

(∫ 0−

−∞

∫ s

−∞
+
∫ ∞

0+

∫ 0

−∞

)
e−τze(τ−s)ndτdν(s)

−
2N∑
n=1

(−1)n+1

∫ 0−

−∞

∫ 0

s
e−τze(τ−s)ndτdν(s)

)

= −
∫

R

∫ 0

−∞
e−τzh(t)dt dν(s).

(36)

An application of Fubini’s theorem gives

fν(z)−G(z) = −F0(z)
(∫ 0

−∞
e−zt{h ∗ dν}(t) dt+

fν(z)
z

)
(37)

for −1 < <z < 0. An integration by parts gives∫ 0

−∞
e−zt{h ∗ dν}(t) dt = −{h ∗ dν}(0)

z
+

1
z

∫ 0

−∞
e−ztd

[
{h ∗ dν}(t)

]
,

and (33), (37), and (19) lead to

fν(z)−G(z) = −F0(z)
z

(∫ 0

−∞
e−zt{h′ ∗ dν}(t) dt− {h ∗ dν}(0)

)
.(38)

Since h′ = g′0 almost everywhere, an integration by parts in (12) implies

z

F0(z)
=
∫ ∞

−∞
e−zth′(t)dt

in the strip −1 < <z < 1. Lemma 2.5 and Proposition 3.3 imply

−F0(z)
z

∫ 0

−∞
e−zt{h′ ∗ dν}(t) dt = fν(z)−Gν,E(z),(39)

and the right hand side is analytic in C\iR. Inserting (39) into (38) proves
(34). �

4. Best approximations by functions of exponential type

Let 0 < a < b, and recall that νm,a,b is given by

νm,a,b =
2m∑

k=1−2m

(−1)k+1δbk−a,(40)
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this signed measure has finite total variation, bounded support, and satisfies
ν({0}) = 0. We note that for real x the corresponding fνm,a,b

is given by

fνm,a,b
(x) =

(
1− e−2m|x|

)
eax(1 + ebx)−1.

The function fνm,a,b
has an analytic extension to <z < 0 and to <z > 0.

In particular, fνm,a,b
converges to

fa,b(z) = eaz(1 + ebz)−1(41)

uniformly on compact sets in C\iR. We use the representations obtained in
Section 3 to construct best L1(R)-approximations from the class of entire
functions of exponential type ≤ η to fa,b.

Let νa,b be the distribution given by

νa,b =
∑
k∈Z

(−1)k+1δbk−a,

and note that for 0 < a < b (with an abuse of notation for the application
of the distribution dνa,b)

fa,b(z) =



∞∑
n=1

(−1)n+1e−z(bn−a) for <z > 0,

−
0∑

n=−∞
(−1)n+1e−z(bn−a) for <z < 0

=


∫ ∞

0
e−ztdνa,b(t) for <z > 0,

−
∫ 0

−∞
e−ztdνa,b(t) for <z < 0.

(42)

For z ∈ C and 0 < a < b we let

Ka,b(z) =
sinπ(z − b−1a)

π

∞∑
n=−∞

(−1)n+1 fa,b(n+ b−1a)
z − n− b−1a

.

By construction Ka,b is entire and in L2(R) and has exponential type ≤ π.
We note that gb−1a ∗ dνm,a,b converges pointwise to

t 7→ {gb−1a ∗ dνa,b}(t) =
∑
k∈Z

(−1)kgb−1a(t− bk + a).(43)

We require evaluation of a series related to gb−1a ∗ dνa,b.

Lemma 4.1. For every a, b with 0 < a < b

∞∑
k=−∞

(−1)k e−ak

1 + ea−bk
= 0.(44)
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Proof. We note that for 0 < a < b
∞∑

n=0

ean
∞∑

k=1

e−k(a+bn) =
∞∑

n=0

ean

ea+bn − 1
<∞,

hence (k, n) 7→ (−1)k+ne−ak+(a−kb)n is in L1(N× N0) and Fubini’s theorem
gives

∞∑
k=1

(−1)k e−ak

1 + ea−bk
=

∞∑
k=1

(−1)ke−ak
∞∑

n=0

(−1)ne(a−bk)n

= −
∞∑

n=0

(−1)n ean

1 + ea+bn

which proves the claim after the substitution n = −k on the right hand
side. �

We extend the representation of Proposition 3.5 to the distribution νa,b.

Lemma 4.2. Let 0 < a < b and recall that Fη(z) = −π−1 sinπ(z − η). For
any z ∈ C

lim
m→∞

Gνm,a,b,Fb−1a
(z) = Ka,b(z)(45)

and

−
fa,b(z)−Ka,b(z)
π−1 sinπ(z − b−1a)

=


∫ ∞

0
e−zt{gb−1a ∗ dνa,b}(t) dt for <z > 0

−
∫ 0

−∞
e−zt{gb−1a ∗ dνa,b}(t) dt for <z < 0.

(46)

Proof. From Proposition 3.5 we obtain for fixed z ∈ C\iR

Gνm,a,b,Fb−1a
(z) = Fb−1a(z)

∑
n∈Z

(−1)n fνm,a,b
(n+ b−1a)

z − n− b−1a
,

and the right-hand side converges to Ka,b in L2(R) as m → ∞. Since Ka,b

is entire, (45) follows. To prove the second identity we note that for all real
t, m ∈ N and 0 < a < b

{gb−1a ∗ d|νm,a,b|}(t) ≤
∑
k∈Z

e
a
b
(t−bk+a)

et−bk+a + 1
<∞.(47)

Hence, an application of Lebesgue dominated convergence in (23) for <z 6=
0 with dν = dνm,a,b, g = gb−1a and F = Fb−1a implies (46). �

Theorem 4.3. Let 0 < a < b. Then for any entire F of exponential type
≤ πη

||fa,b − F ||1 ≥
1
bη

∣∣∣∣∣∣
∑
µ∈Z

e−2πi a
b
(µ+1/2)

(µ+ 1
2)

csc
(

πη
b (a

η + πi(2µ+ 1))
)∣∣∣∣∣∣
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with equality if and only if x 7→ F (x) = Kη−1a,η−1b(ηx).

Proof. We consider first η = 1. We note that t 7→ gb−1a ∗ dνa,b(t) is a
2b-periodic function. Using this in both integrals in (46) gives

fa,b(z)−Ka,b(z) = −sinπ(z − b−1a)
π(1− e−2z)

∫ 2b

0
e−zt{gb−1a ∗ dνa,b}(t) dt(48)

for all z ∈ C. (Note that gb−1a ∗dνa,b has mean-value zero on [0, 2].) By (44)
we have gb−1a ∗ dνa,b(0) = 0 and hence

gb−1a ∗ dνa,b(t) = O(|t|)(49)

in a neighborhood of the origin. Equations (49) and (46) imply

fa,b(z)−Ka,b(z) = O(|1 + z|−2).

We show next that π[sinπ(z − b−1a)]−1(fa,b(z) −Ka,b(z)) is of one sign
on the real line. Lemma 2.10 implies that S−[0,2b)[gb−1a ∗ dνa,b] ≤ 2. Since
gb−1a∗dνa,b(0) = 0, Lemma 2.10 implies that t = 0 is one of the sign changes,
and since

gb−1a ∗ dνa,b(b+ t) = −gb−1a ∗ dνa,b(t),(50)

the other sign change is at t = b. The location of the sign changes and (50)
imply that the integral in (48) has exactly one sign change on the real line,
namely at the origin. Since z 7→ 1 − e−2z has its only sign change at the
origin as well, it follows that∣∣∣ ∫ ∞

−∞
sgn sinπ(x− b−1a)(fa,b(x)−Ka,b(x))dx

∣∣∣ = ||Ka,b − fa,b||1.(51)

Consider an arbitary F ∈ L1(R) that has exponential type ≤ π. Since
the partial sums of the Fourier expansion

sgn sinπx =
2
πi

lim
N→∞

∑
|µ|≤N

e2πix(µ+1/2)

2µ+ 1

are uniformly bounded, integration and limit may be interchanged in the
following calculation. The Paley Wiener theorem implies∫ ∞

−∞
F (x) sgn(sinπ(x− b−1a))dx = 0.

With

f̂a,b(ξ) =
∫ ∞

−∞
f(x)e−2πixξdx
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and noting f̂a,b(t) = π
b csc[π

b (a− 2πit)] we obtain that∫ ∞

−∞
(fa,b(x)− F (x)) sgn sinπ(x− b−1a)dx

=
2
πi

lim
N→∞

∑
|µ|≤N

e−2πi a
b
(µ+1/2)

2µ+ 1
f̂a,b(−µ− 1/2)

=
2
ib

∑
µ∈Z

e−2πi a
b
(µ+1/2)

2µ+ 1
csc π

b (a+ πi(2µ+ 1)).

(52)

The absolute value of the right-hand side is therefore a lower bound for
||F − fa,b||1, and this lower bound is assumed for F = Ka,b by (51).

We note that for any η > 0

fa,b(η−1x) = fη−1a,η−1b(x),

which implies that for F of exponential type ≤ ηπ

||fa,b − F ||1 ≥
2
ibη

∑
µ∈Z

e−2πi a
b
(µ+1/2)

2µ+ 1
csc ηπ

b (a
η + πi(2µ+ 1))

with equality for z 7→ F (z) = Kη−1a,η−1b(ηz).
If there exists another F such that ||F−fa,b||1 is minimal, then (52) implies

that F (η−1(b−1a+m)) = fa,b(η−1(b−1a+m)) = Kη−1a,η−1b(η−1(b−1a+m)),
and since x 7→ F (x) − Kη−1a,η−1b(η−1x) ∈ L1(R), it has to be identically
zero by (7.20) in Chapter XVI of Zygmund [18]. �
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