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Abstract. For a variation diminishing function g which is analytic on
a set containing the real line and any real polynomial P , we prove that
g + P has at most deg(P ) + 2 real zeros.

Based on this estimate, we present a way to construct entire approx-
imations Gn to the truncated powers xn+ for n ∈ N0. Here xn+ = xn for
x > 0 and xn+ = 0 for x < 0. The function Gn is constructed in such a
way that

Gn(x)− xn+ = F (x)Hn(x)

holds, where F is entire and Hn has no zeros on the real line. The
function Gn can be viewed as an interpolant of xn+ with a nodal set that
is given by the (real) zeros of F .

As an application of this method, we give explicit formulas for best
L1(R) – approximation and best one-sided L1(R) – approximation from
the class of entire functions with given exponential type η to xn+. These
approximations are given in terms of the logarithmic derivative of the
Euler Gamma function.
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1. Introduction

Let n ∈ N0 and define

xn+ :=

{
xn for x ≥ 0,
0 for x < 0.

(1.1)

In particular x0
+ = 1 for x > 0, x0

+ = 0 for x < 0, and we normalize x0
+ at

the origin by letting 00
+ := 1/2.

A non-negative integrable function g : R → R is said to be variation
diminishing if for any bounded continuous ϕ : R → R the convolution
g ∗ ϕ(x) =

∫
R
g(t)ϕ(x− t)dt has no more changes of sign than ϕ does.

This paper deals with the problem of approximating xn+ by an entire func-
tion Gn such that Gn(x)− xn+ has sign changes at prescribed real numbers.

The construction presented here extends a method of J. J. Holt and J. D.
Vaaler given in Section 2 of [7]. In order to approximate xn+, we start with
an entire function F which is in the Pólya-Laguerre class (see Definition 2.1
below). By a result of I. J. Schoenberg [17], in any strip a < <z < b between
two consecutive real zeros a < b of F , the function F satisfies

1 = F (x)
∫ ∞
−∞

e−xtg(t)dt

for some variation diminishing function g depending on (a, b). We define an
approximation to xn+ by

Gn(x) := F (x)x−1

∫ 0

−∞
e−xtg(n+1)(t)dt.

Under certain conditions on F , the function Gn is entire, and Gn(x)−xn+
is bounded by constant times x−2|F (x)| for sufficiently large |x| (Theorem
4.3). Moreover, the function Hn defined by

Gn(x)− xn+ =: F (x)Hn(x)

has no changes of sign on the real line (Propositions 4.4, 4.5, 4.7). The
function Gn can be viewed as an entire interpolant to xn+ with an a priori
prescribed set of interpolating points (or nodal set) that is given by the zeros
of F .

Let g be a variation diminishing function which is analytic on a set con-
taining the real line, and let P be a polynomial with real coefficients. In
Theorem 3.8 we prove the estimate

ZR[g + P ] ≤ deg(P ) + 2, (1.2)

where ZR[g + P ] denotes the number of real zeros of g + P counted with
multiplicities. Inequality (1.2) is needed to show that Hn has no changes of
sign on the real line; this is the reason why we restrict F to be the reciprocal
of the Laplace transform of a variation diminishing function.
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We say that an entire function A is of exponential type η > 0 if for every
ε > 0 there exists Cε > 0 such that for all z ∈ C the inequality

|A(z)| ≤ Cεe|z|(η+ε)

holds. We denote the class of these entire functions by A(η).
We show in Sections 6 and 7 that the unique best L1(R) – approximation

from A(η) and the unique best one-sided L1(R) – approximation from A(η)
to xn+ can be constructed using the interpolation formulas of Section 4. The
formulas obtained below are generalizations of Theorems 4 and 8 in the
article [24] of Vaaler. We denote the jth Euler polynomial by Ej , the jth
Bernoulli polynomial by Bj , and we set ψ := Γ′/Γ, where Γ denotes the
Euler Gamma function. We define the special functions

Gn,α(z) :=
sinπ(z − α)

π
zn
[
ψ(2−1(α− z))− ψ(α− z) + log 2

− 1
2

n∑
j=0

Ej(α)z−j−1
]
, (1.3)

Gn,α(z) :=
sin2 π(z − α)

π2
zn
[
ψ′(α− z) +

n∑
j=0

Bj(α)z−j−1
]
, (1.4)

where n ∈ N0 and α ∈ [0, 1].
Let δ > 0 and n ∈ N0. Define θn = 0 for even n and θn = 1/2 for odd n.

We show in Section 6 that δ−nGn,θn(δz) is the unique best approximation
in L1(R)–norm to xn+ from A(πδ) with L1–norm∫

R

|xn+ − δ−nGn,θn(δx)|dx =
|En+1(θn)|
n+ 1

δ−n−1. (1.5)

The value of the integral in (1.5) can also be obtained from a Markov-
type theorem proved by M. G. Krein [10] and B. Sz.-Nagy [22] (see also H.
Shapiro [21], Chapter 7). For n = 0, a different representation of the best
approximation was obtained by Vaaler in Theorem 4 of [24].

Let δ > 0 and n ∈ N0. Let αn be a value where the Bernoulli polynomial
Bn+1 assumes a maximum on [0, 1] and let βn be a value where Bn+1 as-
sumes a minimum on [0, 1]. It is shown in Section 7 that δ−nGn,αn(δz) and
δ−nGn,βn(δz) are the unique best one-sided L1(R) – approximations from
A(2πδ) to xn+. The condition ‘one-sided’ refers to the additional constraint

δ−nGn,αn(δx) ≤ xn+ ≤ δ−nGn,βn(δx) for x ∈ R.

The L1–norms are given by∫ ∞
−∞

(
δ−nGn,βn(δx)− xn+

)
dx = −Bn+1(βn)

n+ 1
δ−n−1, (1.6)∫ ∞

−∞

(
xn+ − δ−nGn,αn(δx)

)
dx =

Bn+1(αn)
n+ 1

δ−n−1. (1.7)
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For n = 0, these extremal functions were obtained independently by A.
Beurling [3] and A. Selberg (Chapter 20 of [20], compare also the survey
[24] by Vaaler). For arbitrary n, equations (1.6) and (1.7) were obtained
by the author [14] using Euler-Maclaurin summation combined with the
Beurling-Selberg approach in the form given by Vaaler in [24].

The result described above can be regarded as an instance where a kind
of Markov - type theorem holds, i.e., the solutions to the problems of best
L1(R) – approximation and best one–sided L1(R) – approximation from
A(η) turn out to be interpolants. Further examples of one–sided approxi-
mations with this property can be found in an article of S. W. Graham and
Vaaler [5]. For a general connection between interpolants and best approx-
imations see, e.g., Pinkus [16] or Timan [23].

Best one-sided approximations have been of particular interest for certain
problems in analytic number theory. These problems include the large sieve
inequality (extremal majorants are used in a proof of Selberg [20], see also
the survey [24] by Vaaler), a multi-dimensional version of the large sieve
(Holt and Vaaler [7]), a quantitative version of the Wiener-Ikehara Tauberian
Theorem (Graham and Vaaler [5]), and proofs for Hilbert-type inequalities
([14], Selberg [20], Vaaler [24]).

Most of the material in Sections 2, 3, 4, and 7 appeared previously as
part of the thesis [13]. For technical reasons, we approximate xn+ rather
than sgn(x)xn. However, this is a minor issue, since 2xn+ − sgn(x)xn = xn

is an entire function of exponential type 0.
Acknowledgements. The author would like to thank Harold Diamond for

many discussions regarding this subject and the anonymous referees for their
helpful comments and suggestions.

2. Polya-Laguerre Entire Functions

Definition 2.1. The class E of Laguerre-Pólya entire functions consists of
all entire functions of the form

F (z) = C exp(−cz2 + dz)zκ
∞∏
k=1

(
1− z

ak

)
exp(z/ak), (2.1)

where c ≥ 0, κ ∈ N0, d, ak(k ∈ N) and C are real, and
∑∞

k=1 a
−2
k <∞. We

define

SF := {b ∈ R : F (b) = 0} ∪ {±∞}. (2.2)

Representation (2.1) shows that any F ∈ E is entire, real-valued on the
real line, and has only real zeros. A classical theorem by E. Laguerre [11]
asserts that the functions in E are the uniform limits of polynomials having
only real roots.

The reciprocals of all elements in E , except the pure exponentials, have
representations as Laplace transforms:
Theorem 2.2. Let F ∈ E with F (0) 6= 0, i.e., κ = 0 in (2.1).
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(a) If F is given by F (z) := Cebz with b, C ∈ R, then

1
F (z)

= C−1e−bz = C−1

∫ ∞
−∞

e−tzδb(dt),

where δb is the Dirac-measure at b.
(b) If F is not of the form Cebz and F (0) 6= 0, then there exists an

integrable function g : R→ R such that

1
F (z)

=
∫ ∞
−∞

e−ztg(t)dt (2.3)

in a vertical strip containing the origin. The function g has no sign
changes and its sign equals the sign of F (0). Moreover,

g(t) =
1

2πi

∫ i∞

−i∞

ezt

F (z)
dz. (2.4)

(If F is of the form Cedz(1 − z/a) for real values a, d with a 6= 0,
then (2.4) is understood to be the Cauchy principal value.)

The proof of Theorem 2.2 can be found in [6], Chapters III and IV.
If a < b are two consecutive elements in SF and c ∈ (a, b), then F (z−c)−1

has a representation as a Laplace transform of a function g as in Theorem
2.2 in the strip a − c < <z < b − c. It follows that the reciprocal of F can
be represented as a two-sided Laplace transform in a < <z < b.

We write L[g](z) for the two-sided Laplace transform in (2.3).

Lemma 2.3 ([6], II 6.3, III 6.1). Let F ∈ E, and let g be defined by

1
F (z)

= L[g](z)

in a vertical strip a < <z < b, where a and b are two consecutive elements
in SF defined in (2.2). We have to consider two cases.

(a) Let F (z) = CedzP (z) where P is a polynomial of degree n ∈ N and
d ∈ R. If n = 1, then g has a discontinuity on the real line. If n ≥ 2,
then g is continuous and n− 2 times continuously differentiable.

(b) Assume that in (2.1) either c > 0 or the product is infinite. Then
the function g is infinitely differentiable.

We need an estimate of the rate of decay as t → ±∞ of the derivatives
introduced in the previous lemma.

Lemma 2.4 (cf. [6], V 2.1). Let F ∈ E have at least one zero. Let a < b be
two consecutive elements in SF (defined in (2.2)), and let

1
F (z)

= L[g](z) for a < <z < b. (2.5)



6 FRIEDRICH LITTMANN

If a and b are both finite, then for any n ∈ N0 there are polynomials Pn and
Qn such that

g(n)(t)� |Pn(t)|eat as t→∞,

g(n)(t)� |Qn(t)|ebt as t→ −∞.

If a = −∞, then g(n)(t) � e−Kt for all K > 0 as t → ∞, and if b = ∞,
then g(n)(t)� eKt for all K > 0 as t→ −∞.

In particular if (2.5) is valid in a neighborhood of the origin, g(n) is
integrable for any n ∈ N0.

We need the representations of π cscπ(z − α) and π2 csc2 π(z − α) as
Laplace transforms. From [6] Chapter III.9 we get for α ∈ R that

− π

sinπ(z − α)
=
∫ ∞
−∞

e−zt
eαt

et + 1
dt for α− 1 < <z < α (2.6)

and ( π

sinπ(z − α)

)2
=
∫ ∞
−∞

e−zt
teαt

et − 1
dt for α− 1 < <z < α. (2.7)

3. Variation Diminishing Transforms

Recall that L[g](z) denotes the two-sided Laplace transform of g. Let
F ∈ E with F (0) 6= 0, and let g be defined by F (z)−1 = L[g](z) in an open
strip containing the origin. We will in addition assume that g is analytic on
a set containing the real line.

Variation diminishing functions have been investigated in various places
in the literature, among them articles by Schoenberg et al. [17], [18], [19],
and [4], and books by Hirschman and Widder [6] and by Karlin [9]. We start
this section by reviewing results from [6] and [17].
Definition 3.1. Denote by S−[a(1), ..., a(n)] the number of changes of sign
in the real sequence a(1), ..., a(n).

Here zero values do not count as changes of sign. For example, we have
S−[1, 0, 1] = 0 and S−[1, 0,−1] = 1.
Definition 3.2. If f(x) is a real function defined on R, then

S−[f ] := sup{S−[f(x1), ..., f(xn)] | −∞ < x1 < ... < xn <∞, n ∈ N}.

It is possible that S−[f ] =∞.
Definition 3.3. A non-negative, integrable function g : R → R is said to
be variation diminishing if S−[ϕ ∗ g] ≤ S−[ϕ] for every bounded continuous
function ϕ : R→ R.

The following theorem of Schoenberg relates variation diminishing func-
tions and Laplace inverse transforms of reciprocals of elements in E (cf. [17]
and [6], Chapter IV):
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Theorem 3.4. An integrable function G : R→ R is variation diminishing
if and only if G(t) = g(t) for almost all t ∈ R, where g satisfies

F (z)−1 = L[g](z)

in an open strip containing the origin for some F ∈ E.

Proof. This can be found in IV 2.1 and IV 4.1 of [6]. �

The following lemma shows that the set of variation diminishing functions
is closed with respect to pointwise limits.
Lemma 3.5. Let ψ, (ψk)∞k=1 be real functions defined on R, and let n be
a non-negative integer. If the condition limk→∞ ψk(t) = ψ(t) holds in the
pointwise sense, and

S−[ψk] ≤ n for all k ∈ N ,
then

S−[ψ] ≤ n.

Proof. This is Lemma IV.2.1b in [6]. �

The variation diminishing property is a priori applicable only to bounded
continuous functions ϕ. The next lemma extends this applicability to all
continuous functions ϕ for which the convolution of ϕ with a variation di-
minishing function exists.
Lemma 3.6. If g : R→ R is a variation diminishing function, ϕ : R→ R

is continuous, and t 7→ ϕ(t)g(x− t) ∈ L1(R) for all x ∈ R, then

S−[g ∗ ϕ] ≤ S−[ϕ].

Proof. This is Lemma IV.4.1 in [6]. �

Let F ∈ E and define g by F (z)−1 = L[g](z). By Lemma 2.4, the function
g from Theorem 2.2 decreases exponentially fast as |t| → ∞. Thus, we can
apply the variation diminishing property to functions ϕ with subexponential
growth on the real line, i.e., ϕ(t) = eo(|x|).

Lemma 2.4 implies in particular that all moments
∫
R
tkg(t)dt exist and

the integral convolution g ∗Q(x) is defined for every real polynomial Q and
every x ∈ R. We show in the next lemma that this convolution represents
a function P which is again a real polynomial.
Lemma 3.7 (cf. [17], Lemma 7). Let g : R→ R be such that all moments

µk :=
∫
R

tkg(t)dt

for k ∈ N0 exist as Lebesgue integrals and such that µ0 6= 0. Let P be a
polynomial of degree n ∈ N0. There exists a polynomial Q of degree n such
that P = g ∗Q. Conversely, for every polynomial Q of degree n there exists
a polynomial P of the same degree such that P = g ∗Q.

For fixed n ∈ N0, the coefficients of P are continuous functions of the
coefficients of Q, and vice versa.
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Proof. Performing a Taylor expansion of P about x we obtain

Q ∗ g(x) =
∫ ∞
−∞

g(t)Q(x− t)dt =
n∑
j=0

Q(j)(x)
j!

(−1)j
∫ ∞
−∞

g(t)tjdt

=
n∑
j=0

Q(j)(x)(−1)jµj
j!

.

Comparing coefficients on both sides shows that the map Q 7→ g ∗ Q = P
sends the coefficients of Q to the coefficients of P via a non-singular matrix
transformation. �

We are now in a position to establish our estimate of the number of real
zeros of g + P . Let S ⊆ C , and let f be a function that is analytic on an
open set G ⊆ C containing S. Define

ZS [f ] := the number of zeros of f in S counted with multiplicity. (3.1)

Theorem 3.8. Let g be the Laplace inverse of the reciprocal of some F ∈ E
in an open strip S containing the origin, and assume that g is analytic in
an open set containing the real line. If P 6≡ 0 is a real polynomial and Q is
the polynomial defined by P = g ∗Q, then

ZR[g + P ] ≤ ZR[Q] + 2. (3.2)

In particular (since deg(P ) = deg(Q)), ZR[g + P ] ≤ deg(P ) + 2.
Proof. Suppose first that the real zeros of g+P are all simple. In this case,
the number of real zeros equals the number of sign changes of g + P . With
aid of the Fejér kernel, we shall express g + P as a convolution of g with a
function of which we can estimate the number of sign changes. (Compare
Chapter IV.5 of [6] for a similar computation.)

Let K(t) = 1 − |t| for |t| ≤ 1 and K(t) = 0 for |t| > 1. Set Kε(t) =
1/ε ·K(t/ε), and recall that Kε is an approximate identity for ε→ 0+. We
have

g + P = lim
ε→0+

g ∗Kε + g ∗Q = lim
ε→0+

g ∗ (Kε +Q). (3.3)

The graph of Kε forms a triangle with base length 2ε and height 1/ε.
For sufficiently small ε, the graph of the polynomial −Q intersects this
triangle at most twice. This means that Kε +Q has at most S−[Q] + 2 sign
changes, namely those sign changes of Q which are not at the origin and
the two possible intersections. By Theorem 3.4, the function g is variation
diminishing. Thus for all sufficiently small ε > 0, equation (3.3) and Lemma
3.5 imply that

ZR[g + P ] ≤ S−[g + P ] ≤ S−[Kε +Q] ≤ ZR[Q] + 2, (3.4)

which is the desired conclusion in this case.
Next, suppose that the real zeros of g+P are not all simple. The number

of sign changes is now smaller than the number of real zeros, and we cannot
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apply the variation diminishing property directly. We proceed instead by
constructing a perturbation of g + P .
Lemma 3.9. Let g be as in Theorem 3.8. If P and Q are non-zero real
polynomials satisfying P = g ∗ Q, then there exist real polynomials P1 and
Q1 with P1 = g ∗Q1 such that the inequalities ZR[g + P ] ≤ S−[g + P + P1]
and S−[Q+Q1] ≤ ZR[Q] hold.

An application of (3.4) with P + P1 and Q+Q1 gives the inequality

ZR[g + P ] ≤ S−[g + P + P1] ≤ S−[Q+Q1] + 2 ≤ ZR[Q] + 2,

which is the conclusion of Theorem 3.8. To finish the proof of Theorem 3.8,
it remains to give the

Proof of Lemma 3.9. The proof will proceed as follows: Change g + P to
g + P + E with an error term E in such a fashion that g + P + E has only
simple real zeros. We approximate E by a polynomial P1, so that Lemma
3.7 is applicable, yielding a polynomial Q1 with P1 = g ∗ Q1. Finally, we
investigate the number of real zeros of Q+Q1.

Since the Laplace transform of g converges absolutely in a neighborhood
of the origin, g(t) decreases exponentially as t → ±∞. Since g is analytic
in a region containing the real line and P is a non-zero polynomial, the
function g + P has only finitely many real zeros. Let (zi)ni=0 be the list of
these zeros such that every zero is repeated according to its multiplicity. We
can represent g + P in the form

g(t) + P (t) = (t− z0)(t− z1)...(t− zn)h(t), (3.5)

where h is a function which is non-zero on R and analytic on a set containing
R. For real numbers εi, we define a perturbation of g + P by

pε(t) := (t− z0 − ε0)...(t− zn − εn)h(t). (3.6)

By choosing εi 6= εj for i 6= j and letting εi ∈ (0, a) for some sufficiently
small a > 0, we may assume that pε has exactly n + 1 simple zeros (i.e.,
n + 1 sign changes) z0 + ε0, ..., zn + εn on the real line. In order to keep
the notation simple, we set εi := εηi with fixed values ηi ∈ (0, 1) and a
parameter ε in (0, a). We have

(t− z0 − εη0)...(t− zn − εηn) =
∏
i

(t− zi) + εL(t, ε),

where L(t, ε) is a polynomial in t and in ε.
Set Eε(t) := L(t, ε)h(t), where h is defined in (3.5). We obtain from (3.6)

pε(t) = g(t) + P (t) + εEε(t).

We construct a polynomial Hε which interpolates Eε and E′ε at the points
t = zi + εi and which is of the same sign for large |t| as P is.

Let H1,ε be a polynomial which interpolates Eε and E′ε at the points
t = zi+εi in such a way that the coefficients of H1,ε are continuous functions
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of ε. Let m > deg(H1,ε) such that m ≡ deg(P ) modulo 2. Let σ ∈ R\{0}
be the leading coefficient of P and define a polynomial Hε by

Hε(t) := H1,ε(t) + σtm
n∏
k=0

(t− zk − εηk)2.

By construction, the polynomial Hε interpolates Eε and E′ε at the points
t = zi + εηi, since the values Hε(zi + εηi) are determined by H1,ε alone.
Therefore, g+P + εHε has a simple zero at any point t = zi+ εi. Since sign
changes occur at these zeros, we obtain

ZR[g + P ] ≤ S−[g + P + εHε] (3.7)

for all ε ∈ (0, a).
Define Qε by Hε = g ∗ Qε. By construction, Hε has leading coefficient

σ 6= 0 for all ε ∈ (0, a). By Lemma 3.7, the leading coefficient of Qε
is therefore non-zero and independent of ε. Thus for all ε ∈ [0, a), the
polynomial Qε is not identically zero. By Hurwitz’s theorem, there is a
K > 0 such that for sufficiently small ε > 0 all complex zeros of Qε are
inside the disc |z| ≤ K, and we may assume that the zeros of Q are also in
this disc. Since Q + εQε → Q 6≡ 0 as ε → 0, Hurwitz’s theorem applied to
a set S containing [−K,K] and all real but no non-real zeros of Q implies
that

Z[−K,K][Q+ εQε] ≤ Z[−K,K][Q]. (3.8)

By the construction of Hε, the degree of P and the degree of Hε have the
same parity and the leading coefficient of P equals the leading coefficient of
Hε. Lemma 3.7 implies that the degree of Qε and the degree of Q have the
same parity and that the leading coefficients of Q and Qε are equal. Since
for sufficiently small ε > 0, the polynomials Qε and Q have no real zeros
in |t| ≥ K, we obtain the inequality |Q + εQε| > |Q| > 0 in |t| ≥ K, i.e.,
Q+ εQε has no real zeros in the region |t| ≥ K. From (3.8) we obtain

ZR[Q+ εQε] ≤ ZR[Q]. (3.9)

We set P1 = εHε and Q1 = εQε for sufficiently small ε. Equations (3.7) and
(3.9) complete the proof of Lemma 3.9. �

As a corollary of Theorem 3.8, we obtain a bound for the number of real
zeros of the tail g(m), where m ∈ N0.
Corollary 3.10. Let m ∈ N0, let g be as in Theorem 3.8, and assume
g(m)(0) 6= 0. Then

g(m)(t) = g(t)−
m∑
k=0

g(k)(0)
k!

tk

has m+ 2 real zeros counted with multiplicity. Depending on the sign of the
expression g(m)(0)g(m+1)(0) there are three cases:

(1) If g(m+1)(0) = 0 then g(m) has a zero of order m + 2 at the origin
and no zeros in R\{0}.
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(2) If g(m)(0)g(m+1)(0) > 0 then g(m) has a zero of order m + 1 at the
origin, precisely one simple zero in (0,∞), and no zeros in (−∞, 0).

(3) If g(m)(0)g(m+1)(0) < 0 then g(m) has a zero of order m + 1 at the
origin, precisely one simple zero in (−∞, 0), and no zeros in (0,∞).

Proof. Let

P (t) = −
m∑
k=0

g(k)(0)
k!

tk.

Since g(m) = g+P , Theorem 3.8 implies ZR[g(m)] ≤ m+2. If g(m+1)(0) = 0,
then g(m) has already a zero of order m+ 2 at the origin, thus g(m) cannot
have another zero in R\{0}.

If g(m+1)(0) 6= 0, then g(m) has a zero of order m + 1 at the origin, and
therefore exactly one zero in R\{0} which has to be simple. Moreover,
g(m)(t) ∼ −g(m)(0)tm/m! as |t| → ∞, because g is converging to zero as
t→ ±∞ by Lemma 2.4.

Therefore, the behavior of g(m) at the origin is determined by the sign of
g(m+1)(0), and the behavior of g(m)(t) as t→ ±∞ is determined by the sign
of −g(m)(0).

If g(m+1)(0) > 0, then g(t) > 0 for t > 0 near the origin. If g(m)(0) > 0,
then g(t) < 0 for large t. Therefore, g has a sign change in (0,∞). Since g
has exactly one (simple) zero in R\{0}, it has no other zeros in R\{0}.

The last case is handled in the same way. �

We shall need one additional auxiliary result about variation diminishing
functions.
Lemma 3.11. Let g be as in Theorem 3.8, and let n ∈ N0, then g(n) has
exactly n simple real zeros and no multiple real zeros.

Proof. This is IV.5 in [6]. �

Remark 3.12. If g is analytic on a set containing the real line, and its
Laplace transform represents the reciprocal of F ∈ E on a strip a < <z < b
(which does not necessarily include the origin), then g has no real zeros.
(This can be seen by applying Lemma 3.11 to F (z − θ) for some θ ∈ (a, b).)

4. Interpolation by Entire Functions

In this section we give a generalization of the method of Holt and Vaaler
[7] mentioned in the introduction. It is our goal to construct an interpolant
Gn of xn+ with a nodal set given by the zeros of a Pólya-Laguerre entire
function F . This is accomplished by constructing Gn so that

Gn(x)− xn+ = F (x)Hn(x)

holds, where Hn is non-zero on the real line.
Recall that L[g] denotes the two-sided Laplace transform of g.
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Definition 4.1. Let F ∈ E satisfy F (z)−1 = L[g](z) for g : R→ R in some
strip a < <z < b, where a and b are two consecutive elements in SF (cf.
(2.2)). If y ∈ [a, b] and if g is analytic on a set containing the real line, then
we call (F, g) a y-admissible pair on (a, b).

By equations (2.6) and (2.7), the pairs (−π−1 sinπ(x− α), eαt(et + 1)−1)
and (π−2 sin2 π(x−α), eαt(et− 1)−1) are 0-admissible pairs on (α− 1, α) for
0 ≤ α ≤ 1.
Definition 4.2. Let (F, g) be a 0-admissible pair on (a, b). For <z < b we
define

Gn,F (z) :=
F (z)
z

∫ 0

−∞
e−ztg(n+1)(t)dt. (4.1)

We suppress the subscript F and write Gn instead of Gn,F if no confusion
can arise.
Theorem 4.3. Let (F, g) be a 0-admissible pair on (a, b). If at least one of
the conditions F (0) = 0 or g(n)(0) = 0 is satisfied, then Gn has an analytic
continuation to the entire complex plane, and the estimate

|Gn(x)− xn+| � |x|−2|F (x)| (4.2)

holds for all real x with |x| ≥ (a+ b)/2. Moreover,

|Gn(z)| � 1 + |z|n + |F (z)| (4.3)

for every z ∈ C .

Proof. We follow the proof of Lemma 6 in [7]. Using n + 1 integration by
parts, we obtain the representation

zn =
F (z)
z

∫ ∞
−∞

g(n+1)(t)e−ztdt,

valid in a < <z < b. After adding and subtracting zn, we see that

Gn(z) = zn − F (z)
z

∫ ∞
0

g(n+1)(t)e−ztdt (4.4)

= zn − F (z)
∫ ∞

0
g(n)(t)e−ztdt+

F (z)
z

g(n)(0). (4.5)

The last equality follows after an integration by parts. By Lemma 2.4,
we have g(n+1)(t) �ε e

(a+ε)t for every ε > 0 as t → ∞, so (4.4) and (4.5)
are valid in the region <z > a.

After an integration by parts in <z < b, we see that

Gn(z) =
F (z)
z

∫ 0

−∞
g(n+1)(t)e−ztdt (4.6)

= F (z)
∫ 0

−∞
g(n)(t)e−ztdt+

F (z)
z

g(n)(0). (4.7)

By assumption, F (0) = 0 or g(n)(0) = 0. Thus, the representations (4.5)
and (4.7) are analytic in their respective domains even if one of these domains
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contains the origin. Since these halfplanes have the non-empty intersection
a < <z < b, the function Gn has an analytic continuation to the entire
plane.

To show (4.2), we use the estimates from Lemma 2.4, which imply that∣∣∣ ∫ ∞
0

g(n+1)(t)e−ztdt
∣∣∣� ∫ ∞

0
|Pn(t)|e(a−z)tdt� |a− z|−1 for <z ≥ a+ b

2
,∣∣∣ ∫ 0

−∞
g(n+1)(t)e−ztdt

∣∣∣� ∫ 0

−∞
|Qn(t)|e(b−z)tdt� |b− z|−1 for <z ≤ a+ b

2
.

Inserting these estimates in (4.4) and (4.6) proves (4.2) and (4.3) �

Since 0 ∈ [a, b], equation (4.4) is valid in <z > 0 and (4.6) is valid in
<z < 0. Define

Hn(z) :=


−z−1

∫ ∞
0
g(n+1)(t)e−ztdt for <z > 0,

z−1

∫ 0

−∞
g(n+1)(t)e−ztdt for <z < 0.

(4.8)

We remark that Hn depends on F via g(n+1). We obtain from (4.4) and
(4.6) the fundamental representation

Gn(z)− zn+ = F (z)Hn(z), (4.9)

valid for all z ∈ C\{z : x = 0}. We shall show that Hn is of one sign on the
real line. Choosing F appropriately, equation (4.9) enables us to construct
approximations Gn to xn+ with prescribed interpolation points.

First we deal with the case that n ∈ {0, 1} and F has a zero at the origin.
Proposition 4.4. Let (F, g) be a 0-admissible pair on (a, b). If 0 ∈ {a, b},
then

g′(0)H0(x) < 0, (4.10)

for all real x 6= 0.

Proof. An integration by parts in F (z)−1 = L[g](z) yields

z

F (z)
=
∫ ∞
−∞

e−ztg′(t)dt for a < <z < b.

Since z−1F (z) is an element of E , Remark 3.12 is applicable, and thus the
function g′ is non-zero on R (hence does not change sign there). Since
x−1sgn(x) ≥ 0 for all real x 6= 0, inequality (4.10) follows by letting n = 0
in (4.8). �

Proposition 4.5. Let (F, g) be a 0-admissible pair on (a, b). If 0 ∈ {a, b}
such that the zero of F at the origin has multiplicity at least two, then

g′′(0)H1(x) < 0 (4.11)

for all real x 6= 0.
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Proof. We have z−2F (z) ∈ E by assumption. Since z2F (z)−1 = L[g′′](z), g′′

has no change of sign by Remark 3.12. Repeating the argument of Proposi-
tion 4.4 gives the claim. �

We require an auxiliary lemma in order to deal with the remaining cases.
Recall the definition

g(n)(t) = g(t)−
n∑
k=0

g(k)(0)
k!

tk,

and define for n ∈ N an auxiliary function hn(x, t) by

hn(x, t) :=


−xng(n−1)(t) if x > 0 and t > 0,
xng(n−1)(t) if x < 0 and t < 0,
0 if xt < 0.

Lemma 4.6. Let n ∈ N and let (F, g) be a 0-admissible pair on (a, b). If
0 ∈ (a, b) and g(n)(0) = 0, then

g(n+1)(0) · hn(x, t) ≤ 0 (4.12)

for all real x and t.

Proof. Since 0 ∈ (a, b), the function g is variation diminishing by Theorem
3.4. By Lemma 3.11, the condition g(n)(0) = 0 implies that g(n−1)(0) 6= 0.
Thus, Corollary 3.10 is applicable with m = n−1. We find that the function
g(n−1) has a zero of order n+ 1 at the origin and no other zero in R.

If n is odd, g(n−1)(t) is of one sign for all t ∈ R and xn changes its sign
at x = 0. Therefore, hn(x, t) is of one sign for all x and t.

If n is even, g(n−1) has a change of sign at the origin and xn is of one sign
for all x ∈ R. Thus, hn(x, t) is of one sign for all x and t.

By the definition of g(n−1), the sign of hn(x, t) is determined by the sign
of g(n+1)(0). �

Proposition 4.7. Let n ∈ N , and let (F, g) be a 0-admissible pair on (a, b).
If 0 ∈ {a, b}, assume in addition that F has a zero of order two at the origin.
If g(n)(0) = 0, then

g(n+1)(0)Hn(x) < 0 (4.13)

for all real x 6= 0.

Proof. We have to consider the two cases 0 ∈ (a, b) and 0 ∈ {a, b} separately.
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Let 0 ∈ (a, b). Performing n + 1 integration by parts and using the
assumption g(n)(0) = 0, we obtain the representation

Hn(x) =


−xn

∫ ∞
0
g(n−1)(t)e

−xtdt for x > 0,

xn
∫ 0

−∞
g(n−1)(t)e

−xtdt for x < 0

=
∫ ∞
−∞

e−xthn(x, t)dt for x 6= 0.

Lemma 4.6 proves that Hn has no sign changes. Strict inequality holds
because g(n−1) 6≡ 0 is analytic on a set containing the real line.

Assume now a = 0 or b = 0. By assumption, the functions g, g′, and g′′

are analytic on a set containing the real line and represent the reciprocals
of F ∈ E , z−1F (z) ∈ E , and z−2F (z) ∈ E , respectively. Thus, the condition
g(n)(0) = 0 implies n ≥ 3 by Remark 3.12.

Since F has a zero of order two at the origin, z−2F (z) has no zero at the
origin, and the representation

z2

F (z)
= L[g′′](z)

extends beyond <z = 0 to an open strip containing the origin. The condition
g(n)(0) = 0 implies that (g′′)(n−2) = (g′′)(n−3). The previous argument with
z−2F (z), n− 2, and g′′ instead of F , n, and g finishes the proof. �

5. Fourier Transforms

Recall that A(η) denotes the space of entire functions of finite exponential
type η. This section contains results dealing with the Fourier transform of
A(x) − xn+ where A ∈ A(η) and with representations of functions in A(η);
these results are needed in Sections 6 and 7.

For f ∈ L1(R) we define the Fourier transform of f by

f̂(t) :=
∫ ∞
−∞

f(x)e−2πixtdx. (5.1)

Lemma 5.1. Let n ∈ N0, and let A ∈ A(2πδ) such that ϕ(x) := A(x)− xn+
satisfies ||ϕ||1 <∞. The identity

ϕ̂(t) = −n!(2πit)−n−1

holds for any |t| ≥ δ.

Proof. The argument used to establish Lemma 5.1 uses tempered distribu-
tions; we will say below why this is preferable to a proof that uses only
L1(R) arguments.

Notation and results about Fourier transforms of distributions of slow
growth are taken from the book of L. Hormander [8]. We consider the
testing space S of all functions θ : R → C that are infinitely smooth and
are such that, as |t| → ∞, they and all their derivatives decrease to zero
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faster than any power of |t|−1. S is a linear space, and any derivative of a
function in S is again an element of S.

A continuous linear functional on S is called a tempered distribution. We
denote by S ′ the space of all tempered distributions and we write u(θ)
for the value of u ∈ S ′ at θ ∈ S. If a functional u in S ′ is given by
θ 7→ u(θ) :=

∫
R
f(t)θ(t)dt with a function f : R→ C , we abuse notation by

saying that f ∈ S ′.
The Fourier transform û of u ∈ S ′ is defined to be the (unique) û ∈ S ′

which satisfies
û(θ) = u(θ̂) for all θ ∈ S.

The assumptions on ϕ imply that A ∈ S ′. It follows from the Paley –
Wiener Theorem for distributions (Theorem 7.3.1 in [8]) that the support of
Â ∈ S ′ is a subset of [−δ, δ]. The truncated powers xn+ are also elements of
S ′. By Example 7.1.17 and equation (3.2.10) of [8], their Fourier transform
is a linear combination of derivatives of the Dirac measure at the origin and
can be represented by a function anywhere else, namely

x̂n+(t) = n!(2πit)−n−1 for t 6= 0.

Since by assumption A(x) − xn+ is integrable, its (continuous) transform is
the difference of the respective distributional transforms, which finishes the
proof. �

The proof of Lemma 5.1 can be given without making use of a distri-
butional argument. This is usually done by proving that the (n + 1)st
derivative of some explicitly computable approximation B ∈ A(2πδ) to xn+
is integrable. Since this derivative is again an element of A(2πδ), this leads
to ∫

R

e−2πixtd(B(n)(x)− x0
+) = −1 for |t| ≥ δ,

and Lemma 5.1 follows after n+1 integrations by parts and an application of
the Paley – Wiener Theorem to A−B for arbitrary A ∈ A(2πδ). The proof
of the statement B(n+1) ∈ L1(R) is technical and leads to a proof of Lemma
5.1 that is longer than the one given here (cf. Section 2 of [24] and the proof
of Lemma 2 in [14]). It should be added that these explicit constructions
yield representations for ϕ̂(t) in the range |t| ≤ δ as well, which is desirable
for applications.
Remark 5.2. Since the value of the transform of ϕ(x) = A(x)−xn+ outside
of (−δ, δ) does not depend on A at all, any inequality involving values of
ϕ̂(t) with |t| ≥ δ will provide us with a bound that is valid for any A ∈
A(2πδ). The inequalities (6.7) and (7.8), which are used to show that the
approximations of Theorem 6.2 and Theorem 7.2 are best approximations,
rely on this fact.

We quote two theorems regarding the representation of integrable func-
tions of exponential type π or 2π in terms of their values at the integers.
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These results are needed to establish uniqueness of the best approximations
given in Sections 6 and 7.
Lemma 5.3. Let A ∈ A(π) such that its restriction to the real line is in
L2(R). The representation

A(z) =
∞∑

m=−∞
A(m)

sinπ(z −m)
π(z −m)

is valid for all z ∈ C .

Proof. This is (7.19) in Chapter XVI of [25]. �

By a result of Vaaler [24], the set of integers can also be used to interpolate
A ∈ A(2π), provided we use the values of A and A′ at the integers.
Lemma 5.4. Let A ∈ A(2π) such that its restriction to the real line is in
L2(R). The representation

A(z) =
∞∑

m=−∞
A(m)

sin2 π(z −m)
π2(z −m)2

+
∞∑

m=−∞
A′(m)

sin2 π(z −m)
π2(z −m)

is valid for all z ∈ C .

Proof. This is a special case of Theorem 9 in [24]. �

6. Best L1(R)-Approximation from A(η) to xn+

In this section we use Propositions 4.4 and 4.7 to construct approxima-
tions in L1(R)–norm from A(η) to xn+. It turns out that the best L1(R) –
approximation from A(π) to xn+ is an interpolant with a nodal set that is
given by a translate of the integers. (This is suggested by inequality (6.7)
below.) It turns out that any non-zero element of the nodal set is a simple
zero of the difference of the best approximation and xn+. This motivates the
particular choice of F = Fα in the next definition.

Let α ∈ R and define
Fα(z) := −π−1 sinπ(z − α),
gα(t) := eαt(et + 1)−1.

(6.1)

By (2.6), the pair (Fα, gα) is a 0-admissible pair on (α− 1, α) for α ∈ [0, 1].
Definition (4.1) becomes

Gn,α(z) :=
Fα(z)
z

∫ 0

−∞
e−ztg(n+1)

α (t)dt. (6.2)

The function Gn,α(z) has a representation in terms of the functions sinπx,
ψ := Γ′/Γ with the Euler-Gamma function Γ, and the Euler polynomials
Ek, which can be defined by the generating function identity

eαt

et + 1
=

1
2

∞∑
k=0

Ek(α)
tk

k!
.
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Proposition 6.1. With ψ = Γ′/Γ we have for α ∈ [0, 1]

Gn,α(z) =
sinπ(z − α)

π
zn
[
ψ(2−1(α− z))− ψ(α− z) + log 2

− 1
2

n∑
j=0

Ej(α)z−j−1
]
. (6.3)

Proof. Let <z < α. We obtain with n+ 1 integrations by parts

Gn,α(z) = Fα(z)zn
∫ ∞

0
eztgα(−t)dt+

1
2
Fα(z)

n∑
j=0

Ej(α)zn−j−1.

The identity (1 + e−t)−1 = 2(1− e−2t)−1 − (1− e−t)−1 implies

−gα(−t) =
(e−2t

t
− 2e−αt

1− e−2t

)
−
(e−t
t
− e−αt

1− e−t
)

+
(e−t
t
− e−2t

t

)
.

Equation (6.3) follows for <z < α from Fα(z) = −π−1 sinπ(z − α) and the
formulas log(b/a) =

∫∞
0 t−1(e−at − e−bt)dt for a > 0, b > 0 and ψ(z) =∫∞

0 (t−1e−t − e−zt(1− e−t)−1)dt for <z > 0, which are recorded in the book
of Abramowitz and Stegun [1] as (5.1.32) and (6.3.21). The claim follows
for all z ∈ C by analytic continuation. �

In order to satisfy the assumptions of Propositions 4.4 and 4.7, we have
to determine those values of α for which g

(n)
α (0) = 0. For k ∈ N , we have

E2k−1(1/2) = 0,

E2k(0) = E2k(1) = 0.

Moreover, (−1)kE2k−1(0) > 0 and (−1)kE2k(1/2) > 0. The periodic Euler
functions can be represented by the Fourier series

E2k(x− [x]) = (−1)k
4(2k)!
π2k+1

∞∑
ν=0

sin(2ν + 1)πx
(2ν + 1)2k+1

, (6.4)

E2k−1(x− [x]) = (−1)k
4(2k − 1)!

π2k

∞∑
ν=0

cos(2ν + 1)πx
(2ν + 1)2k

. (6.5)

These facts can be found in Chapter 2, §2 of [15]. We define a sequence
(θn)n∈N0 by

θn :=

{
0 if n is even,
1/2 if n is odd.

We normalize our approximations by considering functions of exponential
type η = πδ with δ > 0.
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Theorem 6.2. Let n ∈ N0 and δ > 0. For any entire function A of
exponential type πδ, the inequality∫ ∞

−∞
|A(x)− xn+|dx ≥

|En+1(θn)|
(n+ 1)δn+1

(6.6)

holds, with equality if and only if A(z) = δ−nGn,θn(δz).

Proof. By a change of variable, it is enough to prove the theorem for δ = 1.
Since F0(z) = −π−1 sinπz, we have F0(0) = 0. By Theorem 4.3, the function
G0,0 is entire and G0,0(x) − x0

+ is absolutely integrable. The values θn are
zeros of En for n ≥ 1. Since g

(n)
α (0) = 2−1En(α), the function Gn,θn is entire

and the difference Gn,θn(x)−xn+ is absolutely integrable in this case as well.
Since θn ∈ [0, 1], the pair (Fθn , gθn) is a 0–admissible pair on (θn− 1, θn) for
every n ∈ N0.

Since Fθn is of type π, the same is true for Gn,θn by (4.3).
Inequality (6.6) is established using a method introduced by J. D. Vaaler

in the proof of Theorem 4 of [24]. Let A be any entire function of finite
exponential type π which satisfies ||A− xn+||1 <∞, and define

φn(x) := A(x)− xn+.
If n = 2k for k ∈ N0, then∫

R

|φ2k(x)|dx ≥
∣∣∣ ∫
R

φ2k(x) sgn sinπxdx
∣∣∣

=
∣∣∣ ∫
R

φ2k(x)
2
πi

∑
µ∈Z

e2πix(µ+1/2)

2µ+ 1
dx
∣∣∣

=
2
π

∣∣∣∑
µ∈Z

1
2µ+ 1

φ̂2k(−µ− 1/2)
∣∣∣.

We get from Lemma 5.1 that φ̂n(t) = −n!(2πit)−n−1 for |t| ≥ 1/2. Equa-
tion (6.5) implies the lower bound∫

R

|φ2k(x)|dx ≥
∣∣∣ ∫
R

φ2k(x) sgn sinπxdx
∣∣∣

= 4
(2k)!
π2k+2

∞∑
µ=0

1
(2µ+ 1)2k+2

=
|E2k+1(0)|

2k + 1
. (6.7)

Since F2k(x) = −π−1 sinπx and (−1)kg(2k+1)
0 (0) = (−1)kE2k+1(0) < 0,

equation (4.9) and Propositions 4.4 and 4.7 for k = 0 and k ≥ 1, respectively,
imply the identity

(−1)k+1sgn sinπx = sgn(G2k,0(x)− x2k
+ )

for k ∈ N0. Thus, we have equality in (6.7) for A = G2k,0.
If we assume that there is equality in (6.7) for some A ∈ A(π), then

sgn sinπx(A(x) − x2k
+ ) does not change sign. Let k > 0. Since A is con-

tinuous, A(n) = n2k
+ = G2k,0(n). By the triangle inequality, A − G2k,0 is
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integrable. We obtain A = G2k,0 from Lemma 5.3. If k = 0, then a priori
A(n) = G2k,0(n) is known only for integers n 6= 0. Since A(x) − G0,0(x) is
integrable, Lemma 5.3 implies that

A(x)−G0,0(x) = (A(0)−G0,0(0))
sinπx
πx

,

which is only integrable if A(0) = G0,0(0). Thus, equality follows for k = 0
as well.

For n = 2k − 1 with k ∈ N , the claim follows by considering∫
R

|φ2k−1(x)|dx ≥
∣∣∣ ∫
R

φ2k−1(x) sgn cosπxdx
∣∣∣ (6.8)

and proceeding as in the previous case. �

7. Best One-sided L1(R)–Approximation from A(η) to xn+

We turn now to the problem of finding extremal one-sided entire approx-
imations of given exponential type to xn+. We will use Propositions 4.4, 4.5,
and 4.7 in a similar fashion as in the previous section. Now the nodal set for
the best one-sided approximation of exponential type 2π is a translate of the
integers; since we are interested in a one-sided approximation, we require
double zeros.

Let α ∈ R and define

Fα(z) := π−2 sin2 π(z − α), (7.1)

γα(t) := teαt(et − 1)−1. (7.2)

The pair (Fα, γα) is a 0-admissible pair for α ∈ [0, 1] by (2.7). Definition
(4.1) becomes

Gn,α(z) :=
Fα(z)
z

∫ 0

−∞
e−ztγ(n+1)

α (t)dt. (7.3)

Proposition 7.1. Let n ∈ N0 and α ∈ [0, 1]. With ψ = Γ′/Γ we have

Gn,α(z) =
sin2 π(z − α)

π2
zn
[
ψ′(α− z) +

n∑
j=0

Bj(α)z−j−1
]
.

Proof. The lemma follows after n+ 1 integrations by parts with an applica-
tion of ψ′(z) =

∫∞
0 te−zt(1− e−t)−1dt, which is formula (6.4.1) in [1]. �

We have to determine those values of α for which γ
(n)
α (0) = 0. Since

teαt

et − 1
=
∞∑
n=0

Bn(α)
tk

k!
for |t| < 2π

with the Bernoulli polynomials Bn, we have to consider the zeros of Bn in
[0, 1].

The polynomial B1 has its zero at α = 1/2. For odd n > 1 the zeros of
Bn are located at α = 0, α = 1/2, and α = 1. For even n > 0 a general
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formula for the zeros of Bn is not known; it is known (cf. [15], Chapter
2) that there are two zeros in [0, 1] at values α = zn and α = 1 − zn with
−π−12−2n−1 < zn−1/4 < 0, which is an estimate due to D. H. Lehmer [12].

As in [14], we set z0 := 0 and define for k ∈ N0

αn :=


1− zn,
0,
zn,

1/2,

βn :=


zn if n ≡ 0 mod 4,
1/2 if n ≡ 1 mod 4,
1− zn if n ≡ 2 mod 4,
0 if n ≡ 3 mod 4.

(7.4)

The function Bn+1 assumes a maximum in [0, 1] at αn and a minimum in
[0, 1] at βn. Note that α0, α1, and β0 are the only values which are not zeros
of Bernoulli polynomials. We normalize the approximations in the following
theorem by considering functions of exponential type η = 2πδ with δ > 0.
Theorem 7.2 (cf. [14], Theorem 1). Let n ∈ N0 and δ > 0. The inequality

δ−nGn,αn(δx) ≤ xn+ ≤ δ−nGn,βn(δx) (7.5)

holds for all x ∈ R. Moreover,
(i) for every entire function A of type 2πδ satisfying A(x) ≥ xn+∫ ∞

−∞

(
A(x)− xn+

)
dx ≥ − Bn+1(βn)

(n+ 1)δn+1
(7.6)

with equality if and only if A(x) = δ−nGn,βn(δx), and
(ii) for every entire function A of type 2πδ satisfying A(x) ≤ xn+∫ ∞

−∞

(
xn+ −A(x)

)
dx ≥ Bn+1(αn)

(n+ 1)δn+1
(7.7)

with equality if and only if A(x) = δ−nGn,αn(δx).

Proof. A change of variable shows that it is enough to establish the theorem
for δ = 1. By definition, F0(z) = F1(z) = π−2 sin2 πz, therefore F0(0) =
F1(0) = 0. As mentioned above, the values βn for n ≥ 1 and αn for n ≥ 2 are
zeros of Bn. By construction, the equality γ(n)

α (0) = Bn(α) holds. Theorem
4.3 implies that the functions Gn,αn and Gn,βn are entire functions. Since
Fα is of type 2π, the same is true for Gn,αn and Gn,βn by (4.3).

Since αn, βn ∈ [0, 1] for all n, (Fαn , γαn) and (Fβn , γβn) are 0-admissible
pairs.

Since γ′0(0) = B1(0) = −1/2 < 0 and γ′1(0) = B1(1) = 1/2 > 0, it follows
from Proposition 4.4 that G0,1(x) ≤ x0

+ ≤ G0,0(x) for all x ∈ R.
Since γ′′0 (0) = B2(0) = 1/6 > 0, it follows from Proposition 4.5 that

G1,0(x) ≤ x+ for all x ∈ R, and since γ′′1/2(0) = B2(1/2) = −1/12 < 0, it
follows from Proposition 4.7 that x+ ≤ G1, 1

2
(x) for all x ∈ R.

Let n ≥ 2. By construction, we have γ
(n+1)
αn (0) = Bn+1(αn) > 0 and

γ
(n+1)
βn

(0) = Bn+1(βn) < 0. It follows from Proposition 4.7 that Gn,αn(x) ≤
xn+ ≤ Gn,βn(x) for all x ∈ R.
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For the remaining part, we employ a method introduced by Vaaler in
the proof of Theorem 8 in [24]. Let A(x) ≥ xn+ be any entire function of
exponential type 2π such that

∫
R

(A(x)− xn+)dx <∞. Define

φn(x) = A(x)− xn+.

By Lemma 5.1, we have φ̂n(t) = −n!(2πit)−n−1 for |t| ≥ 1. Using Poisson
summation and the Fourier series expansion

Bn(α) = − n!
(2πi)n

∑
` 6=0

e2πi`α

`n
,

valid for α ∈ (0, 1) and n ≥ 1, we have for α ∈ (0, 1)

0 ≤
∑
ν

φn(α+ ν) =
∑
`∈Z

φ̂n(`)e2πi`α = φ̂n(0)− n!
(2πi)n+1

∑
` 6=0

e2πi`α

`n+1

= φ̂n(0) +
Bn+1(α)
n+ 1

. (7.8)

It follows that∫
R

(A(x)− xn+)dx ≥ − inf
0<α<1

Bn+1(α)
n+ 1

= −Bn+1(βn)
n+ 1

.

Since limy→0+ Gn,βn(y + ` + βn) − (y + ` + βn)n = 0 for all ` ∈ Z , we have
equality in (7.8) for A = Gn,βn . Let n > 0. By Lemma 5.4, the function
Gn,βn is the only function for which equality in (7.8) holds. If n = 0, Lemma
5.4 implies

A(x)− G0,0(x) = (A′(0)− G ′0,0(0))
sin2 πx

π2x
,

and since the right-hand side has to be integrable, we obtain A′(0) = G ′0,0(0).
Reversing the inequality sign in (7.8) and replacing βn by αn yields the

statements for Gn,αn . �
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[17] I. J. Schoenberg, On Pólya Frequency Functions. I. The totally positive func-

tions and their Laplace transforms. J. Analyse Math. 1, (1951), 331–374, (I. J.
Schoenberg, Selected Papers 2, Birkhäuser Verlag 1988.)

[18] I. J. Schoenberg, On Pólya frequency functions. II. Variation-diminishing integral
operators of the convolution type, Acta Sci. Math. (Szeged) 12, (1950), 97–106.
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