ENTIRE MAJORANTS VIA EULER-MACLAURIN SUMMATION

FRIEDRICH LITTMANN

Abstract

It is the aim of this article to give extremal majorants of type 2π for the class of functions $f_{n}(x)=\operatorname{sgn}(x) x^{n}$ where $n \in \mathbb{N}$. As applications we obtain positive definite extensions to \mathbb{R} of $\pm(i t)^{-m}$ defined on $\mathbb{R} \backslash[-1,1]$ where $m \in \mathbb{N}$, optimal bounds in Hilbert-type inequalities for the class of functions $(i t)^{-m}$, and majorants of type 2π for functions whose graphs are trapezoids.

1. Introduction and Notation

An entire function $F(z)$ is said to be of type δ if

$$
|F(z)| \leq A_{\varepsilon} \exp (|z|(\delta+\varepsilon))
$$

for every $\varepsilon>0$ and some constant $A_{\varepsilon}>0$ depending on ε (in the notation of $[\mathbf{2}]$ this a function of order 1 and type δ). The set of all functions of type δ that are real in \mathbb{R} will be denoted by $E(\delta)$.

By the Paley-Wiener Theorem (cf. [2]), functions in $E(2 \pi \delta) \cap L^{2}(\mathbb{R})$ have a Fourier transform with support in $[-\delta, \delta]$, where the Fourier transform of $f \in L^{2}(\mathbb{R})$ is given by

$$
\mathcal{F} f(t):=\lim _{N \rightarrow \infty} \int_{-N}^{N} f(x) e(-t x) d x
$$

here we use the notation $e(y)=\exp (2 \pi i y)$.
In the 1930's A. Beurling studied the entire function

$$
\begin{equation*}
B(z):=\frac{\sin ^{2} \pi z}{\pi^{2}}\left(\sum_{n=0}^{\infty}(z-n)^{-2}-\sum_{n=-\infty}^{-1}(z-n)^{-2}+2 z^{-1}\right) . \tag{1}
\end{equation*}
$$

He found that $B(z)$ satisfies the following extremal property: $B(z)$ is of type $2 \pi, B(x) \geq \operatorname{sgn}(x)$ for all $x \in \mathbb{R}, \int_{\mathbb{R}}(B-\operatorname{sgn})=1$, and any $F \in E(2 \pi)$ with $F \geq \operatorname{sgn}$ on the real line and $F \neq B$ satisfies $\int_{\mathbb{R}}(F-\operatorname{sgn})>1$.

This motivates
Definition 1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$. For $F \in E(\delta)$ consider the conditions
(i) $f(x) \leq F(x)$ for all $x \in \mathbb{R}$,
(ii) $\int_{\mathbb{R}}(F-f)=\min _{\substack{G \in E(\delta) \\ G \geq f}} \int_{\mathbb{R}}(G-f)$.

[^0]A function $F \in E(\delta)$ satisfying (i) and (ii) is called an extremal majorant of type δ of f. Extremal minorants are defined with the obvious modifications.
A. Selberg discovered $B(z)$ independently, and he used it to obtain a sharp form of the large sieve inequality ($[\mathbf{1 0}]$, chapter 20).

A general method to construct candidates for extremal majorants when $f \in L^{2}(\mathbb{R})$ is given by S. W. Graham and J. D. Vaaler in [3]. Their applications include a finite form of the Wiener-Ikehara Tauberian theorem (see also [5], chapter 5), a proof of the large sieve inequality, and inequalities for character sums.

Although Beurling never published his results, an account can be found in the survey $[\mathbf{1 1}]$ by Vaaler.

The function $B(z)$ can be used to give a short and elegant proof for a general form of Hilbert's inequality (cf. [10], chapter 20, and [11], Theorem 16. For the first proof cf. [8]). We will generalize this result in Corollary 2.

It is the purpose of this note to give extremal minorants and majorants for the class of functions

$$
f_{n}(x):=\operatorname{sgn}(x) x^{n}
$$

where $n \in \mathbb{N}_{0}$. The way we obtain the extremal minorants and majorants is similar to the method of $[\mathbf{1 1}]$, except that we employ the Euler-Maclaurin summation formula rather than the arithmetic-geometric mean inequality.

As usual, $\operatorname{sgn}(x)$ denotes the symmetric signum function, i.e. $\operatorname{sgn}(x)=-1$ for $x<0, \operatorname{sgn}(x)=1$ for $x>0$, and $\operatorname{sgn}(0)=0$. Also, $\operatorname{sgn}_{+}(x)$ denotes the right-continuous signum function, i.e. $\operatorname{sgn}_{+}(x)=\operatorname{sgn}(x)$ for $x \neq 0$ and $\operatorname{sgn}_{+}(0)=1$. The expression \bar{z} denotes the complex conjugate of $z \in \mathbb{C}$.

2. Main Results

Given $\alpha \in \mathbb{R}$, let

$$
F_{\alpha}(z):=\pi^{-2} \sin ^{2} \pi(z-\alpha) \text { for } z \in \mathbb{C} .
$$

The following definition provides us with the candidates for extremal minorants and majorants of $f(x)=\operatorname{sgn}(x) x^{n}$.

Definition 2. Define for $0 \leq \alpha \leq 1, z \in \mathbb{C}$, and $n \in \mathbb{N}_{0}$
$H_{n}(z ; \alpha):=F_{\alpha}(z)\left(z^{n} \sum_{k=-\infty}^{\infty} \frac{\operatorname{sgn}_{+}(k)}{(x-k-\alpha)^{2}}+2 \sum_{k=1}^{n} B_{k-1}(\alpha) z^{n-k}+2 \frac{B_{n}(\alpha)}{z-\{\alpha\}}\right)$,
where $\{\alpha\}$ denotes the fractional part of α, and $B_{n}(\alpha)$ is the n-th Bernoulli polynomial (cf. Section 4). For $n=0$ the second sum is assigned the value zero.

We have the equality $B(z)=H_{0}(z ; 0)$, where $B(z)$ is Beurling's function defined in (1).

Note that $H_{n}(z ; \alpha)$ is real entire, because the zeros of F_{α} cancel the poles of the first and the last term in the parenthesis, and the second term is a polynomial.

Next we will show that $H_{n}(z ; \alpha)$ is of type 2π. The expressions obtained by multiplying $F_{\alpha}(z)$ with the second and the third term in the parenthesis of Definition 2 are of type 2π. It remains to estimate the first term. The series $\sum_{\ell}|z-\ell-\alpha|^{-2} F_{\alpha}(z-\ell)$ is bounded uniformly for all z satisfying $|z-k-\alpha|<1 / 4$ with some $k \in \mathbb{Z}$. Moreover, for all z and k satisfying $|z-k-\alpha| \geq 1 / 4$, the sum $\sum_{\ell}|z-\ell-\alpha|^{-2}$ is bounded uniformly in z. Since $F_{\alpha}(z)$ is of type 2π, it follows that $H_{n}(z ; \alpha)$ is of type 2π as well.

We will see in (36) and (37) that the function $H_{n}(x ; \alpha)$ is an extremal function for $\operatorname{sgn}(x) x^{n}$ precisely when the $1-$ periodic function $B_{n+1}(\alpha)-$ $B_{n+1}(t+\alpha-[t+\alpha])$ has no changes of sign for all $t \in \mathbb{R}$ (here $[x]$ denotes the greatest integer less than or equal to x). This motivates the following choices for the values of α.

Let $n \in \mathbb{N}$. It is known that $B_{2 n}(t)(n \geq 1)$ has exactly one zero in the interval $(0,1 / 2)$. Denote this zero by $z_{2 n}$, and let $z_{0}=0$. By a result of D. H. Lehmer [6] we have $1 / 4-\pi^{-1} 2^{-2 n-1}<z_{2 n}<1 / 4$ for $n \in \mathbb{N}$. The odd Bernoulli polynomials $B_{2 n+1}(t)$ have zeros at $t=0$ and $t=1 / 2$, but no zeros in the interval $(0,1 / 2)$ (cf. Section 4).

Define two sequences $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}_{0}}$ and $\left\{\beta_{n}\right\}_{n \in \mathbb{N}_{0}}$ by

$$
\begin{align*}
& \alpha_{4 k} \quad:=1-z_{4 k}, \quad \beta_{4 k} \quad:=z_{4 k}, \\
& \alpha_{4 k+1}:=0, \quad \beta_{4 k+1}:=\frac{1}{2} \text {, } \\
& \alpha_{4 k+2}:=z_{4 k+2}, \quad \beta_{4 k+2} \quad:=1-z_{4 k+2}, \tag{2}\\
& \alpha_{4 k+3}:=\frac{1}{2}, \quad \beta_{4 k+3}:=0,
\end{align*}
$$

where $k \in \mathbb{N}_{0}$. Note that $B_{n+1}(t)$ assumes a maximum in $[0,1]$ at $t=\alpha_{n}$, and $B_{n+1}(t)$ assumes a minimum in $[0,1]$ at $t=\beta_{n}$ (cf. Lemma 5).

With these definitions $H_{n}\left(z ; \alpha_{n}\right)$ and $H_{n}\left(z ; \beta_{n}\right)$ turn out to be the extremal minorant and the extremal majorant of $\operatorname{sgn}(x) x^{n}$, respectively:

Theorem 1. Let $n \in \mathbb{N}_{0}$. The inequality

$$
\begin{equation*}
H_{n}\left(x ; \alpha_{n}\right) \leq \operatorname{sgn}(x) x^{n} \leq H_{n}\left(x ; \beta_{n}\right) \tag{3}
\end{equation*}
$$

holds for all $x \in \mathbb{R}$. Moreover,
(i) for every real entire function F of type 2π satisfying $F(x) \geq \operatorname{sgn}(x) x^{n}$

$$
\begin{equation*}
\int_{\infty}^{\infty}\left(F(x)-\operatorname{sgn}(x) x^{n}\right) d x \geq-2 \frac{B_{n+1}\left(\beta_{n}\right)}{n+1} \tag{4}
\end{equation*}
$$

with equality exactly for $F(x)=H_{n}\left(x ; \beta_{n}\right)$, and
(ii) for every real entire function G of type 2π satisfying $G(x) \leq \operatorname{sgn}(x) x^{n}$

$$
\begin{equation*}
\int_{\infty}^{\infty}\left(\operatorname{sgn}(x) x^{n}-G(x)\right) d x \geq 2 \frac{B_{n+1}\left(\alpha_{n}\right)}{n+1} \tag{5}
\end{equation*}
$$

with equality exactly for $G(x)=H_{n}\left(x ; \alpha_{n}\right)$.

Let S be \mathbb{R} or \mathbb{Z}. We say that a function $f: S \rightarrow \mathbb{C}$ is positive definite if for every $N \in \mathbb{N}$, any $a_{1}, \ldots, a_{n} \in \mathbb{C}$, and any $x_{1}, \ldots, x_{n} \in S$ the inequality

$$
\begin{equation*}
\sum_{\nu, \mu=1}^{N} a_{\nu} \bar{a}_{\mu} f\left(x_{\nu}-x_{\mu}\right) \geq 0 \tag{6}
\end{equation*}
$$

holds.
Let $m \in \mathbb{N}$. As a first corollary of Theorem 1 we obtain positive definite extensions to \mathbb{R} of the functions $\pm m!(2 \pi i t)^{-m}$ restricted to $\mathbb{R} \backslash[-1,1]$. Define

$$
\begin{equation*}
s_{m, \alpha}(t):=-2 \sum_{k=0}^{\infty} \frac{B_{k+m}(\alpha)}{(k+1)!}\left(\frac{k+1}{k+m}-|t|\right)(-2 \pi i t)^{k} \tag{7}
\end{equation*}
$$

where $0 \leq \alpha \leq 1, m \in \mathbb{N}$, and $|t|<1$.
Corollary 1. Let $m \in \mathbb{N}$. The following functions are positive definite on \mathbb{R} :

$$
\begin{aligned}
& f_{m}(t)= \begin{cases}m!(2 \pi i t)^{-m} & \text { if }|t| \geq 1, \\
s_{m, \alpha_{m-1}}(t) & \text { else },\end{cases} \\
& g_{m}(t)= \begin{cases}-m!(2 \pi i t)^{-m} & \text { if }|t| \geq 1, \\
-s_{m, \beta_{m-1}}(t) & \text { else. }\end{cases}
\end{aligned}
$$

The following functions are positive definite on \mathbb{Z} :

$$
\begin{aligned}
& p_{m}(k)= \begin{cases}m!(2 \pi i k)^{-m} & \text { if } k \neq 0, \\
B_{m}\left(\alpha_{m-1}\right) & \text { if } k=0 .\end{cases} \\
& q_{m}(k)= \begin{cases}-m!(2 \pi i k)^{-m} & \text { if } k \neq 0, \\
-B_{m}\left(\beta_{m-1}\right) & \text { if } k=0 .\end{cases}
\end{aligned}
$$

Moreover, $f_{m}(0)=B_{m}\left(\alpha_{m-1}\right), g_{m}(0)=-B_{m}\left(\beta_{m-1}\right)$, and the values $f_{m}(0), g_{m}(0), p_{m}(0), q_{m}(0)$ are all minimal in the sense that none of the functions $\pm m!(2 \pi i t)^{-m}$ (resp. $\left.\pm(2 \pi i k)^{-m}\right)$ restricted to $\mathbb{R} \backslash[-1,1]$ (resp. $\mathbb{Z} \backslash\{0\}$) can have a positive extension to \mathbb{R} (resp. \mathbb{Z}) having a smaller value at the origin.

Figure 1: Plot of $f_{2}(t)$
Figure 2: Plot of $g_{2}(t)$
The proof of Corollary 1 will be given in Section 6. As a consequence of this corollary we obtain sharp bounds in certain Hilbert type inequalities. Let $\left(a_{\nu}\right)_{\nu=1}^{N}$ be a finite sequence of complex numbers, and let $\left\{\lambda_{\nu}\right\}_{\nu=1}^{N}$ be a set of real numbers which are well-spaced in the sense that $\left|\lambda_{\nu}-\lambda_{\mu}\right| \geq 1$ for all $\nu \neq \mu$, and let $h(t)(t \in \mathbb{R})$ be a hermitian function, i.e. $h(-t)=\overline{h(t)}$. We are interested in optimal bounds $L(h)$ and $U(h)$ such that

$$
\begin{equation*}
-L(h) \sum_{\nu=1}^{N}\left|a_{\nu}\right|^{2} \leq \sum_{\substack{\mu, \nu=1 \\ \mu \neq \nu}}^{N} a_{\nu} \bar{a}_{\mu} h\left(\lambda_{\nu}-\lambda_{\mu}\right) \leq U(h) \sum_{\nu=1}^{N}\left|a_{\nu}\right|^{2} \tag{8}
\end{equation*}
$$

holds independently of $N \in \mathbb{N}$, and independently of the sequences $\left\{a_{\nu}\right\}_{\nu=1}^{N}$ and $\left\{\lambda_{\nu}\right\}_{\nu=1}^{N}$.

For $h_{1}(t)=(i t)^{-1}$ the problem of finding the best possible values for $L\left(h_{1}\right)$ and $U\left(h_{1}\right)$ was solved by Montgomery and Vaughan [8]. As mentioned in the introduction, Beurling's majorant $B(z)$ can be used to give a proof of Montgomery and Vaughan's result (cf. [11] Theorem 16, [10] chapter 20). We will extend their result to the functions

$$
\begin{equation*}
h_{m}(t)=(i t)^{-m} \text { where } m \in \mathbb{N} . \tag{9}
\end{equation*}
$$

Corollary 2. Let $m \in \mathbb{N}$, and let L, U be as in (8). We have the optimal bounds

$$
\begin{aligned}
L\left((i t)^{-m}\right) & =(2 \pi)^{m} \frac{B_{m}\left(\alpha_{m-1}\right)}{m!} \\
U\left((i t)^{-m}\right) & =-(2 \pi)^{m} \frac{B_{m}\left(\beta_{m-1}\right)}{m!}
\end{aligned}
$$

For example, since $-2 \pi^{2} B_{2}(1 / 2)=\pi^{2} B_{2}(0)=\zeta(2)$ we obtain for $m=2$ that

$$
\begin{equation*}
-\zeta(2) \sum_{\nu=1}^{N}\left|a_{\nu}\right|^{2} \leq \sum_{\substack{\mu, \nu=1 \\ \mu \neq \nu}}^{N} \frac{a_{\nu} \bar{a}_{\mu}}{\left(\lambda_{\nu}-\lambda_{\mu}\right)^{2}} \leq 2 \zeta(2) \sum_{\nu=1}^{N}\left|a_{\nu}\right|^{2} \tag{10}
\end{equation*}
$$

for all $N \in \mathbb{N}$ and all sequences $\left(a_{\nu}\right),\left\{\lambda_{\nu}\right\}$ as above.
For this inequality we can write down extremal configurations. An extremal configuration for the upper bound is given by $\lambda_{\nu}:=\nu, a_{\nu}:=1$, and $N \rightarrow \infty$, since

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{\substack{\nu, \mu=1 \\ n \neq m}}^{N} \frac{1}{(\nu-\mu)^{2}}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{\substack{k=1-N \\ k \neq 0}}^{N-1} \frac{N-|k|}{k^{2}}=2 \zeta(2) .
$$

An extremal configuration for the lower bound is given by $\lambda_{\nu}:=\nu, a_{\nu}:=$ $(-1)^{\nu}$ and $N \rightarrow \infty$, since

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{\substack{\nu, \mu=1 \\ n \neq m}}^{N} \frac{(-1)^{\nu-\mu}}{(\nu-\mu)^{2}}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{\substack{k=1-N \\ k \neq 0}}^{N-1}(-1)^{k} \frac{N-|k|}{k^{2}}=-\zeta(2)
$$

Note that $L\left((i t)^{-m}\right)=U\left((i t)^{-m}\right)$ for odd-valued, but not for even-valued $m \in \mathbb{N}$.

The proof of Corollary 2 will be given in Section 6.
As another application we derive the following result originally obtained by J. J. Holt (cf. [4], Theorem 1 and Corollary 1). Let $\alpha>0$, and define

$$
\begin{equation*}
R_{\alpha}(x)=\alpha^{-1}(|x+\alpha|-|x|) \text { for all } x \in \mathbb{R} \tag{11}
\end{equation*}
$$

Holt obtained extremal majorants and minorants for $R_{\alpha}(x)$ in the case that $\alpha \in A:=(0,1 / 2] \cup\{k+1 / 2: k \in \mathbb{N}\}$, and he obtained non-extremal
minorants and majorants for all other $\alpha>0$. We will obtain Holt's result for $\alpha \in A$, and we will give slightly better (also non-extremal) majorants and minorants for all positive $\alpha \notin A$. Define

$$
\begin{align*}
& M_{\alpha}(x)= \begin{cases}H_{0}(x ; 0) & \text { if } 0<\alpha \leq 1 / 2 \\
\alpha^{-1}\left(H_{1}(x+\alpha ; 1 / 2)-H_{1}(x ; 0)\right) & \text { if } \alpha>1 / 2\end{cases} \tag{12}\\
& m_{\alpha}(x)= \begin{cases}H_{0}(x+\alpha ; 1) & \text { if } 0<\alpha \leq 1 / 2 \\
\alpha^{-1}\left(H_{1}(x+\alpha ; 0)-H_{1}(x ; 1 / 2)\right) & \text { if } \alpha>1 / 2\end{cases} \tag{13}
\end{align*}
$$

For $0<\alpha \leq 1 / 2$ we have $H_{0}(x+\alpha ; 1) \leq R_{\alpha}(x) \leq H_{0}(x ; 0)$ (cf. [4], Cor. 1). For any $\alpha>0$ we have by Theorem 1 that $H_{1}(x+\alpha ; 0) \leq|x+\alpha| \leq$ $H_{1}(x+\alpha ; 1 / 2)$ and $-H_{1}(x ; 1 / 2) \leq-|x| \leq-H_{1}(x ; 0)$. So for all $x \in \mathbb{R}$

$$
\begin{equation*}
m_{\alpha}(x) \leq R_{\alpha}(x) \leq M_{\alpha}(x) \tag{14}
\end{equation*}
$$

Moreover for $0<\alpha \leq 1 / 2, \int\left(H_{0}(x ; 0)-R_{\alpha}(x)\right) d x=\int\left(R_{\alpha}(x)-H_{0}(x+\right.$ $\alpha ; 1)) d x=1-\alpha$. Since $-B_{2}(1 / 2)+B_{2}(0)=1 / 12+1 / 6=1 / 4$, Theorem 1 implies for $\alpha>1 / 2$

$$
\begin{equation*}
\int_{\mathbb{R}}\left(M_{\alpha}-R_{\alpha}\right)=\int_{\mathbb{R}}\left(R_{\alpha}-m_{\alpha}\right)=(4 \alpha)^{-1} \tag{15}
\end{equation*}
$$

Define

$$
d(\alpha)= \begin{cases}1-\alpha & \text { if } 0<\alpha \leq 1 / 2 \tag{16}\\ (4 \alpha)^{-1} & \text { if } \alpha>1 / 2\end{cases}
$$

We have shown
Corollary 3. The functions M_{α} and m_{α} are of type 2π, and they majorize and minorize R_{α}, respectively, on the real line. Moreover,

$$
\int_{\mathbb{R}}\left(M_{\alpha}-R_{\alpha}\right)=\int_{\mathbb{R}}\left(R_{\alpha}-m_{\alpha}\right)=d(\alpha)
$$

We use Corollary 3 to obtain majorants and minorants of type 2π for trapezoids. Define $f_{\alpha, \beta, \gamma}(x)=\frac{1}{2}\left(R_{\alpha}(x)+R_{\gamma}(\beta-x)\right)$. The graph of $f_{\alpha, \beta, \gamma}(x)$ is a trapezoid with base-length $\alpha+\beta+\gamma$, top-length β, height 1 , and left point at $x=-\alpha$. Define

$$
\begin{align*}
M_{\alpha, \beta, \gamma}(x) & =\frac{1}{2}\left(M_{\alpha}(x)+M_{\gamma}(\beta-x)\right) \tag{17}\\
m_{\alpha, \beta, \gamma}(x) & =\frac{1}{2}\left(m_{\alpha}(x)+m_{\gamma}(\beta-x)\right) \tag{18}
\end{align*}
$$

From Corollary 3 we obtain
Corollary 4. $M_{\alpha, \beta, \gamma}$ and $m_{\alpha, \beta, \gamma}$ are functions of type 2π, they satisfy

$$
m_{\alpha, \beta, \gamma}(x) \leq f_{\alpha, \beta, \gamma}(x) \leq M_{\alpha, \beta, \gamma}(x)
$$

for all real x, and

$$
\int_{\mathbb{R}}\left(M_{\alpha, \beta, \gamma}-f_{\alpha, \beta, \gamma}\right)=\int_{\mathbb{R}}\left(f_{\alpha, \beta, \gamma}-m_{\alpha, \beta, \gamma}\right)=\frac{1}{2}(d(\alpha)+d(\gamma)) .
$$

3. Outline of the proofs

Since most of the following statements are concerned with the difference of $H_{n}(x ; \alpha)$ and $\operatorname{sgn}(x) x^{n}$ we define

$$
\begin{equation*}
\psi_{n, \alpha}(x):=H_{n}(x ; \alpha)-\operatorname{sgn}(x) x^{n} . \tag{19}
\end{equation*}
$$

The proof of Theorem 1 is divided into a series of lemmata whose proofs are given in Section 5.

Lemma 1. Let $0 \leq \alpha \leq 1$ and $n \in \mathbb{N}_{0}$. The function $\psi_{n, \alpha}(x)(x \in \mathbb{R})$ is absolutely integrable. Moreover, if $\left\{\alpha_{n}\right\}_{n \in \mathbb{N}_{0}}$ and $\left\{\beta_{n}\right\}_{n \in \mathbb{N}_{0}}$ are defined by (2), then

$$
H_{n}\left(x ; \alpha_{n}\right) \leq \operatorname{sgn}(x) x^{n} \leq H_{n}\left(x ; \beta_{n}\right) .
$$

Since $\psi_{n, \alpha}(x)$ is integrable, its Fourier transform exists. Its value is given by

Lemma 2. Let $0 \leq \alpha \leq 1$ and $n \in \mathbb{N}_{0}$. We have

$$
\begin{align*}
\mathcal{F} \psi_{n, \alpha}(t)=-2 \sum_{k=0}^{\infty} \frac{B_{k+n+1}(\alpha)}{(k+1)!} & \left(\frac{k+1}{k+n+1}-|t|\right)(-2 \pi i t)^{k} \tag{20}\\
+ & \frac{B_{n}(\alpha)}{\pi i} \operatorname{sgn}(t)(e(-\{\alpha\} t)-1) \text { for }|t|<1
\end{align*}
$$

$$
\begin{equation*}
\mathcal{F} \psi_{n, \alpha}(t)=-\frac{2 \cdot n!}{(2 \pi i t)^{n+1}} \text { for }|t| \geq 1 \tag{21}
\end{equation*}
$$

By taking the value of $\mathcal{F} \psi_{n, \alpha}(t)$ at $t=0$ in Lemma 2 we obtain the equalities in (4) for $F(x)=H_{n}\left(x ; \beta_{n}\right)$ and in (5) for $G(x)=H_{n}\left(x ; \alpha_{n}\right)$.

The proof of Theorem 1 is completed by establishing the extremality properties of $H_{n}(x ; \alpha)$.

Lemma 3. Let $n \in \mathbb{N}_{0}$, and let $F_{n}, G_{n} \in E(2 \pi)$ be real entire functions such that

$$
G_{n}(x) \leq \operatorname{sgn}(x) x^{n} \leq F_{n}(x)
$$

for all $x \in \mathbb{R}$. Then

$$
\begin{align*}
& \int_{-\infty}^{\infty}\left(F_{n}(x)-\operatorname{sgn}(x) x^{n}\right) d x \geq-\frac{2}{n+1} \min _{0 \leq t \leq 1} B_{n+1}(t), \tag{22}\\
& \int_{-\infty}^{\infty}\left(\operatorname{sgn}(x) x^{n}-G_{n}(x)\right) d x \geq \frac{2}{n+1} \max _{0 \leq t \leq 1} B_{n+1}(t) . \tag{23}
\end{align*}
$$

Moreover, in (22) and (23) equality can hold only for the minorants and majorants defined in Lemma 1.

4. Bernoulli Functions and Euler-Maclaurin Summation

In this section we give a brief review of some facts about Bernoulli polynomials that we will need in our proofs. Most of these facts are taken from $[\mathbf{1}],[\mathbf{7}]$, and $[\mathbf{9}]$.

The Bernoulli polynomials $B_{n}(x)$ can be defined by the power series expansion

$$
\begin{equation*}
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} \frac{B_{n}(x)}{n!} t^{n} \tag{24}
\end{equation*}
$$

where $|t|<2 \pi$, the Bernoulli numbers B_{n} by

$$
\begin{equation*}
B_{n}=B_{n}(0) \tag{25}
\end{equation*}
$$

and the Bernoulli periodic functions $\mathcal{B}_{n}(t)$ by

$$
\begin{equation*}
\mathcal{B}_{n}(t)=B_{n}(t-[t]) \tag{26}
\end{equation*}
$$

The Bernoulli polynomials satisfy $B_{n}^{\prime}(t)=n B_{n-1}(t)$ and

$$
\int_{0}^{1} B_{n}(t) d t=0
$$

This implies that for $0 \leq \alpha \leq 1$ the Bernoulli periodic functions have the antiderivatives

$$
\begin{equation*}
\int_{0}^{x} \mathcal{B}_{n}(t+\alpha) d t=\frac{1}{n+1}\left(\mathcal{B}_{n+1}(x+\alpha)-B_{n+1}(\alpha)\right) \tag{27}
\end{equation*}
$$

For $n \geq 1$ the Bernoulli periodic functions have the Fourier series expansion

$$
\begin{equation*}
\mathcal{B}_{n}(t)=-\frac{n!}{(2 \pi i)^{n}} \sum_{\substack{k=-\infty \\ k \neq 0}}^{\infty} \frac{1}{k^{n}} e(k t) \tag{28}
\end{equation*}
$$

which is valid for $t \in \mathbb{R} \backslash \mathbb{Z}$ with symmetric summation if $n=1$, and it is valid for $t \in \mathbb{R}$ if $n \geq 2$.

We will need the Euler-Maclaurin summation formula in the following form:

Lemma 4. For $0 \leq \alpha \leq 1, x>0$ and any $\mu \in \mathbb{N}$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{(x+n-\alpha)^{2}}=\sum_{n=1}^{\mu} \frac{B_{n-1}(\alpha)}{x^{n}}+(\mu+1) \int_{0}^{\infty} \frac{B_{\mu}(\alpha)-\mathcal{B}_{\mu}(t+\alpha)}{(x+t)^{\mu+2}} d t \tag{29}
\end{equation*}
$$

Proof. Induction on μ. For $0 \leq \alpha<1$ we obtain with integration by parts

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{(x+n-\alpha)^{2}} & =\int_{0+}^{\infty} \frac{1}{(x+t)^{2}} d[t+\alpha] \\
& =\int_{0}^{\infty} \frac{1}{(x+t)^{2}} d t+\int_{0+}^{\infty} \frac{d[t+\alpha]-d t}{(x+t)^{2}} \\
& =\frac{B_{0}(\alpha)}{x}+2 \int_{0}^{\infty} \frac{B_{1}(\alpha)-\mathcal{B}_{1}(t+\alpha)}{(x+t)^{3}} d t
\end{aligned}
$$

and for $\alpha=1$ we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{(x+n-1)^{2}} & =\frac{1}{x^{2}}+\sum_{n=1}^{\infty} \frac{1}{(x+n)^{2}}=\frac{1}{x}+2 \int_{0}^{\infty} \frac{1+B_{1}(0)-\mathcal{B}_{1}(t)}{(x+t)^{3}} d t \\
& =\frac{B_{0}(1)}{x}+2 \int_{0}^{\infty} \frac{B_{1}(1)-\mathcal{B}_{1}(t+1)}{(x+t)^{3}} d t
\end{aligned}
$$

since $\mathcal{B}_{1}(t)$ is 1-periodic. This establishes (29) for $\mu=1$.
The remaining part of the induction follows with repeated applications of integrations by parts using (27).

We will need the extrema of the Bernoulli polynomials in the interval $[0,1]$. The locations of these extrema are collected in the following lemma. These facts come from [9], chapter 2.
Lemma 5. Let $0 \leq x \leq 1$ and $n \geq 1$.
(i) $B_{4 n}(x)$ assumes its maximum value at $x=1 / 2$ and its minimum value at $x=0, x=1$.
(ii) $B_{4 n+1}(x)$ assumes its minimum value at a unique $\alpha \in(0,1 / 2)$ and its maximum value at $1-\alpha \in(1 / 2,1)$.
(iii) $B_{4 n-2}(x)$ assumes its maximum value at $x=0, x=1$ and its minimum value at $x=1 / 2$.
(iv) $B_{4 n-1}(x)$ assumes its maximum value at a unique $\alpha \in(0,1 / 2)$ and its minimum value at $1-\alpha \in(1 / 2,1)$.

Finally, $B_{0}(x)=1$ and $B_{1}(x)=x-1 / 2$. As was pointed out in Section 2, Lehmer showed in $[\mathbf{6}]$ that the zeros $z_{2 n}$ of the even Bernoulli polynomial in $(0,1 / 2)$ (or, what amounts to the same thing, the extrema of the odd Bernoulli polynomials in $(0,1 / 2))$ satisfy

$$
\frac{1}{4}-\frac{1}{\pi 2^{2 n+1}}<z_{2 n}<\frac{1}{4} .
$$

Decimal approximations for the first four $z_{2 n}$ are $z_{2}=0.2113, z_{4}=0.2403$, $z_{6}=0.2475, z_{8}=0.2494$.

5. Proof of the Lemmata

Proof of Lemma 1. Let $x \in \mathbb{R}$ and $0 \leq \alpha \leq 1$. Recall

$$
\begin{equation*}
\psi_{n, \alpha}(x)=H_{n}(x ; \alpha)-\operatorname{sgn}(x) x^{n} . \tag{30}
\end{equation*}
$$

We will consider the cases $x>0$ and $x<0$ separately. Let $x>0$. We have by Lemma 4 with $\mu=n+1$ that

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty} & \frac{\operatorname{sgn}_{+}(k+\alpha)}{(x-k-\alpha)^{2}}+2 \sum_{\ell=1}^{n} \frac{B_{\ell-1}(\alpha)}{x^{\ell}}+\frac{2 B_{n}(\alpha)}{x^{n}(x-\{\alpha\})}-\sum_{k=-\infty}^{\infty} \frac{1}{(x-k-\alpha)^{2}} \\
& =-2 \sum_{k=1}^{\infty} \frac{1}{(x+k-\alpha)^{2}}+2 \sum_{\ell=1}^{n+1} \frac{B_{\ell-1}(\alpha)}{x^{\ell}}+\frac{B_{n}(\alpha)}{x^{n}}\left(\frac{2}{x-\{\alpha\}}-\frac{2}{x}\right) \\
31) \quad & =-2(n+2) \int_{0}^{\infty} \frac{B_{n+1}(\alpha)-\mathcal{B}_{n+1}(t+\alpha)}{(x+t)^{n+3}} d t+O\left(x^{-n-2}\right) \\
& \ll x^{-n-2},
\end{aligned}
$$

because $B_{n+1}(\alpha)-\mathcal{B}_{n+1}(t+\alpha)$ is bounded. Since for $x>0$

$$
x^{n}=x^{n}\left(\frac{\sin \pi(x-\alpha)}{\pi}\right)^{2} \sum_{k=-\infty}^{\infty} \frac{1}{(x-k-\alpha)^{2}}
$$

we obtain

$$
\begin{equation*}
\psi_{n, \alpha}(x)=H_{n}(x ; \alpha)-x^{n}=O\left(x^{-2}\right) \tag{32}
\end{equation*}
$$

for $x>0$.
Now let $x<0$. Putting $y=-x>0$ and using $B_{\ell}(\alpha)=(-1)^{\ell} B_{\ell}(1-\alpha)$ we obtain with a similar computation that

$$
\begin{align*}
\sum_{k=-\infty}^{\infty} & \frac{\operatorname{sgn}_{+}(k+\alpha)}{(x-k-\alpha)^{2}}+2 \sum_{\ell=1}^{n} \frac{B_{\ell-1}(\alpha)}{x^{\ell}}+\frac{2 B_{n}(\alpha)}{x^{n}(x-\{\alpha\})}+\sum_{k=-\infty}^{\infty} \frac{1}{(x-k-\alpha)^{2}} \\
33) \quad & =2(n+2) \int_{0}^{\infty} \frac{B_{n+1}(1-\alpha)-\mathcal{B}_{n+1}(t-\alpha)}{(y+t)^{n+3}} d t+O\left(y^{-n-2}\right) \tag{33}\\
& \ll y^{-n-2} .
\end{align*}
$$

We obtain for $x<0$ that

$$
\begin{equation*}
\psi_{n, \alpha}(x)=H_{n}(x ; \alpha)+x^{n}=O\left(x^{-2}\right) \tag{34}
\end{equation*}
$$

(32) and (34) prove the first statement of Lemma 1.

For the second statement we use the representation for $\psi_{n, \alpha}(x)$ derived in (31) and (33). If

$$
\begin{equation*}
\frac{B_{n}(\alpha)}{x^{n}}\left(\frac{2}{x-\{\alpha\}}-\frac{2}{x}\right)=0 \tag{35}
\end{equation*}
$$

then (31) implies for $x>0$

$$
\begin{equation*}
\psi_{n, \alpha}(x)=-2(n+2) F(x-\alpha) x^{n} \int_{0}^{\infty} \frac{B_{n+1}(\alpha)-\mathcal{B}_{n+1}(t+\alpha)}{(x+t)^{n+3}} d t \tag{36}
\end{equation*}
$$

and (33) implies for $x<0$

$$
\begin{equation*}
\psi_{n, \alpha}(x)=2(n+2) F(x-\alpha)(-x)^{n} \int_{0}^{\infty} \frac{B_{n+1}(1-\alpha)-\mathcal{B}_{n+1}(t+1-\alpha)}{(-x+t)^{n+3}} d t \tag{37}
\end{equation*}
$$

If $B_{n+1}(t)$ restricted to $[0,1]$ has a maximum at $t=\alpha$, then it has a minimum at $t=1-\alpha$ if n is even, and a maximum if n is odd, since $B_{\ell}(\alpha)=(-1)^{\ell} B_{\ell}(\alpha)$. This implies that for such α the expressions $B_{n+1}(\alpha)-$ $\mathcal{B}_{n+1}(t+\alpha)$ and $B_{n+1}(1-\alpha)-\mathcal{B}_{n+1}(t+1-\alpha)$ do not change their signs for $t \in[0, \infty)$, and since $-x^{n}=(-x)^{n}(-1)^{n+1}$ we obtain that for such α the expressions in (36) and (37) are either both positive or both negative for all x in the respective ranges. Moreover, $\psi_{n, \alpha} \geq 0$ if $B_{n+1}(t)$ assumes its minimum on $[0,1]$ at $t=\alpha$, and $\psi_{n, \alpha} \leq 0$ if $B_{n+1}(t)$ assumes its maximum at $t=\alpha$.

Since by Lemma 5 the function $B_{n+1}(t)$ assumes its minimum on $[0,1]$ at $t=\beta_{n}$, and its maximum at $t=\alpha_{n}$ we have

$$
H_{n}\left(x ; \alpha_{n}\right) \leq \operatorname{sgn}(x) x^{n} \leq H_{n}\left(x ; \beta_{n}\right)
$$

and this finishes the proof of Lemma 1.
Proof of Lemma 2. Recall $\operatorname{sgn}_{+}(x)=\operatorname{sgn}(x+)$, and let

$$
F(z)=\pi^{-2} \sin ^{2} \pi z \text { for } z \in \mathbb{C}
$$

Performing the index shift $k+n+1 \mapsto k$ in the series representing $\mathcal{F} \psi_{n, \alpha}(t)$ for $|t|<1$ leads to (20) in the form in which we will prove it:

$$
\begin{align*}
& \mathcal{F} \psi_{n, \alpha}(t)=-2 \sum_{k=n+1}^{\infty} \frac{B_{k}(\alpha)}{(k-n)!}\left(\frac{k-n}{k}-|t|\right)(-2 \pi i t)^{k-n-1} \\
& \text { 8) } \quad+\frac{B_{n}(\alpha)}{\pi i} \operatorname{sgn}(t)(e(-\{\alpha\} t)-1) \text { for }|t|<1 . \tag{38}
\end{align*}
$$

The first part of the proof will be similar to the proof of Theorem 6 in [11]. Define

$$
H_{0, K}(x, \alpha):=F(x-\alpha)\left(\sum_{k=-K}^{K-1} \frac{\operatorname{sgn}_{+}(k+\alpha)}{(x-k-\alpha)^{2}}+\frac{2}{x-\{\alpha\}}\right)
$$

With the Fourier expansions

$$
\begin{align*}
\frac{F(x)}{x^{2}} & =\int_{-1}^{1}(1-|t|) e(x t) d t \tag{39}\\
\frac{F(x)}{x} & =\frac{1}{2 \pi i} \int_{-1}^{1} \operatorname{sgn}(t) e(x t) d t \tag{40}
\end{align*}
$$

we obtain

$$
\begin{aligned}
H_{0, K}(x, \alpha)=\int_{-1}^{1}(1-|t|) & {\left[\sum_{k=0}^{K-1} e(-(k+\alpha) t)-\sum_{k=-K}^{-1} e(-(k+\alpha) t)\right] e(x t) d t } \\
& +\frac{1}{\pi i} \int_{-1}^{1} \operatorname{sgn}(t) e(-\{\alpha\} t) e(x t) d t
\end{aligned}
$$

We have for $t \neq 0$

$$
\sum_{k=0}^{K-1} e(-(k+\alpha) t)-\sum_{k=-K}^{-1} e(-(k+\alpha) t)=2 \frac{e(-\alpha t)}{1-e(-t)}(1-\cos 2 \pi K t)
$$

and since the last expression is bounded in a neighborhood of $t=0$ we obtain

$$
\begin{array}{r}
H_{0, K}(x, \alpha)=\int_{-1}^{1}(1-|t|)\left[\frac{2 e(-\alpha t)}{1-e(-t)}-e(-\alpha t) \frac{2 \cos 2 \pi K t}{1-e(-t)}\right] e(x t) d t \\
+\frac{1}{\pi i} \int_{-1}^{1} \operatorname{sgn}(t) e(-\{\alpha\} t) e(x t) d t
\end{array}
$$

In order to apply the Lemma of Riemann - Lebesgue we have to remove the poles in the fractions of the first integral. We do this by differentiating both sides with respect to x and divide the resulting expression by 2 . We obtain

$$
\begin{aligned}
& \frac{1}{2} H_{0, K}^{\prime}(x, \alpha)=\int_{-1}^{1}(1-|t|)\left[\frac{2 \pi i t e(-\alpha t)}{1-e(-t)}-e(-\alpha t) \frac{2 \pi i t \cos 2 \pi K t}{1-e(-t)}\right] e(x t) d t \\
&+\int_{-1}^{1}|t| e(-\alpha t) e(x t) d t
\end{aligned}
$$

By the Lemma of Riemann - Lebesgue we have

$$
\lim _{K \rightarrow \infty} \int_{-1}^{1} \frac{2 \pi i t \cos 2 \pi K t}{1-e(-t)} e(x t) d t=0
$$

Since $\left\{H_{0, K}(x, \alpha)\right\}_{K \in \mathbb{N}}$ is a sequence of entire functions that converges to $H_{0}(x, \alpha)$ uniformly on any compact subset of \mathbb{C}, the sequence of derivatives $\left\{H_{0, K}^{\prime}(x, \alpha)\right\}_{K \in \mathbb{N}}$ converges to $H_{0}^{\prime}(x, \alpha)$ uniformly on any compact subset of \mathbb{C}. Thus

$$
\frac{1}{2} H_{0}^{\prime}(x, \alpha)=\int_{-1}^{1}\left[(1-|t|) \frac{2 \pi i t e(-\alpha t)}{1-e(-t)}+|t| e(-\{\alpha\} t)\right] e(x t) d t
$$

and using (24) we obtain

$$
\begin{align*}
\mathcal{F}\left[\frac{1}{2} H_{0}^{\prime}(x, \alpha)\right](t) & =(1-|t|) \sum_{k=0}^{\infty} \frac{B_{k}(\alpha)}{k!}(-2 \pi i t)^{k}+|t| e(-\{\alpha\} t) \tag{41}\\
& =1+(1-|t|) \sum_{k=1}^{\infty} \frac{B_{k}(\alpha)}{k!}(-2 \pi i t)^{k}+|t|(e(-\{\alpha\} t)-1)
\end{align*}
$$

for $|t|<1$, and $\mathcal{F}\left[\frac{1}{2} H_{0}^{\prime}(x, \alpha)\right](t)=0$ for $|t| \geq 1$.
Now we can prove (21) and (38) by induction on n. The difference $\psi_{0, \alpha}(x)=H_{0}(x, \alpha)-\operatorname{sgn}(x)$ is absolutely integrable by Lemma 1 , so its Fourier transform exists.

From

$$
\frac{1}{2} \int_{-\infty}^{\infty} e(-x t) d \psi_{0, \alpha}(x)=\mathcal{F}\left[\frac{1}{2} H_{0}^{\prime}(x, \alpha)\right](t)-1
$$

we obtain with (41) and $2 \pi i t \mathcal{F} f(t)=\mathcal{F}\left[f^{\prime}\right](t)$ that for $|t|<1$

$$
\begin{aligned}
\mathcal{F} \psi_{0, \alpha}(t) & =\frac{1}{\pi i t}\left(\mathcal{F}\left[\frac{1}{2} H_{0}^{\prime}(x, \alpha)\right]-1\right) \\
& =\frac{1}{\pi i t}\left((1-|t|) \sum_{k=1}^{\infty} \frac{B_{k}(\alpha)}{k!}(-2 \pi i t)^{k}+|t|(e(-\{\alpha\} t)-1)\right) \\
& =-2(1-|t|) \sum_{k=1}^{\infty} \frac{B_{k}(\alpha)}{k!}(-2 \pi i t)^{k-1}+\frac{\operatorname{sgn}(t)}{\pi i}(e(-\{\alpha\} t)-1),
\end{aligned}
$$

and this is (38) for $n=0$. Moreover, for $|t| \geq 1$

$$
\mathcal{F} \psi_{0, \alpha}(t)=\frac{1}{\pi i t}\left(\mathcal{F}\left[\frac{1}{2} H_{0}^{\prime}(x, \alpha)\right]-1\right)=-\frac{1}{\pi i t},
$$

and this is (21) for $n=0$.
Induction step. Assume that (21) and (38) are true for some $n \in \mathbb{N}_{0}$. From Definition 2 with n and $n+1$ we obtain

$$
\begin{equation*}
H_{n+1}(z ; \alpha)=z H_{n}(z ; \alpha)+2 F(z-\alpha) \frac{B_{n+1}(\alpha)-\{\alpha\} B_{n}(\alpha)}{z-\{\alpha\}} \tag{42}
\end{equation*}
$$

for any $z \in \mathbb{C}$. Since by equation (38) the Fourier transforms of $\psi_{n, \alpha}$ and $\psi_{n+1, \alpha}$ exist we obtain with (42) and (40) for $|t|<1$
$\mathcal{F} \psi_{n+1, \alpha}(t)=-\frac{1}{2 \pi i} \frac{d}{d t} \mathcal{F} \psi_{n, \alpha}(t)+\frac{1}{\pi i}\left(B_{n+1}(\alpha)-\{\alpha\} B_{n}(\alpha)\right) \operatorname{sgn}(t) e(-\{\alpha\} t)$.

By the induction hypothesis, (38) holds for n, i.e. for $|t|<1$

$$
\begin{align*}
\mathcal{F} \psi_{n, \alpha}(t)=-2 \sum_{k=n+1}^{\infty} \frac{B_{k}(\alpha)}{(k-n)!} & \left(\frac{k-n}{k}-|t|\right)(-2 \pi i t)^{k-n-1} \\
& +\frac{B_{n}(\alpha)}{\pi i} \operatorname{sgn}(t)(e(-\{\alpha\} t)-1) \tag{44}
\end{align*}
$$

For $k \geq n+2$

$$
\frac{d}{d t}\left(\frac{k-n}{k}-|t|\right) t^{k-n-1}=(k-n)\left(\frac{k-n-1}{k}-|t|\right) t^{k-n-2}
$$

Applying this to (44) and utilizing (43) we obtain for $|t|<1$

$$
\begin{aligned}
& \mathcal{F} \psi_{n+1, \alpha}(t)=-2 \sum_{k=n+2}^{\infty} \frac{B_{k}(\alpha)}{(k-n-1)!}\left(\frac{k-n-1}{k}-|t|\right)(-2 \pi i t)^{k-n-2} \\
&-\frac{B_{n+1}(\alpha) \operatorname{sgn}(t)}{\pi i}+\frac{\operatorname{sgn}(t) B_{n}(\alpha)}{(-2 \pi i) \pi i}(-2 \pi i\{\alpha\}) e(-\{\alpha\} t) \\
&+\frac{1}{\pi i}\left(B_{n}(\alpha)-\{\alpha\} B_{n}(\alpha)\right) \operatorname{sgn}(t) e(-\{\alpha\} t) \\
&=-2 \sum_{k=n+2}^{\infty} \frac{B_{k}(\alpha)}{(k-n-1)!}\left(\frac{k-n-1}{k}-|t|\right)(-2 \pi i t)^{k-n-2} \\
&+\frac{B_{n+1}(\alpha)}{\pi i} \operatorname{sgn}(t)(e(-\{\alpha\} t)-1)
\end{aligned}
$$

and this is (38) for $n+1$.
Since the Fourier transform of $(x-\{\alpha\})^{-1} \sin ^{2} \pi(x-\alpha)$ equals zero outside the interval $[-1,1]$, we have with (42) for $|t| \geq 1$

$$
\mathcal{F} \psi_{n+1, \alpha}(t)=-\frac{1}{2 \pi i} \frac{d}{d t} \mathcal{F} \psi_{n, \alpha}(t)=-\frac{2(n+1)!}{(2 \pi i t)^{n+2}}
$$

and this is (21) for $n+1$.
Proof of Lemma 3. Let $0 \leq \alpha \leq 1$, and let $F_{n} \in E(2 \pi)$ be a majorant for $\operatorname{sgn}(x) x^{n}$. Assume that

$$
\int_{-\infty}^{\infty}\left(F_{n}(x)-\operatorname{sgn}(x) x^{n}\right) d x<\infty
$$

Let $\psi_{n}(x)=F_{n}(x)-\operatorname{sgn}(x) x^{n}$, and recall that $\psi_{n, \alpha}(x)=H_{n}(x ; \alpha)-$ $\operatorname{sgn}(x) x^{n}$. Since $F_{n}(x)-H_{n}(x ; \alpha)$ is an absolutely integrable function in $E(2 \pi)$, we know by the Paley-Wiener Theorem that the support of its Fourier transform is a subset of $[-1,1]$, i.e.

$$
\mathcal{F}\left[F_{n}(x)-H_{n}(x, \alpha)\right](t)=0 \text { for }|t| \geq 1
$$

It follows from Lemma 2 that

$$
\begin{equation*}
\mathcal{F} \psi_{n}(t)=\mathcal{F} \psi_{n, \alpha}(t)=-\frac{2 n!}{(2 \pi i t)^{n+1}} \text { for }|t| \geq 1 \tag{45}
\end{equation*}
$$

Now use (45), the Poisson summation formula and (28) to obtain that

$$
\begin{align*}
0 \leq \sum_{\ell=-\infty}^{\infty} \psi_{n}(\ell+t) & =\mathcal{F} \psi_{n}(0)-\frac{2}{n+1} \sum_{k \neq 0} \frac{(n+1)!}{(2 \pi i k)^{n+1}} e(k t) \tag{46}\\
& =\mathcal{F} \psi_{n}(0)+\frac{2}{n+1} \mathcal{B}_{n+1}(t),
\end{align*}
$$

and since this has to hold for all $t \in[0,1]$,

$$
\begin{equation*}
\mathcal{F} \psi_{n}(0) \geq-\frac{2}{n+1} \min _{0 \leq t \leq 1} B_{n+1}(t) \tag{47}
\end{equation*}
$$

Similarly, with $\phi_{n}(x)=\operatorname{sgn}(x) x^{n}-G_{n}(x)$

$$
\begin{equation*}
\mathcal{F} \phi_{n}(0) \geq \frac{2}{n+1} \max _{0 \leq t \leq 1} B_{n+1}(t) \tag{48}
\end{equation*}
$$

Vaaler showed in Theorem 9 of [11] that any integrable function in $E(2 \pi)$ is already uniquely determined by its values and the values of its first derivative at the integers, and he used this result to prove the case $n=0$ of Lemma 3. We will use his argument.

Let $0 \leq \alpha \leq 1$ such that $B_{n+1}(t)$ has its minimum on $[0,1]$ at $t=\alpha$. If $F_{n} \in E(2 \pi)$ is chosen such that F_{n} is a majorant of $\operatorname{sgn}(x) x^{n}$ with

$$
\mathcal{F} \psi_{n}(0)=-\frac{2}{n+1} B_{n+1}(\alpha),
$$

then we have equality in (46) for $t=\alpha$. This means that

$$
F(\alpha+k)=\operatorname{sgn}_{+}(\alpha+k)(\alpha+k)^{n} \text { for all } k \in \mathbb{Z} .
$$

The same is true for $H_{n}(x ; \alpha)$ by construction. If $\alpha=0$ or 1 , let $n \geq 2$. Since both $F_{n}(x)$ and $H_{n}(x ; \alpha)$ are majorants of $\operatorname{sgn}(x) x^{n}$, they must have the same derivatives at the numbers $\alpha+k$, namely $n \cdot \operatorname{sgn}(\alpha+k)(\alpha+k)^{n-1}$. From Theorem 9 of [11] we obtain

$$
F_{n}(z)-H_{n}(z ; \alpha)=0,
$$

for all $z \in \mathbb{C}$. The computation for $G_{n}(z)$ goes along the same lines.
If $n=0,1$ and $\alpha=0,1$, then we cannot immediately conclude that $F_{n}(x)$ and $H_{n}(x ; \alpha)$ have equal derivatives at $x=0$. However, as in the proof of Theorem 8 in [11]

$$
F_{n}(z)-H_{n}(z ; \alpha)=\left(F_{n}^{\prime}(0)-H_{n}^{\prime}(0 ; \alpha)\right) \pi^{-2} x^{-1} \sin ^{2} \pi z
$$

and since $x^{-1} \sin ^{2} \pi x$ is not integrable on the real line, we must have $F_{n}^{\prime}(0)=$ $H_{n}^{\prime}(0 ; \alpha)$. Thus, $F_{n}(z)=H_{n}(z ; \alpha)$ holds in this case as well.

6. Proofs of Corollary 1 and 2

Proof of Corollary 1. We will prove statements (i) and (iii) of Corollary 1. Let $n \in \mathbb{N}_{0}$. By Theorem 1

$$
\phi_{n, \alpha_{n}}(x)=\operatorname{sgn}(x) x^{n}-H_{n}\left(x ; \alpha_{n}\right) \geq 0,
$$

by Lemma 1 the function is integrable on \mathbb{R}, and by Lemma 2

$$
\mathcal{F} \phi_{n, \alpha_{n}}(t)=\frac{2 \cdot n!}{(2 \pi i t)^{n+1}}
$$

for $|t| \geq 1$. By the easy implication of Bochner's theorem, $\mathcal{F} \phi_{n, \alpha_{n}}$ is positive definite. Lemma 2 (20) yields the explicit representation of $\mathcal{F} \phi_{n, \alpha_{n}}(t)$ for $|t|<1$, note that the last term in (20) is equal to zero, since by definition one of the equations $B_{n}\left(\alpha_{n}\right)=0, \alpha_{n}=0$, or $\alpha_{n}=1$ holds. Performing the substitution $m=n+1$ yields Corollary 1 .

For the proof of Corollary 1 (iii) consider the function $p_{m, c}: \mathbb{Z} \rightarrow \mathbb{C}$ $(c \in \mathbb{R})$ defined by

$$
p_{m, c}(k)=\left\{\begin{array}{ll}
m!(2 \pi i k)^{-m} & \text { if } k \neq 0 \\
c & \text { if } k=0
\end{array}(k \in \mathbb{Z}) .\right.
$$

By (28)

$$
\sum_{k \in \mathbb{Z}} p_{m, c}(k) e(k t)=c-\mathcal{B}_{m}(t),
$$

and this is non-negative if, and only if,

$$
c \geq \mathcal{B}_{m}(t) \text { for all } t \in[0,1] .
$$

We obtain using Bochner's theorem that $p_{m, c}$ is a positive definite function on \mathbb{Z} if, and only if, $c \geq \max \mathcal{B}_{m}(t)=B_{m}\left(\alpha_{m-1}\right)$, which shows that $p_{m}(0)=$ $B_{m}\left(\alpha_{m-1}\right)$ is the minimal value which gives rise to a positive extension of $p_{m}(k)=(2 \pi i k)^{-m}(k \neq 0)$ to \mathbb{Z}. Moreover, if $c<B_{m}\left(\alpha_{m-1}\right)$, then there exist $N \in \mathbb{N}$, numbers $a_{\nu} \in \mathbb{C}$, and distinct numbers $\lambda_{\nu} \in \mathbb{Z}$ such that

$$
\begin{equation*}
\sum_{\nu, \mu=1}^{N} a_{\nu} \bar{a}_{\mu} f\left(\lambda_{\nu}-\lambda_{\mu}\right)=\sum_{\nu, \mu=1}^{N} a_{\nu} \bar{a}_{\mu} p_{m, c}\left(\lambda_{\nu}-\lambda_{\mu}\right)<0, \tag{49}
\end{equation*}
$$

which shows that the value $f_{m}(0)=B_{m}\left(\alpha_{m-1}\right)$ in statement (i) of Corollary 1 is optimal as well.

Statements (ii) and (iv) follow similarly by considering

$$
\psi_{n, \beta_{n}}(x)=H_{n}\left(x ; \beta_{n}\right)-\operatorname{sgn}(x) x^{n}
$$

instead of $\phi_{n, \alpha_{n}}$.
Now we are in a position to give the

Proof of Corollary 2. From Corollary 1 (i) we obtain that for any $N \in \mathbb{N}$, $a_{\nu} \in \mathbb{C}$, and $\lambda_{\nu} \in \mathbb{R}$

$$
\sum_{\nu, \mu=1}^{N} a_{\nu} \bar{a}_{\mu} f_{m}\left(\lambda_{\nu}-\lambda_{\mu}\right) \geq 0
$$

If we require additionally that $\left|\lambda_{\nu}-\lambda_{\mu}\right| \geq 1$ for all $\nu \neq \mu$, then after a multiplication by $m!^{-1}(2 \pi)^{m}$ we obtain

$$
\sum_{\substack{\nu, \mu=1 \\ \nu \neq \mu}}^{N} a_{\nu} \bar{a}_{\mu}\left(i\left(\lambda_{\nu}-\lambda_{\mu}\right)\right)^{-m} \geq-f_{m}(0) \frac{(2 \pi)^{m}}{m!} \sum_{\nu=1}^{N}\left|a_{\nu}\right|^{2}
$$

This shows that the function $(i t)^{-m}$ satisfies (8) with $L\left((i t)^{-m}\right)$ as in Corollary 2. The optimality of $L\left((i t)^{-m}\right)$ follows from (49). (Note that the set of integers $\left\{\lambda_{\nu}\right\}$ used in (49) obviously satisfies $\left|\lambda_{\nu}-\lambda_{\mu}\right| \geq 1$ for all $\nu \neq \mu$.)

The validity of $U\left((i t)^{-m}\right)$ is verified in the same way using Corollary 1 , (ii) and (iv).

References

[1] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions, Washington, U.S. Gov. Print. Office, 10th printing, 1972.
[2] R. P. Boas, Entire Functions, Academic Press, New York, 1954.
[3] S. W. Graham and J. D. Vaaler, A class of extremal functions for the Fourier transform, Trans. Amer. Math. Soc. 265 (1981), 283 - 302.
[4] J. J. Holt, A class of extremal functions and trigonometric polynomials, J. Approx. Theory 88 (1997), 275 - 303.
[5] J. Korevaar, A century of complex Tauberian theory, Bull. Amer. Math. Soc. 39 (October 2002), $475-532$.
[6] D. H. Lehmer, On the maxima and minima of Bernoulli polynomials, Amer. Math. Monthly 47 (1940), 533 - 538.
[7] L. M. Milne-Thomson, The Calculus of Finite Differences, MacMillan and Co., London 1933.
[8] H. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math. Soc. (2) 8 (1974), 73 - 81.
[9] N. E. Nörlund, Vorlesungen über Differenzenrechung, Chelsea Publishing Company, New York 1954.
[10] A. Selberg, Lectures on sieves, Collected Papers II, Springer-Verlag, New York, 1991.
[11] J. D. Vaaler, Some extremal functions in Fourier analysis. Bull. Amer. Math. Soc. 12 (April 1985), 183 - 216.

[^0]: Date: November 18, 2002.

