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Abstract. It is the aim of this article to give extremal majorants of
type 2π for the class of functions fn(x) = sgn(x)xn where n ∈ N .
As applications we obtain positive definite extensions to R of ±(it)−m

defined on R\[−1, 1] where m ∈ N , optimal bounds in Hilbert-type
inequalities for the class of functions (it)−m, and majorants of type 2π
for functions whose graphs are trapezoids.

1. Introduction and Notation

An entire function F (z) is said to be of type δ if

|F (z)| ≤ Aε exp
(
|z|(δ + ε)

)
for every ε > 0 and some constant Aε > 0 depending on ε (in the notation
of [2] this a function of order 1 and type δ). The set of all functions of type
δ that are real in R will be denoted by E(δ).

By the Paley-Wiener Theorem (cf. [2]), functions in E(2πδ)∩L2(R) have
a Fourier transform with support in [−δ, δ], where the Fourier transform of
f ∈ L2(R) is given by

Ff(t) := lim
N→∞

∫ N

−N
f(x)e(−tx)dx,

here we use the notation e(y) = exp(2πiy).
In the 1930’s A. Beurling studied the entire function

B(z) :=
sin2 πz

π2

( ∞∑
n=0

(z − n)−2 −
−1∑

n=−∞
(z − n)−2 + 2z−1

)
.(1)

He found that B(z) satisfies the following extremal property: B(z) is of type
2π, B(x) ≥ sgn(x) for all x ∈ R,

∫
R

(B− sgn) = 1, and any F ∈ E(2π) with
F ≥ sgn on the real line and F 6= B satisfies

∫
R

(F − sgn) > 1.
This motivates

Definition 1. Let f : R→ R. For F ∈ E(δ) consider the conditions
(i) f(x) ≤ F (x) for all x ∈ R,

(ii)
∫
R

(F − f) = min
G∈E(δ)
G≥f

∫
R

(G− f).
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A function F ∈ E(δ) satisfying (i) and (ii) is called an extremal majorant of
type δ of f . Extremal minorants are defined with the obvious modifications.

A. Selberg discovered B(z) independently, and he used it to obtain a
sharp form of the large sieve inequality ([10], chapter 20).

A general method to construct candidates for extremal majorants when
f ∈ L2(R) is given by S. W. Graham and J. D. Vaaler in [3]. Their appli-
cations include a finite form of the Wiener-Ikehara Tauberian theorem (see
also [5], chapter 5), a proof of the large sieve inequality, and inequalities for
character sums.

Although Beurling never published his results, an account can be found
in the survey [11] by Vaaler.

The function B(z) can be used to give a short and elegant proof for a
general form of Hilbert’s inequality (cf. [10], chapter 20, and [11], Theorem
16. For the first proof cf. [8]). We will generalize this result in Corollary 2.

It is the purpose of this note to give extremal minorants and majorants
for the class of functions

fn(x) := sgn(x)xn

where n ∈ N0. The way we obtain the extremal minorants and majorants is
similar to the method of [11], except that we employ the Euler-Maclaurin
summation formula rather than the arithmetic-geometric mean inequality.

As usual, sgn(x) denotes the symmetric signum function, i.e. sgn(x) = −1
for x < 0, sgn(x) = 1 for x > 0, and sgn(0) = 0. Also, sgn+(x) denotes
the right-continuous signum function, i.e. sgn+(x) = sgn(x) for x 6= 0 and
sgn+(0) = 1. The expression z denotes the complex conjugate of z ∈ C .

2. Main Results

Given α ∈ R, let

Fα(z) := π−2 sin2 π(z − α) for z ∈ C .
The following definition provides us with the candidates for extremal mi-

norants and majorants of f(x) = sgn(x)xn.

Definition 2. Define for 0 ≤ α ≤ 1, z ∈ C , and n ∈ N0

Hn(z;α) := Fα(z)
(
zn

∞∑
k=−∞

sgn+(k)
(x− k − α)2

+ 2
n∑
k=1

Bk−1(α)zn−k + 2
Bn(α)
z − {α}

)
,

where {α} denotes the fractional part of α, and Bn(α) is the n-th Bernoulli
polynomial (cf. Section 4). For n = 0 the second sum is assigned the value
zero.

We have the equality B(z) = H0(z; 0), where B(z) is Beurling’s function
defined in (1).

Note that Hn(z;α) is real entire, because the zeros of Fα cancel the poles
of the first and the last term in the parenthesis, and the second term is a
polynomial.
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Next we will show that Hn(z;α) is of type 2π. The expressions obtained
by multiplying Fα(z) with the second and the third term in the parenthesis
of Definition 2 are of type 2π. It remains to estimate the first term. The
series

∑
` |z − ` − α|−2Fα(z − `) is bounded uniformly for all z satisfying

|z − k − α| < 1/4 with some k ∈ Z . Moreover, for all z and k satisfying
|z−k−α| ≥ 1/4, the sum

∑
` |z− `−α|−2 is bounded uniformly in z. Since

Fα(z) is of type 2π, it follows that Hn(z;α) is of type 2π as well.
We will see in (36) and (37) that the function Hn(x;α) is an extremal

function for sgn(x)xn precisely when the 1–periodic function Bn+1(α) −
Bn+1(t+ α − [t+ α]) has no changes of sign for all t ∈ R (here [x] denotes
the greatest integer less than or equal to x). This motivates the following
choices for the values of α.

Let n ∈ N . It is known that B2n(t) (n ≥ 1) has exactly one zero in the
interval (0, 1/2). Denote this zero by z2n, and let z0 = 0. By a result of
D. H. Lehmer [6] we have 1/4 − π−12−2n−1 < z2n < 1/4 for n ∈ N . The
odd Bernoulli polynomials B2n+1(t) have zeros at t = 0 and t = 1/2, but no
zeros in the interval (0, 1/2) (cf. Section 4).

Define two sequences {αn}n∈N0 and {βn}n∈N0 by

α4k := 1− z4k, β4k := z4k,
α4k+1 := 0, β4k+1 := 1

2 ,
α4k+2 := z4k+2, β4k+2 := 1− z4k+2,
α4k+3 := 1

2 , β4k+3 := 0,

(2)

where k ∈ N0. Note that Bn+1(t) assumes a maximum in [0, 1] at t = αn,
and Bn+1(t) assumes a minimum in [0, 1] at t = βn (cf. Lemma 5).

With these definitions Hn(z;αn) and Hn(z;βn) turn out to be the ex-
tremal minorant and the extremal majorant of sgn(x)xn, respectively:

Theorem 1. Let n ∈ N0. The inequality

Hn(x;αn) ≤ sgn(x)xn ≤ Hn(x;βn)(3)

holds for all x ∈ R. Moreover,

(i) for every real entire function F of type 2π satisfying F (x) ≥ sgn(x)xn∫ ∞
∞

(
F (x)− sgn(x)xn

)
dx ≥ −2

Bn+1(βn)
n+ 1

(4)

with equality exactly for F (x) = Hn(x;βn), and
(ii) for every real entire function G of type 2π satisfying G(x) ≤ sgn(x)xn∫ ∞

∞

(
sgn(x)xn −G(x)

)
dx ≥ 2

Bn+1(αn)
n+ 1

(5)

with equality exactly for G(x) = Hn(x;αn).
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Let S be R or Z . We say that a function f : S → C is positive definite
if for every N ∈ N , any a1, ..., an ∈ C , and any x1, ..., xn ∈ S the inequality

N∑
ν,µ=1

aνaµf(xν − xµ) ≥ 0(6)

holds.
Let m ∈ N . As a first corollary of Theorem 1 we obtain positive definite

extensions toR of the functions±m!(2πit)−m restricted toR\[−1, 1]. Define

sm,α(t) := −2
∞∑
k=0

Bk+m(α)
(k + 1)!

( k + 1
k +m

− |t|
)

(−2πit)k(7)

where 0 ≤ α ≤ 1, m ∈ N , and |t| < 1.

Corollary 1. Let m ∈ N . The following functions are positive definite on
R:

fm(t) =

{
m!(2πit)−m if |t| ≥ 1,
sm,αm−1(t) else,

gm(t) =

{
−m!(2πit)−m if |t| ≥ 1,
−sm,βm−1(t) else.

The following functions are positive definite on Z :

pm(k) =

{
m!(2πik)−m if k 6= 0,
Bm(αm−1) if k = 0.

qm(k) =

{
−m!(2πik)−m if k 6= 0,
−Bm(βm−1) if k = 0.

Moreover, fm(0) = Bm(αm−1), gm(0) = −Bm(βm−1), and the values
fm(0), gm(0), pm(0), qm(0) are all minimal in the sense that none of the
functions ±m!(2πit)−m (resp. ±(2πik)−m) restricted to R\[−1, 1] (resp.
Z\{0}) can have a positive extension to R (resp. Z) having a smaller value
at the origin.

Figure 1: Plot of f2(t) Figure 2: Plot of g2(t)
The proof of Corollary 1 will be given in Section 6. As a consequence of

this corollary we obtain sharp bounds in certain Hilbert type inequalities.
Let (aν)Nν=1 be a finite sequence of complex numbers, and let {λν}Nν=1 be a
set of real numbers which are well-spaced in the sense that |λν −λµ| ≥ 1 for
all ν 6= µ, and let h(t) (t ∈ R) be a hermitian function, i.e. h(−t) = h(t).
We are interested in optimal bounds L(h) and U(h) such that

−L(h)
N∑
ν=1

|aν |2 ≤
N∑

µ,ν=1
µ 6=ν

aνaµh(λν − λµ) ≤ U(h)
N∑
ν=1

|aν |2(8)
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holds independently of N ∈ N , and independently of the sequences {aν}Nν=1

and {λν}Nν=1.
For h1(t) = (it)−1 the problem of finding the best possible values for L(h1)

and U(h1) was solved by Montgomery and Vaughan [8]. As mentioned in
the introduction, Beurling’s majorant B(z) can be used to give a proof of
Montgomery and Vaughan’s result (cf. [11] Theorem 16, [10] chapter 20).
We will extend their result to the functions

hm(t) = (it)−m where m ∈ N .(9)

Corollary 2. Let m ∈ N , and let L, U be as in (8). We have the optimal
bounds

L
(
(it)−m

)
= (2π)m

Bm(αm−1)
m!

,

U
(
(it)−m

)
= −(2π)m

Bm(βm−1)
m!

.

For example, since −2π2B2(1/2) = π2B2(0) = ζ(2) we obtain for m = 2
that

−ζ(2)
N∑
ν=1

|aν |2 ≤
N∑

µ,ν=1
µ 6=ν

aνaµ
(λν − λµ)2

≤ 2ζ(2)
N∑
ν=1

|aν |2(10)

for all N ∈ N and all sequences (aν), {λν} as above.
For this inequality we can write down extremal configurations. An ex-

tremal configuration for the upper bound is given by λν := ν, aν := 1, and
N →∞, since

lim
N→∞

1
N

N∑
ν,µ=1
n6=m

1
(ν − µ)2

= lim
N→∞

1
N

N−1∑
k=1−N
k 6=0

N − |k|
k2

= 2ζ(2).

An extremal configuration for the lower bound is given by λν := ν, aν :=
(−1)ν and N →∞, since

lim
N→∞

1
N

N∑
ν,µ=1
n6=m

(−1)ν−µ

(ν − µ)2
= lim

N→∞

1
N

N−1∑
k=1−N
k 6=0

(−1)k
N − |k|
k2

= −ζ(2).

Note that L((it)−m) = U((it)−m) for odd-valued, but not for even-valued
m ∈ N .

The proof of Corollary 2 will be given in Section 6.
As another application we derive the following result originally obtained

by J. J. Holt (cf. [4], Theorem 1 and Corollary 1). Let α > 0, and define

Rα(x) = α−1(|x+ α| − |x|) for all x ∈ R.(11)

Holt obtained extremal majorants and minorants for Rα(x) in the case
that α ∈ A := (0, 1/2] ∪ {k + 1/2 : k ∈ N}, and he obtained non-extremal
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minorants and majorants for all other α > 0. We will obtain Holt’s result
for α ∈ A, and we will give slightly better (also non-extremal) majorants
and minorants for all positive α 6∈ A. Define

Mα(x) =

{
H0(x; 0) if 0 < α ≤ 1/2
α−1(H1(x+ α; 1/2)−H1(x; 0)) if α > 1/2.

(12)

mα(x) =

{
H0(x+ α; 1) if 0 < α ≤ 1/2
α−1(H1(x+ α; 0)−H1(x; 1/2)) if α > 1/2.

(13)

For 0 < α ≤ 1/2 we have H0(x + α; 1) ≤ Rα(x) ≤ H0(x; 0) (cf. [4], Cor.
1). For any α > 0 we have by Theorem 1 that H1(x + α; 0) ≤ |x + α| ≤
H1(x+ α; 1/2) and −H1(x; 1/2) ≤ −|x| ≤ −H1(x; 0). So for all x ∈ R

mα(x) ≤ Rα(x) ≤Mα(x).(14)

Moreover for 0 < α ≤ 1/2,
∫

(H0(x; 0) − Rα(x))dx =
∫

(Rα(x) −H0(x +
α; 1))dx = 1− α. Since −B2(1/2) + B2(0) = 1/12 + 1/6 = 1/4, Theorem 1
implies for α > 1/2∫

R

(Mα −Rα) =
∫
R

(Rα −mα) = (4α)−1.(15)

Define

d(α) =

{
1− α if 0 < α ≤ 1/2
(4α)−1 if α > 1/2.

(16)

We have shown

Corollary 3. The functions Mα and mα are of type 2π, and they majorize
and minorize Rα, respectively, on the real line. Moreover,∫

R

(Mα −Rα) =
∫
R

(Rα −mα) = d(α).

We use Corollary 3 to obtain majorants and minorants of type 2π for
trapezoids. Define fα,β,γ(x) = 1

2(Rα(x)+Rγ(β−x)). The graph of fα,β,γ(x)
is a trapezoid with base-length α + β + γ, top-length β, height 1, and left
point at x = −α. Define

Mα,β,γ(x) =
1
2

(Mα(x) +Mγ(β − x)),(17)

mα,β,γ(x) =
1
2

(mα(x) +mγ(β − x)).(18)

From Corollary 3 we obtain

Corollary 4. Mα,β,γ and mα,β,γ are functions of type 2π, they satisfy

mα,β,γ(x) ≤ fα,β,γ(x) ≤Mα,β,γ(x)
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for all real x, and∫
R

(Mα,β,γ − fα,β,γ) =
∫
R

(fα,β,γ −mα,β,γ) =
1
2

(d(α) + d(γ)).

3. Outline of the proofs

Since most of the following statements are concerned with the difference
of Hn(x;α) and sgn(x)xn we define

ψn,α(x) := Hn(x;α)− sgn(x)xn.(19)

The proof of Theorem 1 is divided into a series of lemmata whose proofs
are given in Section 5.

Lemma 1. Let 0 ≤ α ≤ 1 and n ∈ N0. The function ψn,α(x) (x ∈ R) is
absolutely integrable. Moreover, if {αn}n∈N0 and {βn}n∈N0 are defined by
(2), then

Hn(x;αn) ≤ sgn(x)xn ≤ Hn(x;βn).

Since ψn,α(x) is integrable, its Fourier transform exists. Its value is given
by

Lemma 2. Let 0 ≤ α ≤ 1 and n ∈ N0. We have

Fψn,α(t) = −2
∞∑
k=0

Bk+n+1(α)
(k + 1)!

( k + 1
k + n+ 1

− |t|
)

(−2πit)k(20)

+
Bn(α)
πi

sgn(t)
(
e(−{α}t)− 1

)
for |t| < 1,

Fψn,α(t) = − 2 · n!
(2πit)n+1

for |t| ≥ 1.(21)

By taking the value of Fψn,α(t) at t = 0 in Lemma 2 we obtain the
equalities in (4) for F (x) = Hn(x;βn) and in (5) for G(x) = Hn(x;αn).

The proof of Theorem 1 is completed by establishing the extremality
properties of Hn(x;α).

Lemma 3. Let n ∈ N0, and let Fn, Gn ∈ E(2π) be real entire functions
such that

Gn(x) ≤ sgn(x)xn ≤ Fn(x)

for all x ∈ R. Then∫ ∞
−∞

(Fn(x)− sgn(x)xn)dx ≥ − 2
n+ 1

min
0≤t≤1

Bn+1(t),(22) ∫ ∞
−∞

(sgn(x)xn −Gn(x))dx ≥ 2
n+ 1

max
0≤t≤1

Bn+1(t).(23)

Moreover, in (22) and (23) equality can hold only for the minorants and
majorants defined in Lemma 1.
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4. Bernoulli Functions and Euler-Maclaurin Summation

In this section we give a brief review of some facts about Bernoulli poly-
nomials that we will need in our proofs. Most of these facts are taken from
[1], [7], and [9].

The Bernoulli polynomials Bn(x) can be defined by the power series ex-
pansion

text

et − 1
=
∞∑
n=0

Bn(x)
n!

tn,(24)

where |t| < 2π, the Bernoulli numbers Bn by

Bn = Bn(0),(25)

and the Bernoulli periodic functions Bn(t) by

Bn(t) = Bn(t− [t]).(26)

The Bernoulli polynomials satisfy B′n(t) = nBn−1(t) and∫ 1

0
Bn(t)dt = 0.

This implies that for 0 ≤ α ≤ 1 the Bernoulli periodic functions have the
antiderivatives∫ x

0
Bn(t+ α)dt =

1
n+ 1

(
Bn+1(x+ α)−Bn+1(α)

)
.(27)

For n ≥ 1 the Bernoulli periodic functions have the Fourier series expan-
sion

Bn(t) = − n!
(2πi)n

∞∑
k=−∞
k 6=0

1
kn
e(kt),(28)

which is valid for t ∈ R\Z with symmetric summation if n = 1, and it is
valid for t ∈ R if n ≥ 2.

We will need the Euler-Maclaurin summation formula in the following
form:

Lemma 4. For 0 ≤ α ≤ 1, x > 0 and any µ ∈ N

∞∑
n=1

1
(x+ n− α)2

=
µ∑
n=1

Bn−1(α)
xn

+ (µ+ 1)
∫ ∞

0

Bµ(α)− Bµ(t+ α)
(x+ t)µ+2

dt.

(29)
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Proof. Induction on µ. For 0 ≤ α < 1 we obtain with integration by parts
∞∑
n=1

1
(x+ n− α)2

=
∫ ∞

0+

1
(x+ t)2

d[t+ α]

=
∫ ∞

0

1
(x+ t)2

dt+
∫ ∞

0+

d[t+ α]− dt
(x+ t)2

=
B0(α)
x

+ 2
∫ ∞

0

B1(α)− B1(t+ α)
(x+ t)3

dt,

and for α = 1 we have
∞∑
n=1

1
(x+ n− 1)2

=
1
x2

+
∞∑
n=1

1
(x+ n)2

=
1
x

+ 2
∫ ∞

0

1 +B1(0)− B1(t)
(x+ t)3

dt

=
B0(1)
x

+ 2
∫ ∞

0

B1(1)− B1(t+ 1)
(x+ t)3

dt,

since B1(t) is 1-periodic. This establishes (29) for µ = 1.
The remaining part of the induction follows with repeated applications of

integrations by parts using (27). �

We will need the extrema of the Bernoulli polynomials in the interval
[0, 1]. The locations of these extrema are collected in the following lemma.
These facts come from [9], chapter 2.

Lemma 5. Let 0 ≤ x ≤ 1 and n ≥ 1.
(i) B4n(x) assumes its maximum value at x = 1/2 and its minimum

value at x = 0, x = 1.
(ii) B4n+1(x) assumes its minimum value at a unique α ∈ (0, 1/2) and

its maximum value at 1− α ∈ (1/2, 1).
(iii) B4n−2(x) assumes its maximum value at x = 0, x = 1 and its mini-

mum value at x = 1/2.
(iv) B4n−1(x) assumes its maximum value at a unique α ∈ (0, 1/2) and

its minimum value at 1− α ∈ (1/2, 1).

Finally, B0(x) = 1 and B1(x) = x − 1/2. As was pointed out in Section
2, Lehmer showed in [6] that the zeros z2n of the even Bernoulli polynomial
in (0, 1/2) (or, what amounts to the same thing, the extrema of the odd
Bernoulli polynomials in (0, 1/2)) satisfy

1
4
− 1
π22n+1

< z2n <
1
4
.

Decimal approximations for the first four z2n are z2 = 0.2113, z4 = 0.2403,
z6 = 0.2475, z8 = 0.2494.

5. Proof of the Lemmata

Proof of Lemma 1. Let x ∈ R and 0 ≤ α ≤ 1. Recall

ψn,α(x) = Hn(x;α)− sgn(x)xn.(30)
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We will consider the cases x > 0 and x < 0 separately. Let x > 0. We
have by Lemma 4 with µ = n+ 1 that
∞∑

k=−∞

sgn+(k + α)
(x− k − α)2

+ 2
n∑
`=1

B`−1(α)
x`

+
2Bn(α)

xn(x− {α})
−

∞∑
k=−∞

1
(x− k − α)2

= −2
∞∑
k=1

1
(x+ k − α)2

+ 2
n+1∑
`=1

B`−1(α)
x`

+
Bn(α)
xn

( 2
x− {α}

− 2
x

)
= −2(n+ 2)

∫ ∞
0

Bn+1(α)− Bn+1(t+ α)
(x+ t)n+3

dt+O
(
x−n−2

)
(31)

� x−n−2,

because Bn+1(α)− Bn+1(t+ α) is bounded. Since for x > 0

xn = xn
(sinπ(x− α)

π

)2
∞∑

k=−∞

1
(x− k − α)2

we obtain

ψn,α(x) = Hn(x;α)− xn = O(x−2)(32)

for x > 0.
Now let x < 0. Putting y = −x > 0 and using B`(α) = (−1)`B`(1− α)

we obtain with a similar computation that
∞∑

k=−∞

sgn+(k + α)
(x− k − α)2

+ 2
n∑
`=1

B`−1(α)
x`

+
2Bn(α)

xn(x− {α})
+

∞∑
k=−∞

1
(x− k − α)2

= 2(n+ 2)
∫ ∞

0

Bn+1(1− α)− Bn+1(t− α)
(y + t)n+3

dt+O(y−n−2)(33)

� y−n−2.

We obtain for x < 0 that

ψn,α(x) = Hn(x;α) + xn = O(x−2).(34)

(32) and (34) prove the first statement of Lemma 1.
For the second statement we use the representation for ψn,α(x) derived

in (31) and (33). If

Bn(α)
xn

( 2
x− {α}

− 2
x

)
= 0,(35)

then (31) implies for x > 0

ψn,α(x) = −2(n+ 2)F (x− α)xn
∫ ∞

0

Bn+1(α)− Bn+1(t+ α)
(x+ t)n+3

dt(36)
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and (33) implies for x < 0

ψn,α(x) = 2(n+ 2)F (x− α)(−x)n
∫ ∞

0

Bn+1(1− α)− Bn+1(t+ 1− α)
(−x+ t)n+3

dt.

(37)

If Bn+1(t) restricted to [0, 1] has a maximum at t = α, then it has a
minimum at t = 1 − α if n is even, and a maximum if n is odd, since
B`(α) = (−1)`B`(α). This implies that for such α the expressions Bn+1(α)−
Bn+1(t + α) and Bn+1(1− α) − Bn+1(t + 1 − α) do not change their signs
for t ∈ [0,∞), and since −xn = (−x)n(−1)n+1 we obtain that for such α
the expressions in (36) and (37) are either both positive or both negative
for all x in the respective ranges. Moreover, ψn,α ≥ 0 if Bn+1(t) assumes its
minimum on [0, 1] at t = α, and ψn,α ≤ 0 if Bn+1(t) assumes its maximum
at t = α.

Since by Lemma 5 the function Bn+1(t) assumes its minimum on [0, 1] at
t = βn, and its maximum at t = αn we have

Hn(x;αn) ≤ sgn(x)xn ≤ Hn(x;βn),

and this finishes the proof of Lemma 1. �

Proof of Lemma 2. Recall sgn+(x) = sgn(x+), and let

F (z) = π−2 sin2 πz for z ∈ C .

Performing the index shift k+n+1 7→ k in the series representing Fψn,α(t)
for |t| < 1 leads to (20) in the form in which we will prove it:

Fψn,α(t) = −2
∞∑

k=n+1

Bk(α)
(k − n)!

(k − n
k
− |t|

)
(−2πit)k−n−1

+
Bn(α)
πi

sgn(t)
(
e(−{α}t)− 1

)
for |t| < 1.(38)

The first part of the proof will be similar to the proof of Theorem 6 in
[11]. Define

H0,K(x, α) := F (x− α)
( K−1∑
k=−K

sgn+(k + α)
(x− k − α)2

+
2

x− {α}

)
.

With the Fourier expansions

F (x)
x2

=
∫ 1

−1
(1− |t|)e(xt)dt(39)

F (x)
x

=
1

2πi

∫ 1

−1
sgn(t)e(xt)dt(40)
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we obtain

H0,K(x, α) =
∫ 1

−1
(1− |t|)

[K−1∑
k=0

e(−(k + α)t)−
−1∑

k=−K
e(−(k + α)t)

]
e(xt)dt

+
1
πi

∫ 1

−1
sgn(t)e(−{α}t)e(xt)dt.

We have for t 6= 0

K−1∑
k=0

e(−(k + α)t)−
−1∑

k=−K
e(−(k + α)t) = 2

e(−αt)
1− e(−t)

(1− cos 2πKt),

and since the last expression is bounded in a neighborhood of t = 0 we
obtain

H0,K(x, α) =
∫ 1

−1
(1− |t|)

[ 2e(−αt)
1− e(−t)

− e(−αt)2 cos 2πKt
1− e(−t)

]
e(xt)dt

+
1
πi

∫ 1

−1
sgn(t)e(−{α}t)e(xt)dt.

In order to apply the Lemma of Riemann - Lebesgue we have to remove
the poles in the fractions of the first integral. We do this by differentiating
both sides with respect to x and divide the resulting expression by 2. We
obtain

1
2
H ′0,K(x, α) =

∫ 1

−1
(1− |t|)

[2πit e(−αt)
1− e(−t)

− e(−αt)2πit cos 2πKt
1− e(−t)

]
e(xt)dt

+
∫ 1

−1
|t|e(−αt)e(xt)dt.

By the Lemma of Riemann - Lebesgue we have

lim
K→∞

∫ 1

−1

2πit cos 2πKt
1− e(−t)

e(xt)dt = 0.

Since {H0,K(x, α)}K∈N is a sequence of entire functions that converges to
H0(x, α) uniformly on any compact subset of C , the sequence of derivatives
{H ′0,K(x, α)}K∈N converges to H ′0(x, α) uniformly on any compact subset
of C . Thus

1
2
H ′0(x, α) =

∫ 1

−1

[
(1− |t|)2πit e(−αt)

1− e(−t)
+ |t|e(−{α}t)

]
e(xt)dt,
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and using (24) we obtain

F
[1

2
H ′0(x, α)

]
(t) = (1− |t|)

∞∑
k=0

Bk(α)
k!

(−2πit)k + |t|e(−{α}t)

(41)

= 1 + (1− |t|)
∞∑
k=1

Bk(α)
k!

(−2πit)k + |t|
(
e(−{α}t)− 1

)
for |t| < 1, and F

[
1
2H
′
0(x, α)

]
(t) = 0 for |t| ≥ 1.

Now we can prove (21) and (38) by induction on n. The difference
ψ0,α(x) = H0(x, α) − sgn(x) is absolutely integrable by Lemma 1, so its
Fourier transform exists.

From

1
2

∫ ∞
−∞

e(−xt)dψ0,α(x) = F
[1

2
H ′0(x, α)

]
(t)− 1

we obtain with (41) and 2πitFf(t) = F [f ′](t) that for |t| < 1

Fψ0,α(t) =
1
πit

(
F
[1

2
H ′0(x, α)

]
− 1
)

=
1
πit

(
(1− |t|)

∞∑
k=1

Bk(α)
k!

(−2πit)k + |t|
(
e(−{α}t)− 1

))
= −2(1− |t|)

∞∑
k=1

Bk(α)
k!

(−2πit)k−1 +
sgn(t)
πi

(
e(−{α}t)− 1

)
,

and this is (38) for n = 0. Moreover, for |t| ≥ 1

Fψ0,α(t) =
1
πit

(
F
[1

2
H ′0(x, α)

]
− 1
)

= − 1
πit

,

and this is (21) for n = 0.
Induction step. Assume that (21) and (38) are true for some n ∈ N0.

From Definition 2 with n and n+ 1 we obtain

Hn+1(z;α) = zHn(z;α) + 2F (z − α)
Bn+1(α)− {α}Bn(α)

z − {α}
(42)

for any z ∈ C . Since by equation (38) the Fourier transforms of ψn,α and
ψn+1,α exist we obtain with (42) and (40) for |t| < 1

Fψn+1,α(t) = − 1
2πi

d

dt
Fψn,α(t) +

1
πi

(Bn+1(α)− {α}Bn(α))sgn(t)e(−{α}t).

(43)
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By the induction hypothesis, (38) holds for n, i.e. for |t| < 1

Fψn,α(t) = −2
∞∑

k=n+1

Bk(α)
(k − n)!

(k − n
k
− |t|

)
(−2πit)k−n−1

+
Bn(α)
πi

sgn(t)
(
e(−{α}t)− 1

)
.(44)

For k ≥ n+ 2
d

dt

(k − n
k
− |t|

)
tk−n−1 = (k − n)

(k − n− 1
k

− |t|
)
tk−n−2.

Applying this to (44) and utilizing (43) we obtain for |t| < 1

Fψn+1,α(t) = −2
∞∑

k=n+2

Bk(α)
(k − n− 1)!

(k − n− 1
k

− |t|
)

(−2πit)k−n−2

− Bn+1(α)sgn(t)
πi

+
sgn(t)Bn(α)

(−2πi)πi
(−2πi{α})e(−{α}t)

+
1
πi

(Bn(α)− {α}Bn(α))sgn(t)e(−{α}t)

= −2
∞∑

k=n+2

Bk(α)
(k − n− 1)!

(k − n− 1
k

− |t|
)

(−2πit)k−n−2

+
Bn+1(α)

πi
sgn(t)(e(−{α}t)− 1),

and this is (38) for n+ 1.
Since the Fourier transform of (x−{α})−1 sin2 π(x−α) equals zero outside

the interval [−1, 1], we have with (42) for |t| ≥ 1

Fψn+1,α(t) = − 1
2πi

d

dt
Fψn,α(t) = − 2(n+ 1)!

(2πit)n+2
,

and this is (21) for n+ 1. �

Proof of Lemma 3. Let 0 ≤ α ≤ 1, and let Fn ∈ E(2π) be a majorant for
sgn(x)xn. Assume that∫ ∞

−∞
(Fn(x)− sgn(x)xn)dx <∞.

Let ψn(x) = Fn(x) − sgn(x)xn, and recall that ψn,α(x) = Hn(x;α) −
sgn(x)xn. Since Fn(x) − Hn(x;α) is an absolutely integrable function in
E(2π), we know by the Paley-Wiener Theorem that the support of its Fourier
transform is a subset of [−1, 1], i.e.

F [Fn(x)−Hn(x, α)](t) = 0 for |t| ≥ 1.

It follows from Lemma 2 that

Fψn(t) = Fψn,α(t) = − 2n!
(2πit)n+1

for |t| ≥ 1.(45)
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Now use (45), the Poisson summation formula and (28) to obtain that

0 ≤
∞∑

`=−∞
ψn(`+ t) = Fψn(0)− 2

n+ 1

∑
k 6=0

(n+ 1)!
(2πik)n+1

e(kt)(46)

= Fψn(0) +
2

n+ 1
Bn+1(t),

and since this has to hold for all t ∈ [0, 1],

Fψn(0) ≥ − 2
n+ 1

min
0≤t≤1

Bn+1(t).(47)

Similarly, with φn(x) = sgn(x)xn −Gn(x)

Fφn(0) ≥ 2
n+ 1

max
0≤t≤1

Bn+1(t).(48)

Vaaler showed in Theorem 9 of [11] that any integrable function in E(2π)
is already uniquely determined by its values and the values of its first de-
rivative at the integers, and he used this result to prove the case n = 0 of
Lemma 3. We will use his argument.

Let 0 ≤ α ≤ 1 such that Bn+1(t) has its minimum on [0, 1] at t = α. If
Fn ∈ E(2π) is chosen such that Fn is a majorant of sgn(x)xn with

Fψn(0) = − 2
n+ 1

Bn+1(α),

then we have equality in (46) for t = α. This means that

F (α+ k) = sgn+(α+ k)(α+ k)n for all k ∈ Z .

The same is true for Hn(x;α) by construction. If α = 0 or 1, let n ≥ 2.
Since both Fn(x) and Hn(x;α) are majorants of sgn(x)xn, they must have
the same derivatives at the numbers α+ k, namely n · sgn(α+ k)(α+ k)n−1.
From Theorem 9 of [11] we obtain

Fn(z)−Hn(z;α) = 0,

for all z ∈ C . The computation for Gn(z) goes along the same lines.
If n = 0, 1 and α = 0, 1, then we cannot immediately conclude that Fn(x)

and Hn(x;α) have equal derivatives at x = 0. However, as in the proof of
Theorem 8 in [11]

Fn(z)−Hn(z;α) = (F ′n(0)−H ′n(0;α))π−2x−1 sin2 πz,

and since x−1 sin2 πx is not integrable on the real line, we must have F ′n(0) =
H ′n(0;α). Thus, Fn(z) = Hn(z;α) holds in this case as well. �
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6. Proofs of Corollary 1 and 2

Proof of Corollary 1. We will prove statements (i) and (iii) of Corollary 1.
Let n ∈ N0. By Theorem 1

φn,αn(x) = sgn(x)xn −Hn(x;αn) ≥ 0,

by Lemma 1 the function is integrable on R, and by Lemma 2

Fφn,αn(t) =
2 · n!

(2πit)n+1

for |t| ≥ 1. By the easy implication of Bochner’s theorem, Fφn,αn is positive
definite. Lemma 2 (20) yields the explicit representation of Fφn,αn(t) for
|t| < 1, note that the last term in (20) is equal to zero, since by definition
one of the equations Bn(αn) = 0, αn = 0, or αn = 1 holds. Performing the
substitution m = n+ 1 yields Corollary 1.

For the proof of Corollary 1 (iii) consider the function pm,c : Z → C

(c ∈ R) defined by

pm,c(k) =

{
m! (2πik)−m if k 6= 0
c if k = 0

(k ∈ Z).

By (28) ∑
k∈Z

pm,c(k)e(kt) = c− Bm(t),

and this is non-negative if, and only if,

c ≥ Bm(t) for all t ∈ [0, 1].

We obtain using Bochner’s theorem that pm,c is a positive definite function
on Z if, and only if, c ≥ maxBm(t) = Bm(αm−1), which shows that pm(0) =
Bm(αm−1) is the minimal value which gives rise to a positive extension of
pm(k) = (2πik)−m (k 6= 0) to Z . Moreover, if c < Bm(αm−1), then there
exist N ∈ N , numbers aν ∈ C , and distinct numbers λν ∈ Z such that

N∑
ν,µ=1

aνaµf(λν − λµ) =
N∑

ν,µ=1

aνaµpm,c(λν − λµ) < 0,(49)

which shows that the value fm(0) = Bm(αm−1) in statement (i) of Corollary
1 is optimal as well.

Statements (ii) and (iv) follow similarly by considering

ψn,βn(x) = Hn(x;βn)− sgn(x)xn.

instead of φn,αn . �

Now we are in a position to give the
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Proof of Corollary 2. From Corollary 1 (i) we obtain that for any N ∈ N ,
aν ∈ C , and λν ∈ R

N∑
ν,µ=1

aνaµfm(λν − λµ) ≥ 0.

If we require additionally that |λν − λµ| ≥ 1 for all ν 6= µ, then after a
multiplication by m!−1(2π)m we obtain

N∑
ν,µ=1
ν 6=µ

aνaµ(i(λν − λµ))−m ≥ −fm(0)
(2π)m

m!

N∑
ν=1

|aν |2.

This shows that the function (it)−m satisfies (8) with L((it)−m) as in
Corollary 2. The optimality of L((it)−m) follows from (49). (Note that the
set of integers {λν} used in (49) obviously satisfies |λν − λµ| ≥ 1 for all
ν 6= µ.)

The validity of U((it)−m) is verified in the same way using Corollary 1,
(ii) and (iv). �
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