ENTIRE MAJORANTS VIA EULER-MACLAURIN SUMMATION

FRIEDRICH LITTMANN

ABSTRACT. It is the aim of this article to give extremal majorants of type 2π for the class of functions $f_n(x) = \operatorname{sgn}(x)x^n$ where $n \in \mathbb{N}$. As applications we obtain positive definite extensions to \mathbb{R} of $\pm (it)^{-m}$ defined on $\mathbb{R}\setminus[-1,1]$ where $m \in \mathbb{N}$, optimal bounds in Hilbert-type inequalities for the class of functions $(it)^{-m}$, and majorants of type 2π for functions whose graphs are trapezoids.

1. INTRODUCTION AND NOTATION

An entire function F(z) is said to be of type δ if

 $|F(z)| \le A_{\varepsilon} \exp\left(|z|(\delta + \varepsilon)\right)$

for every $\varepsilon > 0$ and some constant $A_{\varepsilon} > 0$ depending on ε (in the notation of [2] this a function of order 1 and type δ). The set of all functions of type δ that are real in \mathbb{R} will be denoted by $E(\delta)$.

By the Paley-Wiener Theorem (cf. [2]), functions in $E(2\pi\delta) \cap L^2(\mathbb{R})$ have a Fourier transform with support in $[-\delta, \delta]$, where the Fourier transform of $f \in L^2(\mathbb{R})$ is given by

$$\mathcal{F}f(t) := \lim_{N \to \infty} \int_{-N}^{N} f(x)e(-tx)dx,$$

here we use the notation $e(y) = \exp(2\pi i y)$.

In the 1930's A. Beurling studied the entire function

(1)
$$B(z) := \frac{\sin^2 \pi z}{\pi^2} \Big(\sum_{n=0}^{\infty} (z-n)^{-2} - \sum_{n=-\infty}^{-1} (z-n)^{-2} + 2z^{-1} \Big).$$

He found that B(z) satisfies the following extremal property: B(z) is of type 2π , $B(x) \ge \operatorname{sgn}(x)$ for all $x \in \mathbb{R}$, $\int_{\mathbb{R}} (B - \operatorname{sgn}) = 1$, and any $F \in E(2\pi)$ with $F \ge \text{sgn}$ on the real line and $F \ne B$ satisfies $\int_{\mathbb{R}} (F - \text{sgn}) > 1$. This motivates

Definition 1. Let $f : \mathbb{R} \to \mathbb{R}$. For $F \in E(\delta)$ consider the conditions

(i)
$$f(x) \leq F(x)$$
 for all $x \in \mathbb{R}$,
(ii) $\int_{\mathbb{R}} (F - f) = \min_{\substack{G \in E(\delta) \\ G \geq f}} \int_{\mathbb{R}} (G - f)$.

Date: November 18, 2002.

A function $F \in E(\delta)$ satisfying (i) and (ii) is called an extremal majorant of type δ of f. Extremal minorants are defined with the obvious modifications.

A. Selberg discovered B(z) independently, and he used it to obtain a sharp form of the large sieve inequality ([10], chapter 20).

A general method to construct candidates for extremal majorants when $f \in L^2(\mathbb{R})$ is given by S. W. Graham and J. D. Vaaler in [3]. Their applications include a finite form of the Wiener-Ikehara Tauberian theorem (see also [5], chapter 5), a proof of the large sieve inequality, and inequalities for character sums.

Although Beurling never published his results, an account can be found in the survey [11] by Vaaler.

The function B(z) can be used to give a short and elegant proof for a general form of Hilbert's inequality (cf. [10], chapter 20, and [11], Theorem 16. For the first proof cf. [8]). We will generalize this result in Corollary 2.

It is the purpose of this note to give extremal minorants and majorants for the class of functions

$$f_n(x) := \operatorname{sgn}(x)x^n$$

where $n \in \mathbb{N}_0$. The way we obtain the extremal minorants and majorants is similar to the method of [11], except that we employ the Euler-Maclaurin summation formula rather than the arithmetic-geometric mean inequality.

As usual, $\operatorname{sgn}(x)$ denotes the symmetric signum function, i.e. $\operatorname{sgn}(x) = -1$ for x < 0, $\operatorname{sgn}(x) = 1$ for x > 0, and $\operatorname{sgn}(0) = 0$. Also, $\operatorname{sgn}_+(x)$ denotes the right-continuous signum function, i.e. $\operatorname{sgn}_+(x) = \operatorname{sgn}(x)$ for $x \neq 0$ and $\operatorname{sgn}_+(0) = 1$. The expression \overline{z} denotes the complex conjugate of $z \in \mathbb{C}$.

2. Main Results

Given $\alpha \in \mathbb{R}$, let

$$F_{\alpha}(z) := \pi^{-2} \sin^2 \pi(z - \alpha)$$
 for $z \in \mathbb{C}$.

The following definition provides us with the candidates for extremal minorants and majorants of $f(x) = \operatorname{sgn}(x)x^n$.

Definition 2. Define for $0 \le \alpha \le 1$, $z \in \mathbb{C}$, and $n \in \mathbb{N}_0$

$$H_n(z;\alpha) := F_\alpha(z) \Big(z^n \sum_{k=-\infty}^{\infty} \frac{\operatorname{sgn}_+(k)}{(x-k-\alpha)^2} + 2\sum_{k=1}^n B_{k-1}(\alpha) z^{n-k} + 2\frac{B_n(\alpha)}{z-\{\alpha\}} \Big),$$

where $\{\alpha\}$ denotes the fractional part of α , and $B_n(\alpha)$ is the n-th Bernoulli polynomial (cf. Section 4). For n = 0 the second sum is assigned the value zero.

We have the equality $B(z) = H_0(z; 0)$, where B(z) is Beurling's function defined in (1).

Note that $H_n(z; \alpha)$ is real entire, because the zeros of F_α cancel the poles of the first and the last term in the parenthesis, and the second term is a polynomial.

 $\mathbf{2}$

Next we will show that $H_n(z; \alpha)$ is of type 2π . The expressions obtained by multiplying $F_{\alpha}(z)$ with the second and the third term in the parenthesis of Definition 2 are of type 2π . It remains to estimate the first term. The series $\sum_{\ell} |z - \ell - \alpha|^{-2} F_{\alpha}(z - \ell)$ is bounded uniformly for all z satisfying $|z - k - \alpha| < 1/4$ with some $k \in \mathbb{Z}$. Moreover, for all z and k satisfying $|z - k - \alpha| \ge 1/4$, the sum $\sum_{\ell} |z - \ell - \alpha|^{-2}$ is bounded uniformly in z. Since $F_{\alpha}(z)$ is of type 2π , it follows that $H_n(z; \alpha)$ is of type 2π as well.

We will see in (36) and (37) that the function $H_n(x;\alpha)$ is an extremal function for $\operatorname{sgn}(x)x^n$ precisely when the 1-periodic function $B_{n+1}(\alpha) - B_{n+1}(t+\alpha-[t+\alpha])$ has no changes of sign for all $t \in \mathbb{R}$ (here [x] denotes the greatest integer less than or equal to x). This motivates the following choices for the values of α .

Let $n \in \mathbb{N}$. It is known that $B_{2n}(t)$ $(n \geq 1)$ has exactly one zero in the interval (0, 1/2). Denote this zero by z_{2n} , and let $z_0 = 0$. By a result of D. H. Lehmer [6] we have $1/4 - \pi^{-1}2^{-2n-1} < z_{2n} < 1/4$ for $n \in \mathbb{N}$. The odd Bernoulli polynomials $B_{2n+1}(t)$ have zeros at t = 0 and t = 1/2, but no zeros in the interval (0, 1/2) (cf. Section 4).

Define two sequences $\{\alpha_n\}_{n\in\mathbb{N}_0}$ and $\{\beta_n\}_{n\in\mathbb{N}_0}$ by

(2)
$$\begin{array}{rcl} \alpha_{4k} & := & 1 - z_{4k}, & \beta_{4k} & := & z_{4k}, \\ \alpha_{4k+1} & := & 0, & \beta_{4k+1} & := & \frac{1}{2}, \\ \alpha_{4k+2} & := & z_{4k+2}, & \beta_{4k+2} & := & 1 - z_{4k+2}, \\ \alpha_{4k+3} & := & \frac{1}{2}, & \beta_{4k+3} & := & 0, \end{array}$$

where $k \in \mathbb{N}_0$. Note that $B_{n+1}(t)$ assumes a maximum in [0,1] at $t = \alpha_n$, and $B_{n+1}(t)$ assumes a minimum in [0,1] at $t = \beta_n$ (cf. Lemma 5).

With these definitions $H_n(z; \alpha_n)$ and $H_n(z; \beta_n)$ turn out to be the extremal minorant and the extremal majorant of $\operatorname{sgn}(x)x^n$, respectively:

Theorem 1. Let $n \in \mathbb{N}_0$. The inequality

(3)
$$H_n(x;\alpha_n) \le \operatorname{sgn}(x)x^n \le H_n(x;\beta_n)$$

holds for all $x \in \mathbb{R}$. Moreover,

(i) for every real entire function F of type 2π satisfying $F(x) \ge \operatorname{sgn}(x)x^n$

(4)
$$\int_{\infty}^{\infty} \left(F(x) - \operatorname{sgn}(x)x^n \right) dx \ge -2\frac{B_{n+1}(\beta_n)}{n+1}$$

with equality exactly for $F(x) = H_n(x; \beta_n)$, and

(ii) for every real entire function G of type 2π satisfying $G(x) \leq \operatorname{sgn}(x)x^n$

(5)
$$\int_{\infty}^{\infty} \left(\operatorname{sgn}(x)x^n - G(x) \right) dx \ge 2 \frac{B_{n+1}(\alpha_n)}{n+1}$$

with equality exactly for $G(x) = H_n(x; \alpha_n)$.

Let S be \mathbb{R} or Z. We say that a function $f: S \to \mathbb{C}$ is positive definite if for every $N \in \mathbb{N}$, any $a_1, ..., a_n \in \mathbb{C}$, and any $x_1, ..., x_n \in S$ the inequality

(6)
$$\sum_{\nu,\mu=1}^{N} a_{\nu} \overline{a}_{\mu} f(x_{\nu} - x_{\mu}) \ge 0$$

holds.

Let $m \in \mathbb{N}$. As a first corollary of Theorem 1 we obtain positive definite extensions to \mathbb{R} of the functions $\pm m!(2\pi it)^{-m}$ restricted to $\mathbb{R}\setminus[-1,1]$. Define

(7)
$$s_{m,\alpha}(t) := -2\sum_{k=0}^{\infty} \frac{B_{k+m}(\alpha)}{(k+1)!} \Big(\frac{k+1}{k+m} - |t|\Big) (-2\pi i t)^k$$

where $0 \le \alpha \le 1$, $m \in \mathbb{N}$, and |t| < 1.

Corollary 1. Let $m \in \mathbb{N}$. The following functions are positive definite on \mathbb{R} :

$$f_m(t) = \begin{cases} m! (2\pi i t)^{-m} & \text{if } |t| \ge 1, \\ s_{m,\alpha_{m-1}}(t) & \text{else}, \end{cases}$$
$$g_m(t) = \begin{cases} -m! (2\pi i t)^{-m} & \text{if } |t| \ge 1, \\ -s_{m,\beta_{m-1}}(t) & \text{else}. \end{cases}$$

The following functions are positive definite on \mathbb{Z} :

$$p_m(k) = \begin{cases} m! (2\pi i k)^{-m} & \text{if } k \neq 0, \\ B_m(\alpha_{m-1}) & \text{if } k = 0. \end{cases}$$
$$q_m(k) = \begin{cases} -m! (2\pi i k)^{-m} & \text{if } k \neq 0, \\ -B_m(\beta_{m-1}) & \text{if } k = 0. \end{cases}$$

Moreover, $f_m(0) = B_m(\alpha_{m-1})$, $g_m(0) = -B_m(\beta_{m-1})$, and the values $f_m(0)$, $g_m(0)$, $p_m(0)$, $q_m(0)$ are all minimal in the sense that none of the functions $\pm m!(2\pi i t)^{-m}$ (resp. $\pm (2\pi i k)^{-m}$) restricted to $\mathbb{R} \setminus [-1,1]$ (resp. $\mathbb{Z} \setminus \{0\}$) can have a positive extension to \mathbb{R} (resp. \mathbb{Z}) having a smaller value at the origin.

Figure 1: Plot of
$$f_2(t)$$
 Figure 2: Plot of $g_2(t)$

The proof of Corollary 1 will be given in Section 6. As a consequence of this corollary we obtain sharp bounds in certain Hilbert type inequalities. Let $(a_{\nu})_{\nu=1}^{N}$ be a finite sequence of complex numbers, and let $\{\lambda_{\nu}\}_{\nu=1}^{N}$ be a set of real numbers which are well-spaced in the sense that $|\lambda_{\nu} - \lambda_{\mu}| \ge 1$ for all $\nu \neq \mu$, and let h(t) $(t \in \mathbb{R})$ be a hermitian function, i.e. $h(-t) = \overline{h(t)}$. We are interested in optimal bounds L(h) and U(h) such that

(8)
$$-L(h)\sum_{\nu=1}^{N}|a_{\nu}|^{2} \leq \sum_{\substack{\mu,\nu=1\\\mu\neq\nu}}^{N}a_{\nu}\overline{a}_{\mu}h(\lambda_{\nu}-\lambda_{\mu}) \leq U(h)\sum_{\nu=1}^{N}|a_{\nu}|^{2}$$

holds independently of $N \in \mathbb{N}$, and independently of the sequences $\{a_{\nu}\}_{\nu=1}^{N}$ and $\{\lambda_{\nu}\}_{\nu=1}^{N}$.

For $h_1(t) = (it)^{-1}$ the problem of finding the best possible values for $L(h_1)$ and $U(h_1)$ was solved by Montgomery and Vaughan [8]. As mentioned in the introduction, Beurling's majorant B(z) can be used to give a proof of Montgomery and Vaughan's result (cf. [11] Theorem 16, [10] chapter 20). We will extend their result to the functions

(9)
$$h_m(t) = (it)^{-m}$$
 where $m \in \mathbb{N}$.

Corollary 2. Let $m \in \mathbb{N}$, and let L, U be as in (8). We have the optimal bounds

$$L((it)^{-m}) = (2\pi)^m \frac{B_m(\alpha_{m-1})}{m!},$$

$$U((it)^{-m}) = -(2\pi)^m \frac{B_m(\beta_{m-1})}{m!}.$$

For example, since $-2\pi^2 B_2(1/2) = \pi^2 B_2(0) = \zeta(2)$ we obtain for m = 2 that

(10)
$$-\zeta(2)\sum_{\nu=1}^{N}|a_{\nu}|^{2} \leq \sum_{\substack{\mu,\nu=1\\\mu\neq\nu}}^{N}\frac{a_{\nu}\overline{a}_{\mu}}{(\lambda_{\nu}-\lambda_{\mu})^{2}} \leq 2\zeta(2)\sum_{\nu=1}^{N}|a_{\nu}|^{2}$$

for all $N \in \mathbb{N}$ and all sequences $(a_{\nu}), \{\lambda_{\nu}\}$ as above.

For this inequality we can write down extremal configurations. An extremal configuration for the upper bound is given by $\lambda_{\nu} := \nu$, $a_{\nu} := 1$, and $N \to \infty$, since

$$\lim_{N \to \infty} \frac{1}{N} \sum_{\substack{\nu, \mu = 1 \\ n \neq m}}^{N} \frac{1}{(\nu - \mu)^2} = \lim_{N \to \infty} \frac{1}{N} \sum_{\substack{k = 1 - N \\ k \neq 0}}^{N-1} \frac{N - |k|}{k^2} = 2\zeta(2).$$

An extremal configuration for the lower bound is given by $\lambda_{\nu} := \nu$, $a_{\nu} := (-1)^{\nu}$ and $N \to \infty$, since

$$\lim_{N \to \infty} \frac{1}{N} \sum_{\substack{\nu, \mu = 1 \\ n \neq m}}^{N} \frac{(-1)^{\nu - \mu}}{(\nu - \mu)^2} = \lim_{N \to \infty} \frac{1}{N} \sum_{\substack{k = 1 - N \\ k \neq 0}}^{N-1} (-1)^k \frac{N - |k|}{k^2} = -\zeta(2).$$

Note that $L((it)^{-m}) = U((it)^{-m})$ for odd-valued, but not for even-valued $m \in \mathbb{N}$.

The proof of Corollary 2 will be given in Section 6.

As another application we derive the following result originally obtained by J. J. Holt (cf. [4], Theorem 1 and Corollary 1). Let $\alpha > 0$, and define

(11)
$$R_{\alpha}(x) = \alpha^{-1}(|x+\alpha| - |x|) \text{ for all } x \in \mathbb{R}.$$

Holt obtained extremal majorants and minorants for $R_{\alpha}(x)$ in the case that $\alpha \in A := (0, 1/2] \cup \{k + 1/2 : k \in \mathbb{N}\}$, and he obtained non-extremal

minorants and majorants for all other $\alpha > 0$. We will obtain Holt's result for $\alpha \in A$, and we will give slightly better (also non-extremal) majorants and minorants for all positive $\alpha \notin A$. Define

(12)
$$M_{\alpha}(x) = \begin{cases} H_0(x;0) & \text{if } 0 < \alpha \le 1/2 \\ \alpha^{-1}(H_1(x+\alpha;1/2) - H_1(x;0)) & \text{if } \alpha > 1/2. \end{cases}$$

(13)
$$m_{\alpha}(x) = \begin{cases} H_0(x+\alpha;1) & \text{if } 0 < \alpha \le 1/2\\ \alpha^{-1}(H_1(x+\alpha;0) - H_1(x;1/2)) & \text{if } \alpha > 1/2. \end{cases}$$

For $0 < \alpha \leq 1/2$ we have $H_0(x + \alpha; 1) \leq R_\alpha(x) \leq H_0(x; 0)$ (cf. [4], Cor. 1). For any $\alpha > 0$ we have by Theorem 1 that $H_1(x + \alpha; 0) \leq |x + \alpha| \leq H_1(x + \alpha; 1/2)$ and $-H_1(x; 1/2) \leq -|x| \leq -H_1(x; 0)$. So for all $x \in \mathbb{R}$

(14)
$$m_{\alpha}(x) \le R_{\alpha}(x) \le M_{\alpha}(x).$$

Moreover for $0 < \alpha \le 1/2$, $\int (H_0(x;0) - R_\alpha(x))dx = \int (R_\alpha(x) - H_0(x + \alpha; 1))dx = 1 - \alpha$. Since $-B_2(1/2) + B_2(0) = 1/12 + 1/6 = 1/4$, Theorem 1 implies for $\alpha > 1/2$

(15)
$$\int_{\mathbb{R}} (M_{\alpha} - R_{\alpha}) = \int_{\mathbb{R}} (R_{\alpha} - m_{\alpha}) = (4\alpha)^{-1}.$$

Define

(16)
$$d(\alpha) = \begin{cases} 1 - \alpha & \text{if } 0 < \alpha \le 1/2\\ (4\alpha)^{-1} & \text{if } \alpha > 1/2. \end{cases}$$

We have shown

Corollary 3. The functions M_{α} and m_{α} are of type 2π , and they majorize and minorize R_{α} , respectively, on the real line. Moreover,

$$\int_{\mathbb{R}} (M_{\alpha} - R_{\alpha}) = \int_{\mathbb{R}} (R_{\alpha} - m_{\alpha}) = d(\alpha).$$

We use Corollary 3 to obtain majorants and minorants of type 2π for trapezoids. Define $f_{\alpha,\beta,\gamma}(x) = \frac{1}{2}(R_{\alpha}(x) + R_{\gamma}(\beta - x))$. The graph of $f_{\alpha,\beta,\gamma}(x)$ is a trapezoid with base-length $\alpha + \beta + \gamma$, top-length β , height 1, and left point at $x = -\alpha$. Define

(17)
$$M_{\alpha,\beta,\gamma}(x) = \frac{1}{2}(M_{\alpha}(x) + M_{\gamma}(\beta - x)),$$

(18)
$$m_{\alpha,\beta,\gamma}(x) = \frac{1}{2}(m_{\alpha}(x) + m_{\gamma}(\beta - x))$$

From Corollary 3 we obtain

Corollary 4. $M_{\alpha,\beta,\gamma}$ and $m_{\alpha,\beta,\gamma}$ are functions of type 2π , they satisfy

$$m_{\alpha,\beta,\gamma}(x) \le f_{\alpha,\beta,\gamma}(x) \le M_{\alpha,\beta,\gamma}(x)$$

for all real x, and

$$\int_{\mathbb{R}} (M_{\alpha,\beta,\gamma} - f_{\alpha,\beta,\gamma}) = \int_{\mathbb{R}} (f_{\alpha,\beta,\gamma} - m_{\alpha,\beta,\gamma}) = \frac{1}{2} (d(\alpha) + d(\gamma)).$$

3. Outline of the proofs

Since most of the following statements are concerned with the difference of $H_n(x; \alpha)$ and $\operatorname{sgn}(x)x^n$ we define

(19)
$$\psi_{n,\alpha}(x) := H_n(x;\alpha) - \operatorname{sgn}(x)x^n.$$

The proof of Theorem 1 is divided into a series of lemmata whose proofs are given in Section 5.

Lemma 1. Let $0 \le \alpha \le 1$ and $n \in \mathbb{N}_0$. The function $\psi_{n,\alpha}(x)$ $(x \in \mathbb{R})$ is absolutely integrable. Moreover, if $\{\alpha_n\}_{n\in\mathbb{N}_0}$ and $\{\beta_n\}_{n\in\mathbb{N}_0}$ are defined by (2), then

$$H_n(x;\alpha_n) \le \operatorname{sgn}(x)x^n \le H_n(x;\beta_n).$$

Since $\psi_{n,\alpha}(x)$ is integrable, its Fourier transform exists. Its value is given by

Lemma 2. Let $0 \le \alpha \le 1$ and $n \in \mathbb{N}_0$. We have

(20)
$$\mathcal{F}\psi_{n,\alpha}(t) = -2\sum_{k=0}^{\infty} \frac{B_{k+n+1}(\alpha)}{(k+1)!} \Big(\frac{k+1}{k+n+1} - |t|\Big) (-2\pi i t)^k \\ + \frac{B_n(\alpha)}{\pi i} \operatorname{sgn}(t) \Big(e(-\{\alpha\}t) - 1\Big) \text{ for } |t| < 1,$$
(21)
$$\mathcal{F}\psi_{n,\alpha}(t) = -\frac{2 \cdot n!}{(2\pi i t)^{n+1}} \text{ for } |t| \ge 1.$$

By taking the value of $\mathcal{F}\psi_{n,\alpha}(t)$ at t = 0 in Lemma 2 we obtain the equalities in (4) for $F(x) = H_n(x;\beta_n)$ and in (5) for $G(x) = H_n(x;\alpha_n)$.

The proof of Theorem 1 is completed by establishing the extremality properties of $H_n(x; \alpha)$.

Lemma 3. Let $n \in \mathbb{N}_0$, and let $F_n, G_n \in E(2\pi)$ be real entire functions such that

$$G_n(x) \le \operatorname{sgn}(x) x^n \le F_n(x)$$

for all $x \in \mathbb{R}$. Then

(22)
$$\int_{-\infty}^{\infty} (F_n(x) - \operatorname{sgn}(x)x^n) dx \ge -\frac{2}{n+1} \min_{0 \le t \le 1} B_{n+1}(t),$$

(23)
$$\int_{-\infty}^{\infty} (\operatorname{sgn}(x)x^n - G_n(x))dx \ge \frac{2}{n+1} \max_{0 \le t \le 1} B_{n+1}(t).$$

Moreover, in (22) and (23) equality can hold only for the minorants and majorants defined in Lemma 1.

4. Bernoulli Functions and Euler-Maclaurin Summation

In this section we give a brief review of some facts about Bernoulli polynomials that we will need in our proofs. Most of these facts are taken from [1], [7], and [9].

The Bernoulli polynomials $B_n(x)$ can be defined by the power series expansion

(24)
$$\frac{te^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} \frac{B_n(x)}{n!} t^n,$$

where $|t| < 2\pi$, the Bernoulli numbers B_n by

8

$$(25) B_n = B_n(0),$$

and the Bernoulli periodic functions $\mathcal{B}_n(t)$ by

(26)
$$\mathcal{B}_n(t) = B_n(t - [t]).$$

The Bernoulli polynomials satisfy $B'_n(t) = nB_{n-1}(t)$ and

$$\int_0^1 B_n(t)dt = 0.$$

This implies that for $0 \leq \alpha \leq 1$ the Bernoulli periodic functions have the antiderivatives

(27)
$$\int_0^x \mathcal{B}_n(t+\alpha)dt = \frac{1}{n+1} \big(\mathcal{B}_{n+1}(x+\alpha) - B_{n+1}(\alpha) \big).$$

For $n \geq 1$ the Bernoulli periodic functions have the Fourier series expansion

(28)
$$\mathcal{B}_n(t) = -\frac{n!}{(2\pi i)^n} \sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} \frac{1}{k^n} e(kt),$$

which is valid for $t \in \mathbb{R} \setminus \mathbb{Z}$ with symmetric summation if n = 1, and it is valid for $t \in \mathbb{R}$ if $n \geq 2$.

We will need the Euler-Maclaurin summation formula in the following form:

Lemma 4. For $0 \le \alpha \le 1$, x > 0 and any $\mu \in \mathbb{N}$

(29)

$$\sum_{n=1}^{\infty} \frac{1}{(x+n-\alpha)^2} = \sum_{n=1}^{\mu} \frac{B_{n-1}(\alpha)}{x^n} + (\mu+1) \int_0^{\infty} \frac{B_{\mu}(\alpha) - \mathcal{B}_{\mu}(t+\alpha)}{(x+t)^{\mu+2}} dt.$$

Proof. Induction on μ . For $0 \leq \alpha < 1$ we obtain with integration by parts

$$\sum_{n=1}^{\infty} \frac{1}{(x+n-\alpha)^2} = \int_{0+}^{\infty} \frac{1}{(x+t)^2} d[t+\alpha]$$
$$= \int_{0}^{\infty} \frac{1}{(x+t)^2} dt + \int_{0+}^{\infty} \frac{d[t+\alpha] - dt}{(x+t)^2}$$
$$= \frac{B_0(\alpha)}{x} + 2\int_{0}^{\infty} \frac{B_1(\alpha) - \mathcal{B}_1(t+\alpha)}{(x+t)^3} dt$$

and for $\alpha = 1$ we have

$$\begin{split} \sum_{n=1}^{\infty} \frac{1}{(x+n-1)^2} &= \frac{1}{x^2} + \sum_{n=1}^{\infty} \frac{1}{(x+n)^2} = \frac{1}{x} + 2\int_0^{\infty} \frac{1 + B_1(0) - \mathcal{B}_1(t)}{(x+t)^3} dt \\ &= \frac{B_0(1)}{x} + 2\int_0^{\infty} \frac{B_1(1) - \mathcal{B}_1(t+1)}{(x+t)^3} dt, \end{split}$$

since $\mathcal{B}_1(t)$ is 1-periodic. This establishes (29) for $\mu = 1$.

The remaining part of the induction follows with repeated applications of integrations by parts using (27). $\hfill \Box$

We will need the extrema of the Bernoulli polynomials in the interval [0, 1]. The locations of these extrema are collected in the following lemma. These facts come from [9], chapter 2.

Lemma 5. Let $0 \le x \le 1$ and $n \ge 1$.

- (i) $B_{4n}(x)$ assumes its maximum value at x = 1/2 and its minimum value at x = 0, x = 1.
- (ii) $B_{4n+1}(x)$ assumes its minimum value at a unique $\alpha \in (0, 1/2)$ and its maximum value at $1 - \alpha \in (1/2, 1)$.
- (iii) B_{4n-2}(x) assumes its maximum value at x = 0, x = 1 and its minimum value at x = 1/2.
- (iv) $B_{4n-1}(x)$ assumes its maximum value at a unique $\alpha \in (0, 1/2)$ and its minimum value at $1 \alpha \in (1/2, 1)$.

Finally, $B_0(x) = 1$ and $B_1(x) = x - 1/2$. As was pointed out in Section 2, Lehmer showed in [6] that the zeros z_{2n} of the even Bernoulli polynomial in (0, 1/2) (or, what amounts to the same thing, the extrema of the odd Bernoulli polynomials in (0, 1/2)) satisfy

$$\frac{1}{4} - \frac{1}{\pi 2^{2n+1}} < z_{2n} < \frac{1}{4}.$$

Decimal approximations for the first four z_{2n} are $z_2 = 0.2113$, $z_4 = 0.2403$, $z_6 = 0.2475$, $z_8 = 0.2494$.

5. Proof of the Lemmata

Proof of Lemma 1. Let $x \in \mathbb{R}$ and $0 \le \alpha \le 1$. Recall (30) $\psi_{n,\alpha}(x) = H_n(x;\alpha) - \operatorname{sgn}(x)x^n$. We will consider the cases x > 0 and x < 0 separately. Let x > 0. We have by Lemma 4 with $\mu = n + 1$ that

$$\sum_{k=-\infty}^{\infty} \frac{\operatorname{sgn}_{+}(k+\alpha)}{(x-k-\alpha)^{2}} + 2\sum_{\ell=1}^{n} \frac{B_{\ell-1}(\alpha)}{x^{\ell}} + \frac{2B_{n}(\alpha)}{x^{n}(x-\{\alpha\})} - \sum_{k=-\infty}^{\infty} \frac{1}{(x-k-\alpha)^{2}}$$
$$= -2\sum_{k=1}^{\infty} \frac{1}{(x+k-\alpha)^{2}} + 2\sum_{\ell=1}^{n+1} \frac{B_{\ell-1}(\alpha)}{x^{\ell}} + \frac{B_{n}(\alpha)}{x^{n}} \left(\frac{2}{x-\{\alpha\}} - \frac{2}{x}\right)$$
$$(31) = -2(n+2)\int_{0}^{\infty} \frac{B_{n+1}(\alpha) - \mathcal{B}_{n+1}(t+\alpha)}{(x+t)^{n+3}} \, dt + O\left(x^{-n-2}\right)$$
$$\ll x^{-n-2},$$

because $B_{n+1}(\alpha) - \mathcal{B}_{n+1}(t+\alpha)$ is bounded. Since for x > 0

$$x^{n} = x^{n} \left(\frac{\sin \pi (x-\alpha)}{\pi}\right)^{2} \sum_{k=-\infty}^{\infty} \frac{1}{(x-k-\alpha)^{2}}$$

we obtain

(32)
$$\psi_{n,\alpha}(x) = H_n(x;\alpha) - x^n = O(x^{-2})$$

for x > 0.

Now let x < 0. Putting y = -x > 0 and using $B_{\ell}(\alpha) = (-1)^{\ell} B_{\ell}(1-\alpha)$ we obtain with a similar computation that

$$\sum_{k=-\infty}^{\infty} \frac{\operatorname{sgn}_{+}(k+\alpha)}{(x-k-\alpha)^{2}} + 2\sum_{\ell=1}^{n} \frac{B_{\ell-1}(\alpha)}{x^{\ell}} + \frac{2B_{n}(\alpha)}{x^{n}(x-\{\alpha\})} + \sum_{k=-\infty}^{\infty} \frac{1}{(x-k-\alpha)^{2}}$$
(33)
$$= 2(n+2) \int_{0}^{\infty} \frac{B_{n+1}(1-\alpha) - \mathcal{B}_{n+1}(t-\alpha)}{(y+t)^{n+3}} dt + O(y^{-n-2})$$

$$\ll y^{-n-2}.$$

We obtain for x < 0 that

(34)
$$\psi_{n,\alpha}(x) = H_n(x;\alpha) + x^n = O(x^{-2}).$$

(32) and (34) prove the first statement of Lemma 1.

For the second statement we use the representation for $\psi_{n,\alpha}(x)$ derived in (31) and (33). If

(35)
$$\frac{B_n(\alpha)}{x^n} \left(\frac{2}{x-\{\alpha\}} - \frac{2}{x}\right) = 0,$$

then (31) implies for x > 0

(36)
$$\psi_{n,\alpha}(x) = -2(n+2)F(x-\alpha)x^n \int_0^\infty \frac{B_{n+1}(\alpha) - \mathcal{B}_{n+1}(t+\alpha)}{(x+t)^{n+3}} dt$$

and (33) implies for x < 0

$$\psi_{n,\alpha}(x) = 2(n+2)F(x-\alpha)(-x)^n \int_0^\infty \frac{B_{n+1}(1-\alpha) - \mathcal{B}_{n+1}(t+1-\alpha)}{(-x+t)^{n+3}} \, dt.$$

If $B_{n+1}(t)$ restricted to [0,1] has a maximum at $t = \alpha$, then it has a minimum at $t = 1 - \alpha$ if n is even, and a maximum if n is odd, since $B_{\ell}(\alpha) = (-1)^{\ell} B_{\ell}(\alpha)$. This implies that for such α the expressions $B_{n+1}(\alpha) - \mathcal{B}_{n+1}(t+\alpha)$ and $B_{n+1}(1-\alpha) - \mathcal{B}_{n+1}(t+1-\alpha)$ do not change their signs for $t \in [0,\infty)$, and since $-x^n = (-x)^n (-1)^{n+1}$ we obtain that for such α the expressions in (36) and (37) are either both positive or both negative for all x in the respective ranges. Moreover, $\psi_{n,\alpha} \ge 0$ if $B_{n+1}(t)$ assumes its minimum on [0,1] at $t = \alpha$, and $\psi_{n,\alpha} \le 0$ if $B_{n+1}(t)$ assumes its maximum at $t = \alpha$.

Since by Lemma 5 the function $B_{n+1}(t)$ assumes its minimum on [0, 1] at $t = \beta_n$, and its maximum at $t = \alpha_n$ we have

$$H_n(x;\alpha_n) \le \operatorname{sgn}(x)x^n \le H_n(x;\beta_n),$$

and this finishes the proof of Lemma 1.

Proof of Lemma 2. Recall $sgn_+(x) = sgn(x+)$, and let

$$F(z) = \pi^{-2} \sin^2 \pi z$$
 for $z \in \mathbb{C}$.

Performing the index shift $k+n+1 \mapsto k$ in the series representing $\mathcal{F}\psi_{n,\alpha}(t)$ for |t| < 1 leads to (20) in the form in which we will prove it:

$$\mathcal{F}\psi_{n,\alpha}(t) = -2\sum_{k=n+1}^{\infty} \frac{B_k(\alpha)}{(k-n)!} \Big(\frac{k-n}{k} - |t|\Big) (-2\pi i t)^{k-n-1} + \frac{B_n(\alpha)}{\pi i} \operatorname{sgn}(t) \Big(e(-\{\alpha\}t) - 1\Big) \text{ for } |t| < 1.$$

The first part of the proof will be similar to the proof of Theorem 6 in [11]. Define

$$H_{0,K}(x,\alpha) := F(x-\alpha) \Big(\sum_{k=-K}^{K-1} \frac{\operatorname{sgn}_+(k+\alpha)}{(x-k-\alpha)^2} + \frac{2}{x-\{\alpha\}} \Big).$$

With the Fourier expansions

(39)
$$\frac{F(x)}{x^2} = \int_{-1}^{1} (1 - |t|)e(xt)dt$$

(40)
$$\frac{F(x)}{x} = \frac{1}{2\pi i} \int_{-1}^{1} \operatorname{sgn}(t) e(xt) dt$$

we obtain

$$\begin{split} H_{0,K}(x,\alpha) &= \int_{-1}^{1} (1-|t|) \Big[\sum_{k=0}^{K-1} e(-(k+\alpha)t) - \sum_{k=-K}^{-1} e(-(k+\alpha)t) \Big] e(xt) dt \\ &+ \frac{1}{\pi i} \int_{-1}^{1} \operatorname{sgn}(t) e(-\{\alpha\}t) e(xt) dt. \end{split}$$

We have for $t \neq 0$

$$\sum_{k=0}^{K-1} e(-(k+\alpha)t) - \sum_{k=-K}^{-1} e(-(k+\alpha)t) = 2\frac{e(-\alpha t)}{1 - e(-t)}(1 - \cos 2\pi Kt),$$

and since the last expression is bounded in a neighborhood of t = 0 we obtain

$$H_{0,K}(x,\alpha) = \int_{-1}^{1} (1-|t|) \Big[\frac{2e(-\alpha t)}{1-e(-t)} - e(-\alpha t) \frac{2\cos 2\pi Kt}{1-e(-t)} \Big] e(xt) dt + \frac{1}{\pi i} \int_{-1}^{1} \operatorname{sgn}(t) e(-\{\alpha\}t) e(xt) dt.$$

In order to apply the Lemma of Riemann - Lebesgue we have to remove the poles in the fractions of the first integral. We do this by differentiating both sides with respect to x and divide the resulting expression by 2. We obtain

$$\frac{1}{2}H_{0,K}'(x,\alpha) = \int_{-1}^{1} (1-|t|) \Big[\frac{2\pi it\,e(-\alpha t)}{1-e(-t)} - e(-\alpha t)\frac{2\pi it\cos 2\pi Kt}{1-e(-t)}\Big]e(xt)dt + \int_{-1}^{1} |t|e(-\alpha t)e(xt)dt.$$

By the Lemma of Riemann - Lebesgue we have

$$\lim_{K \to \infty} \int_{-1}^{1} \frac{2\pi i t \cos 2\pi K t}{1 - e(-t)} e(xt) dt = 0.$$

Since $\{H_{0,K}(x,\alpha)\}_{K\in\mathbb{N}}$ is a sequence of entire functions that converges to $H_0(x,\alpha)$ uniformly on any compact subset of \mathbb{C} , the sequence of derivatives $\{H'_{0,K}(x,\alpha)\}_{K\in\mathbb{N}}$ converges to $H'_0(x,\alpha)$ uniformly on any compact subset of \mathbb{C} . Thus

$$\frac{1}{2}H_0'(x,\alpha) = \int_{-1}^1 \left[(1-|t|)\frac{2\pi it\,e(-\alpha t)}{1-e(-t)} + |t|e(-\{\alpha\}t) \right] e(xt)dt,$$

and using (24) we obtain

(41)

$$\mathcal{F}\Big[\frac{1}{2}H'_0(x,\alpha)\Big](t) = (1-|t|)\sum_{k=0}^{\infty}\frac{B_k(\alpha)}{k!}(-2\pi i t)^k + |t|e(-\{\alpha\}t)$$

$$= 1 + (1-|t|)\sum_{k=1}^{\infty}\frac{B_k(\alpha)}{k!}(-2\pi i t)^k + |t|(e(-\{\alpha\}t)-1)$$

for |t| < 1, and $\mathcal{F}[\frac{1}{2}H'_0(x,\alpha)](t) = 0$ for $|t| \ge 1$.

Now we can prove (21) and (38) by induction on n. The difference $\psi_{0,\alpha}(x) = H_0(x,\alpha) - \operatorname{sgn}(x)$ is absolutely integrable by Lemma 1, so its Fourier transform exists.

From

$$\frac{1}{2} \int_{-\infty}^{\infty} e(-xt) d\psi_{0,\alpha}(x) = \mathcal{F}\Big[\frac{1}{2}H_0'(x,\alpha)\Big](t) - 1$$

we obtain with (41) and $2\pi i t \mathcal{F} f(t) = \mathcal{F}[f'](t)$ that for |t| < 1

$$\begin{aligned} \mathcal{F}\psi_{0,\alpha}(t) &= \frac{1}{\pi i t} \Big(\mathcal{F}\Big[\frac{1}{2}H_0'(x,\alpha)\Big] - 1 \Big) \\ &= \frac{1}{\pi i t} \Big((1-|t|) \sum_{k=1}^{\infty} \frac{B_k(\alpha)}{k!} (-2\pi i t)^k + |t| \big(e(-\{\alpha\}t) - 1 \big) \Big) \\ &= -2(1-|t|) \sum_{k=1}^{\infty} \frac{B_k(\alpha)}{k!} (-2\pi i t)^{k-1} + \frac{\operatorname{sgn}(t)}{\pi i} \big(e(-\{\alpha\}t) - 1 \big), \end{aligned}$$

and this is (38) for n = 0. Moreover, for $|t| \ge 1$

$$\mathcal{F}\psi_{0,\alpha}(t) = \frac{1}{\pi i t} \left(\mathcal{F}\left[\frac{1}{2}H'_0(x,\alpha)\right] - 1 \right) = -\frac{1}{\pi i t},$$

and this is (21) for n = 0.

Induction step. Assume that (21) and (38) are true for some $n \in \mathbb{N}_0$. From Definition 2 with n and n+1 we obtain

(42)
$$H_{n+1}(z;\alpha) = zH_n(z;\alpha) + 2F(z-\alpha)\frac{B_{n+1}(\alpha) - \{\alpha\}B_n(\alpha)}{z - \{\alpha\}}$$

for any $z \in \mathbb{C}$. Since by equation (38) the Fourier transforms of $\psi_{n,\alpha}$ and $\psi_{n+1,\alpha}$ exist we obtain with (42) and (40) for |t| < 1

$$\mathcal{F}\psi_{n+1,\alpha}(t) = -\frac{1}{2\pi i} \frac{d}{dt} \mathcal{F}\psi_{n,\alpha}(t) + \frac{1}{\pi i} (B_{n+1}(\alpha) - \{\alpha\}B_n(\alpha))\operatorname{sgn}(t)e(-\{\alpha\}t).$$

By the induction hypothesis, (38) holds for n, i.e. for |t| < 1

(44)

$$\mathcal{F}\psi_{n,\alpha}(t) = -2\sum_{k=n+1}^{\infty} \frac{B_k(\alpha)}{(k-n)!} \Big(\frac{k-n}{k} - |t|\Big) (-2\pi i t)^{k-n-1} + \frac{B_n(\alpha)}{\pi i} \operatorname{sgn}(t) \Big(e(-\{\alpha\}t) - 1\Big).$$

For $k \ge n+2$

$$\frac{d}{dt} \left(\frac{k-n}{k} - |t|\right) t^{k-n-1} = (k-n) \left(\frac{k-n-1}{k} - |t|\right) t^{k-n-2}$$

Applying this to (44) and utilizing (43) we obtain for |t| < 1

$$\begin{aligned} \mathcal{F}\psi_{n+1,\alpha}(t) &= -2\sum_{k=n+2}^{\infty} \frac{B_k(\alpha)}{(k-n-1)!} \Big(\frac{k-n-1}{k} - |t|\Big) (-2\pi i t)^{k-n-2} \\ &- \frac{B_{n+1}(\alpha) \operatorname{sgn}(t)}{\pi i} + \frac{\operatorname{sgn}(t) B_n(\alpha)}{(-2\pi i)\pi i} (-2\pi i \{\alpha\}) e(-\{\alpha\} t) \\ &+ \frac{1}{\pi i} (B_n(\alpha) - \{\alpha\} B_n(\alpha)) \operatorname{sgn}(t) e(-\{\alpha\} t) \\ &= -2\sum_{k=n+2}^{\infty} \frac{B_k(\alpha)}{(k-n-1)!} \Big(\frac{k-n-1}{k} - |t|\Big) (-2\pi i t)^{k-n-2} \\ &+ \frac{B_{n+1}(\alpha)}{\pi i} \operatorname{sgn}(t) (e(-\{\alpha\} t) - 1), \end{aligned}$$

and this is (38) for n+1.

Since the Fourier transform of $(x - \{\alpha\})^{-1} \sin^2 \pi (x - \alpha)$ equals zero outside the interval [-1, 1], we have with (42) for $|t| \ge 1$

$$\mathcal{F}\psi_{n+1,\alpha}(t) = -\frac{1}{2\pi i} \frac{d}{dt} \mathcal{F}\psi_{n,\alpha}(t) = -\frac{2(n+1)!}{(2\pi i t)^{n+2}},$$

and this is (21) for n + 1.

Proof of Lemma 3. Let $0 \le \alpha \le 1$, and let $F_n \in E(2\pi)$ be a majorant for $sgn(x)x^n$. Assume that

$$\int_{-\infty}^{\infty} (F_n(x) - \operatorname{sgn}(x)x^n) dx < \infty.$$

Let $\psi_n(x) = F_n(x) - \operatorname{sgn}(x)x^n$, and recall that $\psi_{n,\alpha}(x) = H_n(x;\alpha) - \operatorname{sgn}(x)x^n$. Since $F_n(x) - H_n(x;\alpha)$ is an absolutely integrable function in $E(2\pi)$, we know by the Paley-Wiener Theorem that the support of its Fourier transform is a subset of [-1, 1], i.e.

$$\mathcal{F}[F_n(x) - H_n(x, \alpha)](t) = 0 \text{ for } |t| \ge 1.$$

It follows from Lemma 2 that

(45)
$$\mathcal{F}\psi_n(t) = \mathcal{F}\psi_{n,\alpha}(t) = -\frac{2n!}{(2\pi i t)^{n+1}} \text{ for } |t| \ge 1.$$

Now use (45), the Poisson summation formula and (28) to obtain that

(46)
$$0 \le \sum_{\ell=-\infty}^{\infty} \psi_n(\ell+t) = \mathcal{F}\psi_n(0) - \frac{2}{n+1} \sum_{k \ne 0} \frac{(n+1)!}{(2\pi i k)^{n+1}} e(kt)$$
$$= \mathcal{F}\psi_n(0) + \frac{2}{n+1} \mathcal{B}_{n+1}(t),$$

and since this has to hold for all $t \in [0, 1]$,

(47)
$$\mathcal{F}\psi_n(0) \ge -\frac{2}{n+1} \min_{0 \le t \le 1} B_{n+1}(t).$$

Similarly, with $\phi_n(x) = \operatorname{sgn}(x)x^n - G_n(x)$

(48)
$$\mathcal{F}\phi_n(0) \ge \frac{2}{n+1} \max_{0 \le t \le 1} B_{n+1}(t).$$

Vaaler showed in Theorem 9 of [11] that any integrable function in $E(2\pi)$ is already uniquely determined by its values and the values of its first derivative at the integers, and he used this result to prove the case n = 0 of Lemma 3. We will use his argument.

Let $0 \le \alpha \le 1$ such that $B_{n+1}(t)$ has its minimum on [0,1] at $t = \alpha$. If $F_n \in E(2\pi)$ is chosen such that F_n is a majorant of $\operatorname{sgn}(x)x^n$ with

$$\mathcal{F}\psi_n(0) = -\frac{2}{n+1}B_{n+1}(\alpha),$$

then we have equality in (46) for $t = \alpha$. This means that

$$F(\alpha + k) = \operatorname{sgn}_{+}(\alpha + k)(\alpha + k)^{n}$$
 for all $k \in \mathbb{Z}$.

The same is true for $H_n(x; \alpha)$ by construction. If $\alpha = 0$ or 1, let $n \ge 2$. Since both $F_n(x)$ and $H_n(x; \alpha)$ are majorants of $\operatorname{sgn}(x)x^n$, they must have the same derivatives at the numbers $\alpha + k$, namely $n \cdot \operatorname{sgn}(\alpha + k)(\alpha + k)^{n-1}$. From Theorem 9 of [11] we obtain

$$F_n(z) - H_n(z;\alpha) = 0,$$

for all $z \in \mathbb{C}$. The computation for $G_n(z)$ goes along the same lines.

If n = 0, 1 and $\alpha = 0, 1$, then we cannot immediately conclude that $F_n(x)$ and $H_n(x; \alpha)$ have equal derivatives at x = 0. However, as in the proof of Theorem 8 in [11]

$$F_n(z) - H_n(z;\alpha) = (F'_n(0) - H'_n(0;\alpha))\pi^{-2}x^{-1}\sin^2\pi z,$$

and since $x^{-1} \sin^2 \pi x$ is not integrable on the real line, we must have $F'_n(0) = H'_n(0; \alpha)$. Thus, $F_n(z) = H_n(z; \alpha)$ holds in this case as well.

6. Proofs of Corollary 1 and 2

Proof of Corollary 1. We will prove statements (i) and (iii) of Corollary 1. Let $n \in \mathbb{N}_0$. By Theorem 1

$$\phi_{n,\alpha_n}(x) = \operatorname{sgn}(x)x^n - H_n(x;\alpha_n) \ge 0,$$

by Lemma 1 the function is integrable on \mathbb{R} , and by Lemma 2

$$\mathcal{F}\phi_{n,\alpha_n}(t) = \frac{2 \cdot n!}{(2\pi i t)^{n+1}}$$

for $|t| \ge 1$. By the easy implication of Bochner's theorem, $\mathcal{F}\phi_{n,\alpha_n}$ is positive definite. Lemma 2 (20) yields the explicit representation of $\mathcal{F}\phi_{n,\alpha_n}(t)$ for |t| < 1, note that the last term in (20) is equal to zero, since by definition one of the equations $B_n(\alpha_n) = 0$, $\alpha_n = 0$, or $\alpha_n = 1$ holds. Performing the substitution m = n + 1 yields Corollary 1.

For the proof of Corollary 1 (iii) consider the function $p_{m,c} : \mathbb{Z} \to \mathbb{C}$ $(c \in \mathbb{R})$ defined by

$$p_{m,c}(k) = \begin{cases} m! \, (2\pi i k)^{-m} & \text{if } k \neq 0 \\ c & \text{if } k = 0 \end{cases} \ (k \in \mathbb{Z}).$$

By (28)

$$\sum_{k\in\mathbb{Z}} p_{m,c}(k)e(kt) = c - \mathcal{B}_m(t),$$

and this is non-negative if, and only if,

$$c \geq \mathcal{B}_m(t)$$
 for all $t \in [0, 1]$.

We obtain using Bochner's theorem that $p_{m,c}$ is a positive definite function on \mathbb{Z} if, and only if, $c \geq \max \mathcal{B}_m(t) = B_m(\alpha_{m-1})$, which shows that $p_m(0) = B_m(\alpha_{m-1})$ is the minimal value which gives rise to a positive extension of $p_m(k) = (2\pi i k)^{-m}$ ($k \neq 0$) to \mathbb{Z} . Moreover, if $c < B_m(\alpha_{m-1})$, then there exist $N \in \mathbb{N}$, numbers $a_{\nu} \in \mathbb{C}$, and distinct numbers $\lambda_{\nu} \in \mathbb{Z}$ such that

(49)
$$\sum_{\nu,\mu=1}^{N} a_{\nu} \overline{a}_{\mu} f(\lambda_{\nu} - \lambda_{\mu}) = \sum_{\nu,\mu=1}^{N} a_{\nu} \overline{a}_{\mu} p_{m,c}(\lambda_{\nu} - \lambda_{\mu}) < 0,$$

which shows that the value $f_m(0) = B_m(\alpha_{m-1})$ in statement (i) of Corollary 1 is optimal as well.

Statements (ii) and (iv) follow similarly by considering

$$\psi_{n,\beta_n}(x) = H_n(x;\beta_n) - \operatorname{sgn}(x)x^n.$$

instead of ϕ_{n,α_n} .

Now we are in a position to give the

Proof of Corollary 2. From Corollary 1 (i) we obtain that for any $N \in \mathbb{N}$, $a_{\nu} \in \mathbb{C}$, and $\lambda_{\nu} \in \mathbb{R}$

$$\sum_{\nu,\mu=1}^{N} a_{\nu} \overline{a}_{\mu} f_m (\lambda_{\nu} - \lambda_{\mu}) \ge 0.$$

If we require additionally that $|\lambda_{\nu} - \lambda_{\mu}| \ge 1$ for all $\nu \neq \mu$, then after a multiplication by $m!^{-1}(2\pi)^m$ we obtain

$$\sum_{\substack{\nu,\mu=1\\\nu\neq\mu}}^{N} a_{\nu} \overline{a}_{\mu} (i(\lambda_{\nu} - \lambda_{\mu}))^{-m} \ge -f_m(0) \frac{(2\pi)^m}{m!} \sum_{\nu=1}^{N} |a_{\nu}|^2.$$

This shows that the function $(it)^{-m}$ satisfies (8) with $L((it)^{-m})$ as in Corollary 2. The optimality of $L((it)^{-m})$ follows from (49). (Note that the set of integers $\{\lambda_{\nu}\}$ used in (49) obviously satisfies $|\lambda_{\nu} - \lambda_{\mu}| \ge 1$ for all $\nu \neq \mu$.)

The validity of $U((it)^{-m})$ is verified in the same way using Corollary 1, (ii) and (iv).

References

- M. Abramowitz, I. A. Stegun, Handbook of mathematical functions, Washington, U.S. Gov. Print. Office, 10th printing, 1972.
- [2] R. P. Boas, *Entire Functions*, Academic Press, New York, 1954.
- [3] S. W. Graham and J. D. Vaaler, A class of extremal functions for the Fourier transform, Trans. Amer. Math. Soc. 265 (1981), 283 – 302.
- J. J. Holt, A class of extremal functions and trigonometric polynomials, J. Approx. Theory 88 (1997), 275 - 303.
- J. Korevaar, A century of complex Tauberian theory, Bull. Amer. Math. Soc. 39 (October 2002), 475 – 532.
- [6] D. H. Lehmer, On the maxima and minima of Bernoulli polynomials, Amer. Math. Monthly 47 (1940), 533 – 538.
- [7] L. M. Milne-Thomson, The Calculus of Finite Differences, MacMillan and Co., London 1933.
- [8] H. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math. Soc. (2) 8 (1974), 73 - 81.
- [9] N. E. Nörlund, Vorlesungen über Differenzenrechung, Chelsea Publishing Company, New York 1954.
- [10] A. Selberg, Lectures on sieves, Collected Papers II, Springer-Verlag, New York, 1991.
- [11] J. D. Vaaler, Some extremal functions in Fourier analysis. Bull. Amer. Math. Soc. 12 (April 1985), 183 – 216.