ENTIRE MAJORANTS VIA EULER-MACLAURIN
SUMMATION

FRIEDRICH LITTMANN

ABSTRACT. It is the aim of this article to give extremal majorants of
type 2w for the class of functions f,(z) = sgn(xz)z"™ where n € N.
As applications we obtain positive definite extensions to R of +(it)™™
defined on R\[—1,1] where m € IN, optimal bounds in Hilbert-type
inequalities for the class of functions (it) ™™, and majorants of type 27
for functions whose graphs are trapezoids.

1. INTRODUCTION AND NOTATION

An entire function F'(z) is said to be of type ¢ if
[F(2)] < Az exp (|2](0 + €))

for every € > 0 and some constant A. > 0 depending on ¢ (in the notation
of [2] this a function of order 1 and type J). The set of all functions of type
J that are real in R will be denoted by E(9).

By the Paley-Wiener Theorem (cf. [2]), functions in E(276)N L?(R) have
a Fourier transform with support in [—d, 0], where the Fourier transform of

f € L*(R) is given by
= [ 1

here we use the notation e(y) = exp(2miy).
In the 1930’s A. Beurling studied the entire function
-1

(1) B() = Sin227rz (i(z B n>_2 _ Z (2 — n)—2 + 22—1>.

T
n=0 n=—o0

He found that B(z) satisfies the following extremal property: B(z) is of type
27, B(x) > sgn(z) for all z € R, [(B —sgn) =1, and any F' € E(27) with
F > sgn on the real line and F # B satisfies [p(F —sgn) > 1.

This motivates

Definition 1. Let f : R — R. For F € E(0) consider the conditions
(i) f(z) < F(z) for all x € R,
i) [ (F—f)= mi G- f).
@) [ (P=p=mn [(G-p
G=>f
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A function F' € E(0) satisfying (i) and (ii) is called an extremal majorant of
type & of f. Extremal minorants are defined with the obvious modifications.

A. Selberg discovered B(z) independently, and he used it to obtain a
sharp form of the large sieve inequality ([10], chapter 20).

A general method to construct candidates for extremal majorants when
f € L*(R) is given by S. W. Graham and J. D. Vaaler in [3]. Their appli-
cations include a finite form of the Wiener-Ikehara Tauberian theorem (see
also [5], chapter 5), a proof of the large sieve inequality, and inequalities for
character sums.

Although Beurling never published his results, an account can be found
in the survey [11] by Vaaler.

The function B(z) can be used to give a short and elegant proof for a
general form of Hilbert’s inequality (cf. [10], chapter 20, and [11], Theorem
16. For the first proof cf. [8]). We will generalize this result in Corollary 2.

It is the purpose of this note to give extremal minorants and majorants
for the class of functions

n

fn(x) :=sgn(z)z
where n € INy. The way we obtain the extremal minorants and majorants is
similar to the method of [11], except that we employ the Euler-Maclaurin
summation formula rather than the arithmetic-geometric mean inequality.
As usual, sgn(z) denotes the symmetric signum function, i.e. sgn(z) = —1
for < 0, sgn(z) = 1 for > 0, and sgn(0) = 0. Also, sgn, (x) denotes
the right-continuous signum function, i.e. sgn, (z) = sgn(x) for  # 0 and
sgn, (0) = 1. The expression Z denotes the complex conjugate of z € C.

2. MAIN RESULTS
Given a € R, let
Fo(2) :=n 2sin’ (2 — a) for z € C.

The following definition provides us with the candidates for extremal mi-
norants and majorants of f(z) = sgn(x)x".

Definition 2. Define for 0 < a <1, ze€ C, and n € Ny

H,(z;a) = F,(2) <z" Z % +2 ; By ()2 * + QZB_n({C;)}>,

where {a} denotes the fractional part of o, and By («) is the n-th Bernoulli
polynomial (cf. Section 4). For n =0 the second sum is assigned the value
Z€ero.

k=—oc0

We have the equality B(z) = Hy(z;0), where B(z) is Beurling’s function
defined in (1).

Note that H,(z; «) is real entire, because the zeros of F, cancel the poles
of the first and the last term in the parenthesis, and the second term is a
polynomial.
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Next we will show that H,(z; ) is of type 27. The expressions obtained
by multiplying F,(z) with the second and the third term in the parenthesis
of Definition 2 are of type 27. It remains to estimate the first term. The
series Y, |2 — £ — a| 2F,(z — ¢) is bounded uniformly for all z satisfying
|z — k — o] < 1/4 with some k € Z. Moreover, for all z and k satisfying
|z—k—al > 1/4, the sum Y, |z — £ — a|~? is bounded uniformly in z. Since
F,(2) is of type 2w, it follows that H,(z;«) is of type 27 as well.

We will see in (36) and (37) that the function H,(z;«) is an extremal
function for sgn(x)x™ precisely when the 1-periodic function Bjii(a) —
Bpt1(t+ a — [t + a]) has no changes of sign for all t € R (here [z] denotes
the greatest integer less than or equal to x). This motivates the following
choices for the values of a.

Let n € N. It is known that Bay(t) (n > 1) has exactly one zero in the
interval (0,1/2). Denote this zero by z2,, and let zp = 0. By a result of
D. H. Lehmer [6] we have 1/4 — 71272771 < 2, < 1/4 for n € N. The
odd Bernoulli polynomials Ba,1(t) have zeros at t = 0 and ¢ = 1/2, but no
zeros in the interval (0,1/2) (cf. Section 4).

Define two sequences {ay, tnen, and {8 }nen, by

age = 1=z, B = 2,
(2) age+1 = 0, /34k‘+1 = %7
Qagr2 = 2aky2,  Bakre = 1 — z4pq2,
Qupis = 3, Bakssz = 0,

where k € Np. Note that Bj41(t) assumes a maximum in [0,1] at ¢ = ay,
and By41(t) assumes a minimum in [0, 1] at ¢ = 3, (cf. Lemma 5).

With these definitions H,,(z; ;) and H,(z;3,) turn out to be the ex-
tremal minorant and the extremal majorant of sgn(z)z™, respectively:

Theorem 1. Let n € Ny. The inequality
(3) Hn(xS an) < sgn(:v):c" < Hn(fm ﬁn)

holds for all x € R. Moreover,
(i) for every real entire function F of type 27 satisfying F(x) > sgn(z)z™

(4) /oo (F<1') - Sgn(x-)xn)dx > _2%(?70

with equality exactly for F(x) = Hyp(z;B,), and
(ii) for every real entire function G of type 2w satisfying G(x) < sgn(z)x"

) / " (sn(a)e” - G)do 2 2372%(01[")

with equality exactly for G(x) = Hy(z; o).
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Let S be R or Z. We say that a function f : S — C is positive definite
if for every N € IN, any al, ..,y € C, and any x1,...,z, € S the inequality

(6) Z avay f(zy — xp) 2

v,pu=1
holds.

Let m € N. As a first corollary of Theorem 1 we obtain positive definite
extensions to R of the functions +m!(27it) =™ restricted to R\[—1, 1]. Define

(7) Smoa(t .——2ZBk+m (’““ yty)(—zm-t)k

Whereogagl,mEJN,and]t!<1.

Corollary 1. Let m € N. The following functions are positive definite on
R:
m!(2mit)™™  if |t| > 1,

] s, (1) else,

—m!(2mit)™™  aif |[t| > 1,
oty = [ i >
—Sm., B (t) else.

The following functions are positive definite on 7 :

_)m!(2mik)™™  if B #0,
pm(k) B {Bm(am—l) ka =0.

) -ml@2mik)™™ ifk#0,
qm(k) B {_Bm(ﬁm—l) ka =0.

Moreover, fmn(0) = Bpy(am-1), gm(0) = —Bun(Bm-1), and the values
fm(0), gm(0), pm(0), ¢n(0) are all minimal in the sense that none of the
functions £m!(2mwit)™™ (resp. +(2mwik)™™) restricted to R\[—1,1] (resp.
Z\{0} ) can have a positive extension to R (resp. Z ) having a smaller value
at the origin.

Figure 1: Plot of fa(t) Figure 2: Plot of ga(t)

The proof of Corollary 1 will be given in Section 6. As a consequence of
this corollary we obtain sharp bounds in certain Hilbert type inequalities.
Let (a,)Y_; be a finite sequence of complex numbers, and let {\,}__; be a
set of real numbers which are well-spaced in the sense that [\, —\,| > 1 for
all v # p, and let h(t) (t € R) be a hermitian function, i.e. h(—t) = h(t).
We are interested in optimal bounds L(h) and U(h) such that

N N N
® LMYl < Y aadh —N) UMY faf
v=1 p,v=1 v=1

HFV
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holds independently of N € N, and independently of the sequences {a, }\_,
and {\,}Y ;.

For hy(t) = (it)~! the problem of finding the best possible values for L(h1)
and U(h;) was solved by Montgomery and Vaughan [8]. As mentioned in
the introduction, Beurling’s majorant B(z) can be used to give a proof of
Montgomery and Vaughan’s result (cf. [11] Theorem 16, [10] chapter 20).
We will extend their result to the functions

9) hm(t) = (it)”™ where m € N.

Corollary 2. Let m € N, and let L, U be as in (8). We have the optimal
bounds

Bm(am—l)

L((it)™™) = (2m)™ -
Bm (ﬁm—l)

U((it)™™) = —(2w)mT.

For example, since —2m2B(1/2) = 72B2(0) = ((2) we obtain for m = 2
that

Y

N N — N
(10) @l < 3 G < 2@ Y o
v=1 p,rv=1 v v=1
HFEV

for all N € N and all sequences (a,), {\,} as above.

For this inequality we can write down extremal configurations. An ex-
tremal configuration for the upper bound is given by A\, := v, a, := 1, and
N — o0, since

N N-1
1 1 1 N — |k
1 — | — = 2((2).
Nl N > (v—p)? NooN > 12 ¢(2)
v,u=1 k=1-N
n#m k#0

An extremal configuration for the lower bound is given by A, :=v, a, :=
(=1)Y and N — o0, since

g e 3 G0 3 o

n;ﬁm k;ﬁO
Note that L((it)™™) = U((it)~™) for odd-valued, but not for even-valued
m € N.
The proof of Corollary 2 will be given in Section 6.

As another application we derive the following result originally obtained
by J. J. Holt (cf. [4], Theorem 1 and Corollary 1). Let o > 0, and define

(11) Ro(z) = a Y|z + a| — |z|) for all z € R.

Holt obtained extremal majorants and minorants for R, (z) in the case
that « € A :=(0,1/2]U{k+ 1/2 : k € N}, and he obtained non-extremal
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minorants and majorants for all other o > 0. We will obtain Holt’s result
for « € A, and we will give slightly better (also non-extremal) majorants
and minorants for all positive o ¢ A. Define

) Ho(z;0) if0<a<1/2
(12) Ma(z) = {oz_l(Hl(x +a;1/2) — Hi(x;0)) ifa>1/2.
Ho(z + a3 1) if0<a<1/2

13) al) = {a‘l(H1(96 +;0) — Hi(2;1/2))  if a>1/2.

For 0 < a < 1/2 we have Ho(xz + ;1) < Ry (z) < Ho(x;0) (cf. [4], Cor.

1). For any o > 0 we have by Theorem 1 that Hi(z + «;0) < |z + | <
Hi(z+ «a;1/2) and —Hi(x;1/2) < —|z| < —Hi(z;0). So for all z € R

(14) ma(x) < Ro(z) < My(x).

Moreover for 0 < a < 1/2, [(Ho(z;0) — Ro(z))dz = [(Ra(x) — Ho(z +
a;1))dr =1 — a. Since —By(1/2) + B2(0) =1/12+1/6 = 1/4, Theorem 1
implies for a > 1/2

(15) [ o= Ro) = [ (o= ma) = ().

R
Define

16) d()_{la if0<a<1/2

| d)t ifa>1/2.
We have shown

Corollary 3. The functions M, and mq are of type 2w, and they majorize
and minorize Ry, respectively, on the real line. Moreover,

/ (My — Ry) = / (Ro — mg) = d(a).
R R

We use Corollary 3 to obtain majorants and minorants of type 2w for
trapezoids. Define f, 5.,(2) = 3(Ra(z)+ Ry (B—1)). The graph of f, g (z)
is a trapezoid with base-length o 4+ 5 + 7, top-length 3, height 1, and left
point at x = —«. Define

(1) Mo () = 5 (Male) + M, (5 — ),
(18) Mas5(r) = 5 (mal) + 0y (5 )

From Corollary 3 we obtain
Corollary 4. M, g~ and mq g, are functions of type 2m, they satisfy

Ma,3(T) < fa,5(2) < Mo g ()
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for all real x, and
1
[ Mape = ) = [ (it = ) = 5d(@) + da))
R R

3. OUTLINE OF THE PROOFS

Since most of the following statements are concerned with the difference
of Hy(z;«) and sgn(x)x™ we define

(19) Yno(2) = Hp(x; o) — sgn(z)z".

The proof of Theorem 1 is divided into a series of lemmata whose proofs
are given in Section 5.

Lemma 1. Let 0 < a <1 and n € Ny. The function ¥y o(x) (x € R) is
absolutely integrable. Moreover, if {an}tnen, and {Bn}nen, are defined by
(2), then

Hp (x5 an) < sgn(z)z” < Hy(w; 6n).

Since 9y, o () is integrable, its Fourier transform exists. Its value is given

by

Lemma 2. Let 0 < a <1 and n € Ny. We have

Biin k+1 .
o0 Pt =23 Bzt (R ) iy

Bn(q)

+ sgn(t) (e(—{a}t) — 1) for |t| <1,

2-n!
(2mit)ntl

By taking the value of F,(t) at ¢ = 0 in Lemma 2 we obtain the
equalities in (4) for F(x) = Hy(z; 8,) and in (5) for G(z) = Hy(x; o).

The proof of Theorem 1 is completed by establishing the extremality
properties of H,(x; ).

(21) Fippa(t) = — for |t| > 1.

Lemma 3. Let n € Ny, and let F,,,G, € E(2w) be real entire functions
such that

Ga(2) < sgn(a)a” < Fo(a)
for all x € R. Then

(22) / Z(Fn(g;) ~ sen(z)a")dz > —ni - min B ()
(23) /_ Z(Sgn(m)x” — G(2))d > ni o By (1),

Moreover, in (22) and (23) equality can hold only for the minorants and
majorants defined in Lemma 1.



8 FRIEDRICH LITTMANN

4. BERNOULLI FUNCTIONS AND EULER-MACLAURIN SUMMATION

In this section we give a brief review of some facts about Bernoulli poly-
nomials that we will need in our proofs. Most of these facts are taken from
1], [7], and [9].

The Bernoulli polynomials By, (z) can be defined by the power series ex-
pansion

te® . B,(z)
24 =y 2y
(24) et —1 nz% n! ’

where |t| < 27, the Bernoulli numbers B,, by
(25) By, = By(0),
and the Bernoulli periodic functions By, (t) by
(26) Bn(t) = Bn(t — [t])-

The Bernoulli polynomials satisfy B, (t) = nB,_1(t) and

/1 Bu(t)dt = 0.
0

This implies that for 0 < « < 1 the Bernoulli periodic functions have the
antiderivatives

1

(27) /Ox Bn(t + Oé)dt = n——i—l(BnH(x + Oé) — B,H_l(a)).

For n > 1 the Bernoulli periodic functions have the Fourier series expan-
sion

(28) But) =~ O gelht)
A

which is valid for ¢ € R\Z with symmetric summation if n = 1, and it is
valid for t € R if n > 2.

We will need the Euler-Maclaurin summation formula in the following
form:

Lemma 4. For0<a <1,z >0 and any p € N

(29)

o0

5 1 _ z“: Buoi@) | 1) /oo Bu(o) = By(t+ o) .
0

" (x + t)rt2
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Proof. Induction on u. For 0 < o < 1 we obtain with integration by parts

o

1 ©
Z(:c—i—n—oz)z :/0+ @it tal

n=1
oo 1 oo
:/ dt+/ dlt +a] —dt
0 (ﬂf+t 0+ (z +1)?

+2/ Bifa 1<t+a)dt,
(x+1)3

and for o = 1 we have

> 1 1+ B1(0) — Bi()
Z x+n—1 x? +Z (x4 n)? _I+2/0 (x+1t)3 dt

n= l n:l
_ By Bi(1) = By(t + 1)
/ (x+1t)3
since By (t) is l—perlodlc. This establishes (29) for u = 1.
The remaining part of the induction follows with repeated applications of
integrations by parts using (27). O

dt,

We will need the extrema of the Bernoulli polynomials in the interval
[0,1]. The locations of these extrema are collected in the following lemma.
These facts come from [9], chapter 2.

Lemma 5. Let 0<z <1 andn > 1.

(i) Ban(x) assumes its mazimum value at x = 1/2 and its minimum
value at x =0, x = 1.

(ii) Ban+1(x) assumes its minimum value at a unique o € (0,1/2) and
its maximum value at 1 —a € (1/2,1).

(iii) Ban—2(x) assumes its mazimum value at x =0, x = 1 and its mini-
mum value at © =1/2.

(iv) Ban—1(z) assumes its mazimum value at a unique o € (0,1/2) and
its minimum value at 1 —a € (1/2,1).

Finally, Bo(z) = 1 and By(z) = x — 1/2. As was pointed out in Section
2, Lehmer showed in [6] that the zeros 22, of the even Bernoulli polynomial
in (0,1/2) (or, what amounts to the same thing, the extrema of the odd
Bernoulli polynomials in (0,1/2)) satisfy

1 1 1
47 gl TS

Decimal approximations for the first four zo, are zo = 0.2113, z4 = 0.2403,
zg = 0.2475, zg = 0.2494.

5. PROOF OF THE LEMMATA
Proof of Lemma 1. Let x € R and 0 < a < 1. Recall
(30) VYna(®) = Hy(7; ) — sgn(z)z™.
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We will consider the cases x > 0 and x < 0 separately. Let x > 0. We
have by Lemma 4 with g =n + 1 that

ad sgn+k+a BL; 1 2Bn(a) 1
2 22 e {al) 2, ok ap

e

k=—oc0
00 n+1
B By_ 1 B, (a) 2 2
__22 x+k:—oz +2Z; xn (x—{a}_5>
(B81) = —2(n+2)/0 Bnﬂ((;;gﬂls(wa) dt + O (a7"7?)
<z "2

because Bj11(a) — Bpt1(t + «) is bounded. Since for z > 0

roo(Bmay § oL

k=—o0
we obtain
(32) Una(@) = Hy(z;0) — 2" = O(z7?)
for z > 0.

Now let x < 0. Putting y = —2 > 0 and using By(a) = (—1)*B(1 — a)
we obtain with a similar computation that

[e.9]

. sgn k+a Bgl
Z(mj k—a)? 22 :c”:v—{oz} Z (x —k—a)

k=—00 k=—00

33) =2(n+2) /OOO B”“(l _(yai;)ffjl(t — g+ O(y™"2)

<y "2

We obtain for x < 0 that
(34) Yna(r) = Hy(z; o) + 2" = O(l’_Q).

(32) and (34) prove the first statement of Lemma 1.

For the second statement we use the representation for i, o(x) derived
n (31) and (33). If

(35) Bn(a)( 2 B 2) _o,

2" \z—{a} =z

then (31) implies for x > 0

® Bpii(a) — Bpsa(t + «)
(z+t)n+3

(36)  tna(®) = —2(n +2)F(z — )2 /O dt
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and (33) implies for z < 0
(37)

Una(r) =2(n+2)F(z - ) dt.

/ Bpii(l—a) = Buyi(t+1—0a)
(—x 4 t)n+3

If By4+1(t) restricted to [0,1] has a maximum at ¢ = «, then it has a
minimum at ¢t = 1 — « if n is even, and a maximum if n is odd, since
By(a) = (—1)*By(c). This implies that for such « the expressions B, 1 () —
Bpi1(t + «) and Byi1(1 — ) — Bpt1(t + 1 — «) do not change their signs
for t € [0,00), and since —2™ = (—2)"(—1)"*! we obtain that for such «
the expressions in (36) and (37) are either both positive or both negative
for all = in the respective ranges. Moreover, ¢, o > 0 if Bj,11(t) assumes its
minimum on [0, 1] at ¢t = «, and ¢y, o < 0 if By,4;(t) assumes its maximum
at t = a.

Since by Lemma 5 the function By,41(¢) assumes its minimum on [0, 1] at
t = By, and its maximum at ¢ = o, we have

Hy(; an) < sgn(z)z" < Hy(z; 6n),
and this finishes the proof of Lemma 1. O
Proof of Lemma 2. Recall sgn (x) = sgn(z+), and let
F(z) =7 2%sin® 7z for z € C.

Performing the index shift k4+n+1 — k in the series representing F1),, (%)
for |t| < 1 leads to (20) in the form in which we will prove it:

Finalt) = -2 i O (B 1) 2wt
+1

B, (9)

(38) + sen(t)(e(—{a}t) — 1) for [t < 1.

The first part of the proof will be similar to the proof of Theorem 6 in
[11]. Define

Kl son, (k +a 2

With the Fourier expansions

T 1
(39) F ):/1(1—\t\)e(xt)dt

22

1
(40) Fl) _ 1 / sgn(t)e(wt)dt

T 2 J_q
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we obtain
1 K—1 -1
Ho i (z,a) = / (1—1t)) [ de(—(k+a)t) = > e(—(k+a)t)|e(zt)dt
-1 k=0 k=—K
1 1
+ p /1 sgn(t)e(—{a}t)e(xt)dt.
We have for t # 0
K-1 -1 e(—at)
e(—(k+a)t)— > e(—(k+a)t) = zm(l — cos 2 Kt),
k=0 k=—K

and since the last expression is bounded in a neighborhood of ¢ = 0 we
obtain

1 el—« COS 2T
(1 1) [0 — (a3 2T

+ % /1 sgn(t)e(—{a}t)e(xt)dt.

Hy g(z, o) = / e(xt)dt

-1

In order to apply the Lemma of Riemann - Lebesgue we have to remove
the poles in the fractions of the first integral. We do this by differentiating
both sides with respect to x and divide the resulting expression by 2. We
obtain

! ite(—a it cos 2T
S = [ - |t|)[%&_5> —e(—at)% e(at)dt

-1

1
+/1 |tle(—at)e(xt)dt.

By the Lemma of Riemann - Lebesgue we have

1 .
2wt 2Kt
lim Me(:rt)dt =0.
K—oo J_1 1-— e(—t)

Since {Hop i (z,a)}ken is a sequence of entire functions that converges to
Hy(z, ) uniformly on any compact subset of C, the sequence of derivatives
{H()’K(l‘,a)}[(ew converges to H/(x,a) uniformly on any compact subset
of C. Thus

2rit e(—at)

1
go(.0) = [ [0 =TS+ e(—{an)] elatyat
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and using (24) we obtain
(41)

f[%H(g(x,a)} — (1 Jt]) ZB’;{(,O‘ —omit)k + |tle(—{a}t)
k=0

=1+ (1—t]) Z B’;g(!a) (—2mit)* + |t] (e(—{a}t) — 1)

for [t| < 1, and F[LH{(z,a)](t) = 0 for [t| > 1.

Now we can prove (21) and (38) by induction on n. The difference
Yo,a(x) = Ho(x,) — sgn(x) is absolutely integrable by Lemma 1, so its
Fourier transform exists.

From

%/OO 6(—1‘t)d2,[)07a($) = f[%H(l)(xv O‘)} (t) -1

—00

we obtain with (41) and 2wt F f(t) = F[f’](t) that for [t| < 1
Frpo,a(t) = Wizt (}'[%H{](m, a)} — 1)
= i.(u — ) B’“k—(!o‘)(—zm)k + [t (e(—{a}t) — 1))

k=1
—2(1— |¢]) B’;C(!O‘) (—2mit)* 1 + M(e(—{a}t) ~1),

T
k=1

and this is (38) for n = 0. Moreover, for [¢t| > 1

1 1 1
= —H! ] — 1) =
Froalt) it (f[2 ol @) mit’
and this is (21) for n = 0.
Induction step. Assume that (21) and (38) are true for some n € Np.
From Definition 2 with n and n 4+ 1 we obtain

(42) Hn+1(z§ Oé) = an(Z; Oé) + 2F(Z . a) Bn—i—l(o;)__{{(j}}Bn(a)

for any z € C. Since by equation (38) the Fourier transforms of v, o and
Yn41,o €xist we obtain with (42) and (40) for [t < 1

(43)
Fniralt) =~ 5 FUnalt) + —(Bapa(@) — {a}Bula)sgu()e(—{a})
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By the induction hypothesis, (38) holds for n, i.e. for |t| <1

By
Fibpalt) = =2 Z k(e ( % jt]) (—2mityh !
k= n+1
B, («
(44) + 7r(z' )Sgn(t) (e(—{a}t) —1).
For k >n+2
drk—n k—n—1 __ k—n-—1 k—n—2
%( - )t = (k=) ( - ) o
Applying this to (44) and utilizing (43) we obtain for |t| < 1
_ k—n—1 - \k—n—2
fd)n-i—l a =-2 Z o 1 ( A — iti)(—Qﬂ'Zt)
k=n +2
Bnii(a)sgn(t) | sgn(t)Bn(e)
— 2 t
cpeenll) D) (Camia))el—{ad

+ L (B(0) ~ {0} Bu(o)sen(t)e(—{a}t)
230 (RS ) amigt
k=n+2

1 Brer@) 6 (e(— {at) — 1),

T

and this is (38) for n + 1.
Since the Fourier transform of (z—{a}) ™! sin? 7(x —a) equals zero outside
the interval [—1, 1], we have with (42) for |t| > 1

. 1.d _ 2(m+1)!
Fntralt) =  2midt Fibnalt) = (2mit)nt2’

and this is (21) for n 4 1. O

Proof of Lemma 3. Let 0 < o < 1, and let F,, € E(27) be a majorant for
sgn(z)z™. Assume that

/OO (Fn(z) —sgn(z)z")dz < oo.

Let ¢pn(z) = Fu(z) — sgn(x)z™, and recall that o, o(z) = Hy(z;0) —
sgn(z)z". Since Fy,(x) — Hy(x; ) is an absolutely integrable function in
E(27), we know by the Paley-Wiener Theorem that the support of its Fourier
transform is a subset of [—1, 1], i.e

FlFn(z) — Hp(z,a)|(t) = 0 for [t| > 1.
It follows from Lemma 2 that
2n!
(45) -7:77/}71(75) = }-wn,a(t) =

W fOI' ’t’ >1
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Now use (45), the Poisson summation formula and (28) to obtain that

46) 0 30 wnlt ) = Fun(0) - 2 S ()
{=—c0 k+#0
= Fin(0) + ——Bus (1)

and since this has to hold for all ¢ € [0, 1],

(47) Fipn(0) > —

n+ 10221 Bria(?).

Similarly, with ¢, (z) = sgn(z)z" — Gy (2)

(48) Fon(0) > T doex Bri1(t).

Vaaler showed in Theorem 9 of [11] that any integrable function in E(27)
is already uniquely determined by its values and the values of its first de-
rivative at the integers, and he used this result to prove the case n = 0 of
Lemma 3. We will use his argument.

Let 0 < a < 1 such that Bj,11(¢) has its minimum on [0,1] at ¢t = . If
F,, € E(2r) is chosen such that F), is a majorant of sgn(z)z" with

2

Fipn(0) = ol

Bn+1(a)7

then we have equality in (46) for ¢ = o. This means that
Fla+k)=sgn, (a+k)(a+k)" foral k € Z.

The same is true for H,(x;«) by construction. If « = 0 or 1, let n > 2.
Since both F,,(z) and H,(x;«) are majorants of sgn(x)z", they must have
the same derivatives at the numbers a + k, namely n -sgn(a+ k) (a + k)" L.
From Theorem 9 of [11] we obtain

Fn(2) = Hn(z;0) = 0,

for all z € C. The computation for Gy, (z) goes along the same lines.

If n=0,1and a = 0, 1, then we cannot immediately conclude that F,,(x)
and H,(z;«) have equal derivatives at x = 0. However, as in the proof of
Theorem 8 in [11]

Fo(2) — Hy(z;0) = (F(0) — H.(0;a))7 22" sin? 72,

1 2

and since z ! sin® 7z is not integrable on the real line, we must have F (0)
H/ (0; ). Thus, F,(2) = Hy(z; «) holds in this case as well.

Ol
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6. PROOFS OF COROLLARY 1 AND 2

Proof of Corollary 1. We will prove statements (i) and (iii) of Corollary 1.
Let n € Ny. By Theorem 1

Pnan (2) = sgn(z)2”™ — Hy(z500) > 0,
by Lemma 1 the function is integrable on R, and by Lemma 2

2-nl!

Fon,an(t) = rity

for [t| > 1. By the easy implication of Bochner’s theorem, F¢y, o, is positive
definite. Lemma 2 (20) yields the explicit representation of F¢y, o, (t) for
|t| < 1, note that the last term in (20) is equal to zero, since by definition
one of the equations B, (ay,) = 0, ay, = 0, or a,, = 1 holds. Performing the
substitution m = n + 1 yields Corollary 1.

For the proof of Corollary 1 (iii) consider the function pp,. : Z — C
(c € R) defined by

et = {7 A i),

By (28)
meyc(k)e(kt) =c— Bn(t),

kez

and this is non-negative if, and only if,
¢ > By(t) for all t € [0,1].

We obtain using Bochner’s theorem that p,, . is a positive definite function
on Z if, and only if, ¢ > max B, (t) = By (@m—1), which shows that p,,(0) =
By (m—1) is the minimal value which gives rise to a positive extension of
pm(k) = (2mik)™™ (k # 0) to Z. Moreover, if ¢ < By, (amm—1), then there
exist N € IN, numbers a, € C, and distinct numbers A, € Z such that

N N
(49) > a@ufw = N) = Y a@upme(d — Ay) <0,
vp=1 vp=1

which shows that the value f,,(0) = B, (un—1) in statement (i) of Corollary
1 is optimal as well.
Statements (ii) and (iv) follow similarly by considering

Yn, B, (z) = Hp(x; 8n) — sgn(x)x".
instead of ¢y, q,, - O

Now we are in a position to give the
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Proof of Corollary 2. From Corollary 1 (i) we obtain that for any N € N,
a, € C,and A\, € R

N
> a8 fm(A = M) = 0.
v,pu=1
If we require additionally that [\, — A,| > 1 for all v # p, then after a
multiplication by m!~!(27)™ we obtain

al a Gih — X)) > (2m)™ - 2
D (i = X)) 2 = fn(0) 5 Y .
v,u=1 v=1
VER

This shows that the function (it)™™ satisfies (8) with L((it)™™) as in
Corollary 2. The optimality of L((it)~") follows from (49). (Note that the
set of integers {\,} used in (49) obviously satisfies |\, — A,| > 1 for all
v # )

The validity of U((it)~™) is verified in the same way using Corollary 1,
(ii) and (iv). O
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