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Abstract. Let A(δ) be the class of functions of exponential type δ > 0.
We prove that for integrable F ∈ A(2πδ)∫ ∞

−∞
F (x)dx = δ−1

∑
ξ∈Tγ,r

(
1− γ

π(ξ2 + γ2)

)
F (δ−1ξ)

where Tγ,r is the set of zeros of Bγ,r(z) = z sinπ(z+ r)− γ cosπ(z+ r).
Let a > (2δ)−1. It is shown that for any Polya-Laguerre entire func-

tion E with E(±a) = 0 there exist two integrable functions G−, G+ ∈
A(2πδ) such that for all real x

E(x){G−(x)− χ[−a,a](x)} ≤ 0,

E(x){G+(x)− χ[−a,a](x)} ≥ 0.

Combining these results we find the minimal value of ||S−T ||1 where
S, T ∈ A(2πδ) satisfy

S(x) ≤ χ[−a,a](x) ≤ T (x)

for all real x. We determine extremal functions for which the minimal
value is assumed. As an application we give an explicit expression for

C(δ, α) = inf
g∈A2(δ)

sup
x∈[−α,α]

||g||22
|g(x)|2

where A2(δ) is the set of square integrable functions in A(δ). This
constant occurs in work of Donoho and Logan regarding reconstruction
of bandlimited functions.

1. Introduction

An entire function f is said to be of exponential type η ≥ 0 if for every ε
there exists Aε > 0 so that

|f(z)| ≤ Aεe(η+ε)|z| (1.1)

for all complex z. We denote by A(η) the class of entire functions of expo-
nential type η. For a test function ϕ (i.e., ϕ ∈ C∞(R) that decays faster
than any polynomial) we define the Fourier transform ϕ̂ by

ϕ̂(t) =

∫ ∞
−∞

e−2πixtϕ(x)dx, (1.2)

2010 Mathematics Subject Classification. primary 42A05, secondary 30D15, 26A51.
Key words and phrases. entire functions of exponential type, totally positive functions,

extremal majorants, quadrature, de Branges spaces.

1



2 FRIEDRICH LITTMANN

and for a tempered distribution T we define the Fourier transform T̂ by

T̂ (ϕ) = T (ϕ̂) where ϕ is any test function. By the Paley-Wiener theorem for
distributions (cf. [4, Theorem 7.3.1]), functions in A(η) have distributional
Fourier transforms supported in [−η/(2π), η/(2π)].

We consider the problem of finding the closest f∗ ∈ A(η) with respect
to L1(R)-norm to given f : R → R with the additional constraint that
f∗ ∈ A(η) satisfies f∗ ≥ f or f∗ ≤ f . The function f∗ is called the best
upper (or lower) approximation to f from A(η).

This kind of approximation with constraints occurred previously in con-
nection with inequalities from analytic number theory and signal processing
(cf. [1, 3, 13] and the references therein). In problems of this type particular
special functions f are considered. Explicit knowledge of the error for such
functions translates into optimal constants in certain inequalities.

We consider here the case that f is the characteristic function of an in-
terval. For the case αη ∈ πZ the solution was obtained by A. Selberg (see
the account in [13]). An extension of Selberg’s solution in different norms
and higher dimensions was obtained by J.J. Holt and J.D. Vaaler [6].

Donoho and Logan [3, Lemma 10] found the optimal upper approximation
for αη < π. In our terminology they showed that there exists f∗ ∈ A(η)
with f∗ ≥ 1[−α,α] on the real line such that∫ ∞

∞
f∗(x)dx = 4π

(
η +

sin ηα

α

)−1
, (1.3)

and they showed that this value is best possible. Logan announced a solution
of the best upper approximation for any α > 0 in [11], but his proof has not
been published.

In this article we find for αη > π the best upper and lower approximation
to 1[−α,α]. We give expressions for the errors of the onesided approximations
as certain finite sums that involve solutions of equations with transcendental
and algebraic terms. In general, there does not seem to be a simple expres-
sion for these errors, however, the L1-norm of the difference of upper and
lower best approximation has a very simple form.

2. Results

For technial reasons we consider η = 2πδ. Let α > (2δ)−1. Assume that
S, T ∈ A(2πδ) satisfy

S(x) ≤ 1[−α,α](x) ≤ T (x) (2.1)

for all real x. We prove in Theorem 5.2 that the inequality∫ ∞
−∞
{T (x)− S(x)}dx ≥ 2

δ

(
1 +

∣∣∣∣sin 2παδ

2παδ

∣∣∣∣)−1 (2.2)

holds. Furthermore (Theorem 5.3) there exist T ∗, S∗ ∈ A(2π) satisfying
(2.1) such that there is equality in (2.2).
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Inequality (2.2) is established in Section 5 using a quadrature formula
for integrable functions in A(2πδ). Let γ > 0 and let Tγ,r be the zeros of
Bγ,r(z) = z sinπ(z + r) − γ cosπ(z + r). We prove in Theorem 3.1 that if
F ∈ A(2πδ) is real valued on the real line and integrable, then∫ ∞

−∞
F (x)dx = δ−1

∑
ξ∈Tγ,r

F (δ−1ξ)

(
1− γ

π(ξ2 + γ2) + γ

)
. (2.3)

It is evident that for any integrable, real-valued F ∈ A(2πδ) with F ≥
1[−α,α] the inequality∫ ∞

−∞
F (x)dx ≥ δ−1

∑
ξ∈Tγ,r
|ξ|≤δα

(
1− γ

π(ξ2 + γ2) + γ

)
(2.4)

follows. The importance of (2.3) lies in the fact that the integral of a function
in A(2πδ) is determined by its values at the zeros of a function in A(πδ). (In
this sense, (2.3) is a Gaussian quadrature.) Combined with an interpolation
formula that controls not just the values of F at the nodes of (2.3), but of
F ′ as well, this turns out to be crucial to show that (2.4) is sharp.

Identity (2.3) is proved by working in L2(R, (γ2 +x2)−1dx)∩A(π), which
is a de Branges Hilbert space generated by the Hermite-Biehler function
Dγ,r(z) = e−πi(z+r)(z + iγ). Section 3 contains the details of this construc-
tion.

De Branges space were used previously by Holt and Vaaler [6] when solv-
ing an extremal problem for the signum function. Analogous polynomial
spaces were used by Li and Vaaler [10]. The necessary conditions in their
proofs are based on the fact that the value of a function in a de Branges
space can be used to give a lower bound for its square norm. We use instead
the representation of the square norm via an infinite series from [2, Theorem
22].

Formula (3.2) suggests that an entire function of exponential type 2πδ
that interpolates 1[−α,α] at the zeros of Bγ,r and has derivatives equal to
zero at the zeros of Bγ,r with the exception of ±α is a good candidate for a
function T that satisfies (2.1) and (2.4).

We give a general method based on ideas from [9] that allows to construct
entire functions interpolating the characteristic function of an interval at es-
sentially arbitrary prescribed values of a (discrete) set T . The interpolation
procedure given in Section 4 has the property that under very mild condi-
tions the set T already equals the set of points where interpolating function
and 1[−α,α] agree.

We prove in Theorem 4.14 that for any symmetric Laguerre-Pólya en-
tire function E with E(±α) = 0 there exists entire GE,α whose growth is
essentially the growth of E and ε ∈ {±1} such that

εE(x){GE,α(x)− 1[−α,α](x)} ≥ 0 (2.5)
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for all real x. In Section 5 we show that the choice

E(z) = [z sinπ(z + r)− γ cosπ(z + r)]2 (2.6)

in (2.5) gives best upper and lower approximation to 1[−α,α] from A(2π) in

L1(R)-norm. For fixed α > 0 there are two different choices of r and γ so
that E(±α) = 0 which lead to the best upper and lower approximation.

We set A2(δ) = A(δ) ∩ L2(R). As an application of the above results we
consider the constant C(δ, α) defined by

C(δ, α) = inf
g∈A2(δ)

sup
x∈[−α,α]

||g||22
|g(x)|2

. (2.7)

Let f ∈ A2(α) and assume that T ⊂ R is measurable. Logan and Donoho
[3] proved∫

T
|f(x)|2dx ≤ C(δ/2, α)

{
sup
t∈R

`([t, t+ δ] ∩ T )

}∫ ∞
−∞
|f(x)|2dx

where `(S) denotes Lebesgue measure of a set S. It is shown in [3] that
bounding the ratio of the L2-norm of f restricted to a set T and the L2-
norm of f is of importance in questions of reconstruction of bandlimited
functions from a noisy sample. We give in Section 6 an expression for this
constant and prove an asymptotic for fixed δ and α→∞.

3. Gaussian-type quadrature for functions of exponential type

It is the goal of this section to prove

Theorem 3.1. Let γ > 0 and let Tγ,r be the zeros of Bγ,r given by

Bγ,r(z) = z sinπ(z + r)− γ cosπ(z + r). (3.1)

Let F ∈ A(2πδ) be integrable. We have∫ ∞
−∞

F (x)dx = δ−1
∑
ξ∈Tγ,r

F (δ−1ξ)

(
1− γ

π(ξ2 + γ2) + γ

)
. (3.2)

Let γ > 0, r ∈ R, and define

Dγ,r(z) = e−πi(z+r)(z + iγ). (3.3)

We note that for z = x+ iy with y > 0 the inequality

|Dγ,r(x+ iy)| > |Dγ,r(x− iy)|

holds for all real x. Here D∗γ,r is defined by D∗γ,r(z) = Dγ,r(z). The function
Dγ,r is clearly an element of A(π), hence (cf. [2, Problem 37]) the function
Dγ,r has bounded type in the upper half plane, and its mean type ([2, p.
26]) equals π.

We define H(Dγ,r) to be the complex vector space of all entire functions
F ∈ A(π) such that ∫ ∞

−∞

∣∣∣∣ F (x)

Dγ,r(x)

∣∣∣∣2 dx <∞,
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and we define the scalar product

〈F,G〉 =

∫ ∞
−∞

F (x)G(x)|Dγ,r(x)|−2dx. (3.4)

Let F ∈ H(Dγ,r). Since Dγ,r has exponential type π, [6, Lemma 12
(iii)] implies that F/Dγ,r and F/D∗γ,r have bounded type (and non-positive
mean type) in the upper half plane. Hence, H(Dγ,r) is a reproducing kernel
Hilbert space (cf. [2, Ch. 2, section 19]).

To calculate the reproducing kernel we note that Dγ,r = Aγ,r − iBγ,r
where Bγ,r = (i/2)(Dγ,r −D∗γ,r) is given by (3.1), and Aγ,r is defined by

Aγ,r(z) =
1

2
(Dγ,r(z) +D∗γ,r(z)) = z cosπ(z + r) + γ sinπ(z + r). (3.5)

Hence

Kγ,r(w, z) =
Bγ,r(z)Aγ,r(w)−Aγ,r(z)Bγ,r(w)

π(z − w)

=
γ(w − z) cosπ(z − w)− (γ2 + zw) sinπ(z − w)

π(w − z)

(3.6)

for z 6= w, and

Kγ,r(z, z) = π−1(B′γ,r(z)Aγ,r(z)−A′γ,r(z)Bγ,r(z))
= z2 + γ2 + π−1γ.

(3.7)

Within this framework it is now straightforward to give the

Proof of Theorem 3.1. We consider first F ∈ A(2π) such that F is non-
negative and integrable on the real line. We denote by C the class of entire
functions F satisfying

∞∑
k=1

|=(a−1k )| <∞,

where ak are the zeros of F . We define Gγ by

Gγ(z) = F (z)(γ2 + z2). (3.8)

for all complex z. Since F is integrable we have∫ ∞
−∞

log+ |Gγ(x)|
1 + x2

dx <∞,

and by [8, Theorem 7 on p. 243], it follows that Gγ ∈ C. Since Gγ is non-
negative on the real line and has exponential type 2π, [8, Theorem 1 on p.
437] implies that

Gγ = SS∗,

where S is of type π and has no zeros in the upper half plane. We note that∫ ∞
−∞

|S(x)|2

|Dγ,r(x)|2
dx =

∫ ∞
−∞

Gγ(x)

x2 + γ2
dx = ||F ||1 <∞,
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hence by [6, Lemma 12 (iii)], S is an element of the de Branges space
H(Dγ,r). Since Bγ,r /∈ H(Dγ,r), [2, Theorem 22 and Problem 48] imply∫ ∞

−∞
F (x)dx = ||S||H(Dγ,r) =

∑
ξ∈Tγ,r

Gγ(ξ)

Kγ,r(ξ, ξ)
, (3.9)

and (3.7) gives (3.2) for non-negative F . Since γ > 0, the weights in (3.2)
are positive.

Let now F ∈ A(2π) be real valued on the real line and integrable. We
define f : R→ R+

0 by

f(x) = max(F (x), 0) (3.10)

for all real x. Since F ′ is integrable, the function f has finite total variation.
By [13, Corollary 12], there exists integrable F+ ∈ A(2π) such that F+(x) ≥
f(x) for all real x. We may therefore write

F = F+ − (F+ − F )

as a difference of two non-negative, integrable functions in A(2π) to each
of which we may apply (3.9), and (3.2) follows for real and integrable F ∈
A(2π). For F ∈ A(2π) that is integrable but not necessarily real valued on
the real line, we write

F (z) =
F (z) + F ∗(z)

2
+ i

F (z)− F ∗(z)
2i

,

and we note that 2−1(F + F ∗) and 2−1i(F − F ∗) are real entire, integrable
functions in A(2π) to which (3.2) applies. �

4. Interpolation at zeros of Laguerre-Pólya functions

In this section we prove the general interpolation formula mentioned in
the introduction. We consider nodes of an interpolation formula that are
given as zeros of so-called Laguerre-Pólya functions. An entire function E
is said to be a Laguerre-Pólya function if it has the form

E(z) = e−cz
2+bz

∞∏
k=1

(
1− z

ξk

)
ez/ξk (4.1)

where c ≥ 0, b is real, ξk are real, and

∞∑
k=1

ξ−2k <∞. (4.2)

The elements of this class are exactly those entire functions that are uni-
form limits on compact subsets of C of polynomials having only real roots
(Theorem 3.2 and Theorem 3.3 on page 42 of [5]). In order to simplify some
of the statements we restrict attention to those Laguerre-Pólya functions
that have a zero set that is unbounded above and below.
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Definition 4.1. The class E consists of all entire functions E satisfying
(4.1) such that the set of zeros of E is unbounded above and below. We
denote by TE the set of zeros of E. When no confusion can arise we omit
the subscript. We denote by B the subclass of even functions in E .

Let E ∈ E . For c /∈ T we define a function gc by

gc(t) =
1

2πi
lim
T→∞

∫ c+iT

c−iT

ets

B(s)
ds, (4.3)

where the integral is a complex line integral along a vertical line segment.
By Corollary 5.4 on page 53 of [5] applied to z 7→ E(z + c) we have

1

E(z)
=

∫ ∞
−∞

e−zugc(u)du for `c < <z < rc, (4.4)

where `c is the largest element in T with `c < c and rc ∈ T is the smallest
element with c < rc. If ξ ∈ T , we define gξ− by (4.3) with c = ξ − ε so that
(4.4) holds in `ξ < <z < ξ. Analogously, gξ+ denotes the function for which
(4.4) holds in ξ < <z < rξ. If c = 0 then g0 has an intrinsic characterization
that is crucial for the inequalities of this section.

Lemma 4.2. Let E ∈ E with E(0) 6= 0, and let g0 be defined by (4.3) with
c = 0. If ϕ : R → R is continuous and has n sign changes on the real line,
then the integral convolution g ∗ ϕ given by

g ∗ ϕ(t) =

∫ ∞
−∞

g(t− u)ϕ(u)du (4.5)

has no more than n changes of sign on the real line.

Proof. This is Theorem 2.1 in chapter IV of [5]. �

This ’sign-reducing’ property is in fact a necessary and sufficient charac-
terization of g0. This was first shown by I. J. Schoenberg [12], see also [5, 7].
For our purpose we only require

Corollary 4.3. Let E ∈ E with zero set T . If c /∈ T , then

E(c)gc(t) ≥ 0 (4.6)

for all real t.

Proof. If E ∈ E , then any translation of E along the real line is also an
element of E . Such a translation corresponds to multiplication of gc by an
exponential which does not change the sign of gc.

We may therefore assume that c = 0 in which case the statement follows
from Lemma 4.2, and the sign is obtained from (4.4). �

Differentiation and an application of the residue theorem in (4.3) give
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Lemma 4.4. Let E ∈ E and c /∈ T . Let gc satisfy (4.4) and let n ∈ N0.
Then there exist polynomials Pn and Qn so that

g(n)c (t) ≤

{
Pn(t)e`ct as t→∞,
Qn(t)erct as t→ −∞.

(4.7)

Proof. For c = 0 this is Theorem 2.1 in chapter VI of [5]. A translation of
E gives the result for any c /∈ T . �

We define for α ∈ R functions

fα+(t) =

{
eαt if t > 0,

0 else,
fα−(t) =

{
0 if t > 0,

−eαt else,
(4.8)

and we note the Laplace transforms of both functions equal (z − α)−1 with
convergence region <z > α for fα+ and <z < α for fα−.

We recall that the (two-sided) Laplace transform of the convolution f ∗ g
is absolutely convergent and equals the product of the Laplace transforms
of f and g for all z in the largest vertical open strip where the two-sided
Laplace transforms of f and g both converge absolutely.

Lemma 4.5. Let E ∈ E, c /∈ T , and gc given by (4.3). If ξ ∈ T then

z − ξ
E(z)

=

∫ ∞
−∞

e−zt(D − ξ)gc(t)dt (4.9)

in `c < <z < rc. If ξ is a simple zero of E and equal to rc or `c, the strip
of convergence includes ξ. (D stands for the differential operator d/dt.)

If α < c, then

1

(z − α)E(z)
=

∫ ∞
−∞

e−zt[fα+ ∗ gc](t)dt (4.10)

in max(`c, α) < <z < rc. If α > c, the analogous representation with fα−
instead of fα+ holds in `c < <z < min(α, rc).

Proof. An integration by parts in (4.4) gives (4.9) in `c < <z < rc. To
prove (4.10), note that the Laplace transform of fα+ represents (z−α)−1 in
<z > α, and since α < c by assumption, we obtain (4.10) in max(tc−, α) <
<z < tc+. �

In the next lemma we investigate the effect on the derivatives of gc if a
zero of E is moved ’to the right’.

Lemma 4.6. Let k ∈ N0, and let g ∈ Ck(R). Assume g(k)(x) > 0 for
x ≤ x0. Then for α < β the function h defined by

h = fβ+ ∗ [(D − α)g]

satisfies h(k)(x) > 0 for all x ≤ x0.



QUADRATURE AND EXTREMAL BANDLIMITED FUNCTIONS 9

Proof. Define δ > 0 by δ = β − α. We have

h(x) =

∫ x

−∞
eβ(x−u){g′(u)− αg(u)}du

= eβx
∫ x

−∞
e−βu{g′(u)− αg(u)}du

= eβx
∫ x

−∞
e−δu[e−αug(u)]′du

= eβx
{
e−βxg(x) + δ

∫ x

−∞
e−βug(u)du

}
= g(x) + δ

∫ x

−∞
eβ(x−u)g(u)du

= g(x) + δ{fβ+ ∗ g}(x).

It follows that h(k) = g(k) + δ{fβ+ ∗ g(k)}, and since

fβ+ ∗ g(k)(x) =

∫ x

−∞
eβ(x−u)g(k)(u)du,

the result follows. �

Lemma 4.7. Let E ∈ E and α, ξ1, ξ2 ∈ T with α > 0 and 0 ≤ ξ1 ≤ ξ2 < α.
If ξ1 = ξ2, assume that ξ1 has multiplicity at least two. Define g by

z − α
E(z)

=

∫ ∞
−∞

e−ztg(t)dt for `α < <z < α. (4.11)

Then g, g′, and g′′ are all of one sign on R, and their sign equals the sign
of (z − α)−1E(z) in the interval (`α, α).

Proof. We note that

z 7→ z2E(z)

(z − α)(z − ξ1)(z − ξ2)
∈ E . (4.12)

We define h by (4.3) for the function in (4.12), i.e.,

(z − α)(z − ξ1)(z − ξ2)
z2E(z)

=

∫ ∞
−∞

e−zth(t)dt (4.13)

holds in `α < <z < α. Two integrations by parts give

(z − α)(z − ξ1)(z − ξ2)
z2−jE(z)

=

∫ ∞
−∞

e−zth′′(t)dt (j ∈ {0, 1, 2}) (4.14)

and the functions on the left are reciprocals of elements in E . By Corollary
4.3 the functions h, h′ and h′′ have no sign changes on the real line, and their
signs equal the sign of (z − α)−1E(z) in (`α, α). Since

g = fξ1+ ∗ fξ2+ ∗ h′′ = fξ1+ ∗ [fξ2+ ∗ h′]′

the result follows with two applications of Lemma 4.6. �
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Definition 4.8. Let E ∈ E and α ∈ T . Define for all real t functions hα−
and hα+ by

hα±(t) = gα±(t)− eαt

α
g′α±(0). (4.15)

The functions hα± will be used in Theorem 4.14 to construct entire func-
tions that interpolate the characteristic function of [−α, α] with sign changes
at the zeros of E. We prove first integral representations for the derivatives
of hα+ and hα−.

Lemma 4.9. Let E ∈ E, and let α ∈ T with α > 0. Let g− be given by

g−(t) =

∫ c+i∞

c−i∞
est
s− α
E(s)

ds (4.16)

with `α < c < α, and define g+ analogously with c satisfying now α < c < rα.
Then

g′α±(t)− g′α±(0)eαt =

∫ t

0
eα(t−u)g′±(u)du (4.17)

for all real t.

Proof. We prove the claim for g−. We note that z 7→ (z −α)−1E(z) is in E .
Equation (4.4) gives

z − α
E(z)

=

∫ ∞
−∞

e−ztg−(t)dt (4.18)

in `α < <z < α, and Lemma 4.5 implies

(D − α)g′α− = g′−.

It follows that
d

dt
[e−αtg′α−(t)] = e−αtg′−(t) (4.19)

holds for all real t, and hence

e−αtg′α−(t)− g′α−(0) =

∫ t

0
e−αug′−(u)du. (4.20)

This implies (4.17). The proof for gα+ proceeds analogously. �

The next proposition gives inequalities for hα± that are central for the
interpolation properties later on.

Proposition 4.10. Let E ∈ E and ξ1, ξ2, α ∈ T with α > 0 and 0 ≤ ξ1 ≤
ξ2 < α (multiplicities as in Lemma 4.7). Let εα− and εα+ be the sign of E
in the interval (`α, α) and (α, rα), respectively. We have

εα+[hα+(t)− hα+(−t)] ≥ 0 for t > 0, (4.21)

εα−[hα−(t)− hα−(−t)] ≤ 0 for t > 0, (4.22)

εα+hα+(t) ≤ 0 for t < 0, (4.23)

εα−hα−(t) ≥ 0 for t < 0. (4.24)
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Proof. Let g+ and g− be defined by (4.16). Consider first t > 0. We claim
that

hα±(t)− hα±(−t)

=
1

α

∫ t

0

{
g′±(u)(eα(t−u) − 1)du+ g′±(−u)(e−α(t−u) − 1)

}
du.

(4.25)

To see this, differentiate both sides in (4.25) with respect to t and use
(4.17) to show that the derivatives agree. Furthermore, both sides equal
zero at t = 0. This proves (4.25).

We consider first g+ when εα+ > 0. Lemma 4.7 implies that g+, g
′
+, g

′′
+

are all positive on the real line. In particular g′+ is increasing and positive,
hence for positive u

g′+(u) ≥ g′+(−u) ≥ 0.

It follows from (4.25) that

hα+(t)− hα+(−t) ≥ 2

∫ t

0
g′+(−u){cosh(α(t− u))− 1} du ≥ 0. (4.26)

If εα+ < 0, the inequalities reverse. This establishes (4.21).
Consider now g−. If εα− < 0 then g− is positive since the Laplace trans-

form of g− is the reciprocal of z 7→ (z − α)−1E(z). The functions g′− and
g′′− are positive by Lemma 4.7. In this case inequality (4.22) follows as in
(4.26). The sign of g− reverses if εα− is positive.

Consider t < 0. The identity

−hα±(t) =
1

α

(∫ t

−∞
g′±(u)du+

∫ 0

t
eα(t−u)g′±(u)du

)
(4.27)

can be established by differentiating both sides with respect to t and apply-
ing (4.17) to show that the derivatives agree. Note also that e−αug′(u) has
at most polynomial growth as u→ −∞, hence both sides in (4.27) converge
to zero as t→ −∞. If εα+ > 0 then g′+ is positive, otherwise it is negative.
This proves (4.23). Inequality (4.24) is shown in the same way. �

The next lemma is an auxiliary result that shall allow us to prove that
the interpolations in Theorem 4.14 below are entire functions.

Lemma 4.11. Let E ∈ E and α ∈ T . The functions H− and H+ defined by

H±(z) = E(z)

∫ ∞
0

e−ztgα±(t)dt (4.28)

in the region <z > α extend to entire functions in the complex plane. More-
over,

H−(ξ) =

{
0 for ξ ∈ T with ξ ≥ α,
1 for ξ ∈ T with ξ < α,

(4.29)
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and

H+(ξ) =

{
0 for ξ ∈ T with ξ > α,

1 for ξ ∈ T with ξ ≤ α.
(4.30)

Proof. We prove Lemma 4.11 for H−. Recall that `α is the largest zero of E
strictly less than α. We note that by Lemma 4.7, gα−(t) . e`αt for t→∞.
The integral defining H− represents therefore an analytic function in the
half plane <z > `α. Moreover, absolute convergence of the integral in this
region implies H−(ξ) = 0 for ξ ∈ T with ξ > `α.

For `α < <z < α we have with (4.4)

H−(z) = 1− E(z)

∫ 0

−∞
e−ztgα−(t)dt, (4.31)

and the right hand side is analytic in the half plane <z < α, providing the
analytic continuation of H− to C. The evaluations H−(ξ) = 1 for ξ ∈ T
with ξ < α follow as above. The proof for H+ is analogous; the half planes
are now <z > α and <z < rα. �

Recall that B is the subclass of E consisting of even functions in E .

Definition 4.12. Let E ∈ B and α ∈ T . Define G+
E,α and G−E,α by

G±E,α(z) = H±(z) +H±(−z)− 2g′α±(0)
E(z)

z2 − α2
− 1. (4.32)

Lemma 4.11 implies that G+
E,α and G−E,α are entire functions, and they

are plainly even. We write G±α if no confusion can arise. The following
lemma provides an integral representation of G±α − 1[−α,α] that allows an
application of Proposition 4.10 to control the sign changes of this difference.

Lemma 4.13. Let E ∈ B and α ∈ T with α > 0. We have

G±E,α(z) =



E(z)

∫ ∞
0

e−zt{hα±(t)− hα±(−t)}dt for <z > α,

1− E(z)

∫ 0

−∞
(e−zt + ezt)hα±(t)dt for − α < <z < α,

E(z)

∫ ∞
0

ezt{hα±(t)− hα±(−t)}dt for <z < −α.

(4.33)

Proof. We consider G−α . Let <z > α. Then (4.31) and the fact that E is
even imply

H−(−z)− 1 = −E(−z)
∫ 0

−∞
eztgα−(t)dt

= −E(z)

∫ ∞
0

e−ztgα−(−t)dt,
(4.34)
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and combining this with (4.28) gives

H−(z) + {H−(−z)− 1} = E(z)

∫ ∞
0

e−zt{gα−(t)− gα−(−t)}dt.

Equation (4.32) and

2α

z2 − α2
=

∫ ∞
0

e−zt(eαt − e−αt)dt

imply (4.33) in <z > α.
In −α < <z < α we have

H−(z)− 1− g′α−(0)
E(z)

α(z − α)
= −E(z)

∫ 0

−∞
e−zt

(
gα−(t)− eαt

α

)
dt

= −E(z)

∫ 0

−∞
e−zthα−(t)dt

which implies (4.33) in this region. The statement for <z < α follows by
symmetry. The proof for G+

α is essentially the same. �

Theorem 4.14. Let E ∈ B with zero set T . Let ξ1, ξ2, α ∈ T with 0 ≤
ξ1 ≤ ξ2 < α (in the sense of Lemma 4.7). Let εα+ and εα− be the signs of
E in (α, rα) and (`α, α), respectively. The entire functions defined in (4.32)
satisfy

±
G±α (x)− 1[−α,α](x)

εα±E(x)
≥ 0 (4.35)

for all real x (with ± equal to 1 for G+
α and −1 for G−α ). Moreover,

|G±α (z)| . |E(z)|
1 + |<z|4

(4.36)

for all complex z.

Proof. We consider G−α . Inequality (4.35) follows for |<z| > α from (4.33)
and (4.22), and for |<z| < α from (4.33) and (4.24).

We note that h− defined by h−(t) = hα−(t)− hα−(−t) satisfies

h−(0) = h′−(0) = h′′−(0) = 0 (4.37)

and (4.33) implies for <z > α that

|G−α (z)| . |E(z)|
∫ ∞
0

e−t<zt3dt .
|E(z)|

1 + |<z|4
. (4.38)

Equation (4.15) shows that this estimate extends to <z > `α.
Estimate (4.36) holds for <z < −α by symmetry. Finally, in the range

−α < <z < α equation (4.33) implies the bound due to the fact that

z 7→
∫ 0

−∞
(e−zt + ezt)hα−(t)dt

remains bounded for all z in |<z| ≤ 1
2(α+ `α). The argumentation for hα+

is similar. �
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5. One sided approximation

To set the interpolation of 1[−α,α] up, we define

γ(α) =

{
α tanπα if k < α < k + 1

2 ,

−α cotπα if k + 1
2 < α < k + 1

(5.1)

where k ∈ Z.

Lemma 5.1. Let k ∈ Z and α > 0. Then γ(α) > 0 for all α with 2α /∈ Z,
Bγ(α),0(α) = 0 if k < α < k + 1

2 , Bγ(α), 1
2
(α) = 0 if k + 1

2 < α < k, and

α2 + γ2(α) =

{
α2 sec2 πα if k < α < k + 1

2 ,

α2csc2πα if k + 1
2 < α < k + 1.

(5.2)

Proof. These properties may be verified by direct calculation. �

We shall use Theorem 4.14 with E = B2
γ(α),0 and E = B2

γ(α), 1
2

. To simplify

notation we define G+α by

G+α (z) =


G+
B2
γ(α),0

,α
(z) if k < α < k + 1

2 ,

G+
B2

γ(α), 12

,α
(z) if k + 1

2 < α < k,
(5.3)

where k ∈ Z and z ∈ C. The function G−α is defined analogously. We denote

Tγ,r = {z ∈ C |Bγ,r(z) = 0}. (5.4)

The following theorems collect the properties of G+α and G−α .

Theorem 5.2. Let α > 1
2 with 2α /∈ Z. Then G+α and G−α are in A(2π) and

satisfy

G−α (x) ≤ 1[−α,α](x) ≤ G+α (x) (5.5)

for all real x and∫ ∞
−∞
G+α (x)dx =

∑
ξ∈Tγ(α),r(α)
|ξ|≤α

(
1− γ(α)

π(ξ2 + γ(α)2) + γ(α)

)
(5.6)

∫ ∞
−∞
G−α (x)dx =

∑
ξ∈Tγ(α),r(α)
|ξ|<α

(
1− γ(α)

π(ξ2 + γ(α)2) + γ(α)

)
(5.7)

where r(α) = 0 if k < α < k + 1
2 and r(α) = 1

2 if k + 1
2 < α < k + 1 for

k ∈ Z. In particular∫ ∞
−∞

[G+α (x)− G−α (x)]dx = 2

(
1 +

∣∣∣∣sin 2πα

2πα

∣∣∣∣)−1 . (5.8)



QUADRATURE AND EXTREMAL BANDLIMITED FUNCTIONS 15

Proof. The assumption α > 1/2 implies that B2
γ(α),r(α) has (at least) one

double zero in [0, α). The properties in Lemma 5.1 can be used to show that
the assumptions of Theorem 4.14 with

E = B2
γ(α),r(α)

are satisfied. Since Bγ,r ∈ A(2π), inequality (4.36) and the Paley-Wiener
theorem imply G−α ,G+α ∈ A(2π). We obtain from B2

γ,r(x) . |x|2 on R that

G+α and G−α are integrable. Inequality (4.35) gives (5.5). Lemma 4.11 and
(4.32) imply

G±α (ξ) = 1[−α,α](ξ) for ξ ∈ Tγ(α),r(α)\{±α},
G+α (±α) = 1, G−α (±α) = 0,

(5.9)

and hence equations (5.6) and (5.7) follow from (3.2). The identity

1− γ(α)

π(α2 + γ(α)2) + γ(α)
=

(
1 +

∣∣∣∣sin 2πα

2πα

∣∣∣∣)−1
implies (5.8). �

Theorem 5.3. Let α > (2δ)−1 with 2αδ /∈ Z. Let S, T ∈ A(2πδ) with

S(x) ≤ 1[−α,α](x) ≤ T (x) (5.10)

for all real x, then∫ ∞
−∞

[T (x)− S(x)]dx ≥ 2

δ

(
1 +

∣∣∣∣sin 2παδ

2παδ

∣∣∣∣)−1 , (5.11)

with equality if S(z) = G−δα(δz) and T (z) = G+δα(δz) on C.

Proof. We prove the theorem for δ = 1 and note that the general case follows
with a straightforward scaling argument. We consider α with k + 1

2 < α <
k + 1 for some k ∈ Z. Let T ∈ A(2π) with T ≥ 1[−α,α] on the real line.
We may assume that T is integrable. We note that the weights in (3.2) are
positive, hence∫ ∞

−∞
T (x)dx =

∑
ξ∈Tγ(α), 12

T (ξ)
ξ2 + γ2(α)

ξ2 + γ2(α) + π−1γ(α)

≥
∑
|ξ|≤α

ξ∈Tγ(α), 12

ξ2 + γ2(α)

ξ2 + γ2(α) + π−1γ(α)
=

∫ ∞
−∞
G+α (x)dx

(5.12)

by (5.6). An identical argument gives an analogous inequality for S and
G−α which implies (5.11). Theorem 5.2 gives equality for T = G+α and S =
G−α . �



16 FRIEDRICH LITTMANN

6. Determination of C(δ, α)

Recall the definitions A2(δ) = A(δ) ∩ L2(R) and

C(δ, α) = inf
g∈A2(δ)

sup
x∈[−α,α]

||g||22
|g(x)|2

. (6.1)

We note that the inequality C(α, δ) ≤ 2α + 2/δ may also be obtained
from [3]. We prove

Corollary 6.1. For δ > 0 and α > (2δ)−1,

C(πδ, α) =
1

δ

∑
ξ∈Tγ(αδ),r(αδ)

(
1− γ(αδ)

π(ξ2 + γ2(αδ)) + γ(αδ)

)
, (6.2)

and in particular,

lim
α→∞

(C(δ, α)− 2α) =
2

δ

Proof. Denote by D(δ, α) the expression on the right of (6.2). Let δ = 1.
We show first that C(π, α) ≤ D(1, α). Since G+α ∈ A(2π) is integrable we
obtain that ∫ ∞

−∞
log+ |G+α (x)|dx <∞,

and as in the proof of Theorem 3.1 it follows that there exists S ∈ A(π)
with

G+α (z) = S(z)S∗(z).

We note that |S(x)| ≥ 1 for −α ≤ x ≤ α with equality for x = α (and
possibly other values in [−α, α]). By construction∫ ∞

−∞
|S(x)|2dx =

∫ ∞
−∞
G+α (x)dx

which implies that S satisfies

||S||22 =
∑

ξ∈Tγ(α),r(α)

(
1− γ(α)

π(ξ2 + γ2(α)) + γ(α)

)
= inf

x∈[−α,α]
|S(x)|2D(1, α)

(6.3)

and hence C(π, α) ≤ D(1, α). Scaling gives the result for general δ.
For the other direction we note that the argument is essentially reversible.

For ε > 0 let g ∈ A2(πδ) so that

sup
x∈[−α,α]

||g||2
|g(x)|2

≤ C(πδ, α) + ε

holds, and since C(πδ, α) < ∞, there exists c such that |g(x)| ≥ c > 0 for
all x ∈ [−α, α]. After multiplication of g by a constant we may take c = 1.
Define T = gg∗. Then T ∈ A(2πδ) is integrable and non-negative on R, and
we have

T (x) ≥ 1 for − α ≤ x ≤ α.
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It follows from (5.12) and (5.6) that

C(πδ, α) + ε ≥
∫ ∞
−∞
|g(x)|2dx =

∫ ∞
−∞

T (x)dx ≥ D(δ, α)

which was to be shown. For the second statement we note from (5.11)

|C(πδ, α)− 2α| =
∫ ∞
−∞
{G+δα(δx)− χ[−α,α](x)}dx

≤
∫ ∞
−∞
{G+δα(δx)− G−δα(δx)}dx

=
2

δ

(
1 +

∣∣∣∣sin 2παδ

2παδ

∣∣∣∣)−1
which finishes the proof. �
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