How to Add Content to a Reference Assembly

1. Identify a Genomic Region

Pv02: 30,623,533..30,624,876

Use "Extrinsic" (RNA-seq) or "Intrinsic" (gene structure) data

5'-UTR

(UnTranslated Region)

AAGGCCAAGGAGGAGTTGGGTGTTCAGGAAGTTAACGTTCAAGAGTTGAATAGTTGAAGTGAAGTAAA AAGCGTTGAATTGGAGAGATGACGGGTATGGTGGCTCAAAGAGTTGAAAGCTTGGCTAGCAGTGGGATGA AGCATATCCCGAAGGAGTACGTGAGGCCGCAAGAGGAGTTGGACAACATAGGGAACGTCTTCGAGGAGGA GGGAAGTGTCGGGAGAATCTTAAGAAAGCGGCGGAGGAATGGGGCGTCATGAACTTGGTCAACCATGGCA GGAGAACTACGCCAACGACCAAGCCTCTGGGAAGATTCAGGGCTATGGGAGCAAGCTTGCTAACAATGCC AGTGGCCAATTGGAGTGGGAAGATTACTTCTTCCACCTTGTTTATCCCGAGGAGAAGCGTGACCTCTCCA **TCTGGCCAACCAAACCTTCTGATTATACGTGAGCATTCCTCATCCCTTTTCTTCTTCTTTCACTCTTT** TTTATTATAAAACTTTCTTAATTATCAACAAATTTGACATCTCAGTGAGGCTACAAGCGAATATGCAAG GCGATTGAGGAAGCTTGCGACGAAGATACTAGAGGCACTTTCTGTTGGATTGGGGTTGGAAGGTGGAAGA CTAGAGAAGGAAGTTGGTGGAATGGAGGAGCTTTTGCTTCAATTGAAGATAAACTACTACCCAATTTGTC CATGGTGCCAGGTCTGCAACTTTTCTACGAGGGCAAATGGATCACAGCAAAGTGTGTGCCTAATTCCATT TTGATGCACATTGGGGACACCATTGAGATCCTGAGTAACGGCAAGTACAAGAGTATTCTCCACAGGGGAT TGGTGAACAAAGAAAAGGTTCGAATATCATGGGCAGTGTTCTGTGAACCACCCAAGGAGAAGATAATCTT GCAGCCACTTCCTGAACTTGTGACTGAGAAAGACCCAGCTCGTTTTCCTCCTCGCACTTTTGCTCAACAT ATTCACCACAAACTTTTCAGGAAGGACGAGGAAAGTCTCCCAAAATGAGTCTGTGTCTCCTCCTTCAATG CCTTCTCTTCTGCACTTCTTAGTTCTTATGGCTTGTACCAATAAAATGACCATTCATGTGGTCTCCTTCT CATTCTCATGTTAA

2. Perform Gene Modeling: Exons and Introns

>P.vulgaris v2.1 | Phvul.002G152700

AAGGCCAAGGAGGAGTTGGGTGTTCAGGAAGTTAACGTTCAAGAGTTGAATAGTTGAAGTGAAGTAAA AAGCGTTGAATTGGAGAGATGACGGGTATGGTGGCTCAAAGAGTTGAAAGCTTGGCTAGCAGTGGGATGA AGCATATCCCGAAGGAGTACGTGAGGCCGCAAGAGGAGTTGGACAACATAGGGAACGTCTTCGAGGAGGA GGGAAGTGTCGGGAGAATCTTAAGAAAGCGGCGGAGGAATGGGGCGTCATGAACTTGGTCAACCATGGCA GGAGAACTACGCCAACGACCAAGCCTCTGGGAAGATTCAGGGCTATGGGAGCAAGCTTGCTAACAATGCC AGTGGCCAATTGGAGTGGGAAGATTACTTCTTCCACCTTGTTTATCCCGAGGAGAAGCGTGACCTCTCCA **TCTGGCCAACCAAACCTTCTGATTATAC**GTGAGCATTCCTCATCCCTTTTCTTTCTTCTTTCACTCTTT TTTATTTATAAAAACTTTCTTAATTATCAACAAATTTGACATCTCAGTGAGGCTACAAGCGAATATGCAAG GCGATTGAGGAAGCTTGCGACGAAGATACTAGAGGCACTTTCTGTTGGATTGGGGTTGGAAGGTGGAAGA CTAGAGAAGGAAGTTGGTGGAATGGAGGAGCTTTTGCTTCAATTGAAGATAAACTACTACCCAATTTGTC CATGGTGCCAGGTCTGCAACTTTTCTACGAGGGCAAATGGATCACAGCAAAGTGTGTGCCTAATTCCATT TTGATGCACATTGGGGACACCATTGAGATCCTGAGTAACGGCAAGTACAAGAGTATTCTCCACAGGGGAT TGGTGAACAAAGAAAAGGTTCGAATATCATGGGCAGTGTTCTGTGAACCACCCAAGGAGAAGATAATCTT GCAGCCACTTCCTGAACTTGTGACTGAGAAAGACCCAGCTCGTTTTCCTCCTCGCACTTTTGCTCAACAT ATTCACCACAAACTTTTCAGGAAGGACGAGGAAAGTCTCCCAAAATGAGTCTGTGTCTCCTCCTTCAATG CCTTCTCTTCTGCACTTCTTAGTTCTTATGGCTTGTACCAATAAAATGACCATTCATGTGGTCTCCTTCT CATTCTCATGTTAA

llntron

Exon

3'-UTR (UnTranslated Region)

3. Identify the mRNA Transcript

>P.vulgaris v2.1 | Phvul.002G152700

AAGGCCAAGGAGGAGGAATTGGGTGTTCAGGAAGTTAACGTTCAAGAGTTGAATAGTTGAAGTGA AGTAAAAAGCGTTGAATTGGAGAGATGACGGGTATGGTGGCTCAAAGAGTTGAAAGCTTGGCTA GCAGTGGGATGAAGCATATCCCGAAGGAGTACGTGAGGCCGCAAGAGGAGTTGGACAACATAGG GAACGTCTTCGAGGAGGAGGAGGAGGAGGGGCCTCAGGTTCCAACCATTGACCTGGCAGAGATA GATTCCCCCTCCGAGGTTGTTCGAGGGAAGTGTCGGGAGAATCTTAAGAAAGCGGCGGAGGAAT GGGGCGTCATGAACTTGGTCAACCATGGCATCCCTGAGGACCTCTTGAATCGGCTGCGTAAAGC AGGGGAAACCTTCTTCTCTCTCTCCCATTGAGGAGAAGGAGAACTACGCCAACGACCAAGCCTCT GGGAAGATTCAGGGCTATGGGAGCAAGCTTGCTAACAATGCCAGTGGCCAATTGGAGTGGGAAG TTCTGATTATACTGAGGCTACAAGCGAATATGCAAGGCGATTGAGGAAGCTTGCGACGAAGATA TCTGGGAGTTGAAGCTCACACGGATATAAGTTCACTCACCTTCCTCCTCCACAACATGGTGCCA GGTCTGCAACTTTTCTACGAGGGCAAATGGATCACAGCAAAGTGTGTGCCTAATTCCATTTTGA TGCACATTGGGGACACCATTGAGATCCTGAGTAACGGCAAGTACAAGAGTATTCTCCACAGGGG ATTGGTGAACAAAGAAAAGGTTCGAATATCATGGGCAGTGTTCTGTGAACCACCCAAGGAGAAG ATAATCTTGCAGCCACTTCCTGAACTTGTGACTGAGAAAGACCCAGCTCGTTTTCCTCCTCGCA CTGTGTCTCCTCCTTCAATGCCTTCTCTTCTGCACTTCTTAGTTCTTATGGCTTGTACCAATAA AATGACCATTCATGTGGTCTCCTTCTCATTCTCATGTTAA

Start Codon

4. Define the Protein Sequence

>P.vulgaris v2.1 | Phvul.002G152700

MTGMVAQRVESLASSGMKHIPKEYVRPQEELDNIGNVFEEEKKEGPQVPTIDLAEIDSPSEVVR GKCRENLKKAAEEWGVMNLVNHGIPEDLLNRLRKAGETFFSLPIEEKENYANDQASGKIQGYGS KLANNASGQLEWEDYFFHLVYPEEKRDLSIWPTKPSDYTEATSEYARRLRKLATKILEALSVGL GLEGGRLEKEVGGMEELLLQLKINYYPICPQPELALGVEAHTDISSLTFLLHNMVPGLQLFYEG KWITAKCVPNSILMHIGDTIEILSNGKYKSILHRGLVNKEKVRISWAVFCEPPKEKIILQPLPE LVTEKDPARFPPRTFAQHIHHKLFRKDEESLPK

5. Annotate the Gene

• Anthocyanin Synthase (ANS) ←

Compare with another genes from other species

StopCodon

6. Describe the Gene Function

- Enzyme in Flavonoid Pathway
 - Leucoanthocyanidins -----→ Anthocyanidins

ANS

Compare with function of the gene from other species

Genome Annotation

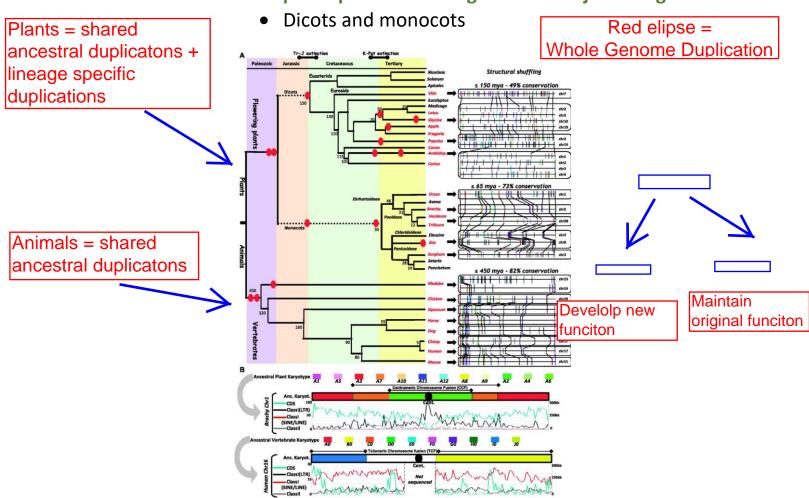
Genome Sequencing

- Initially, the costliest aspect of sequencing the genome
 - o But
 - Devoid of content
- Genome must be annotated
 - o Annotation definition
 - Analyzing the raw sequence of a genome and describing relevant genetic and genomic features such as genes, mobile elements, repetitive elements, duplications, and polymorphisms
 - Annotation costs may eventually exceed the sequencing cost
 - Why??
 - Continued reanalysis is required to define all the genes and the phenotypes they control

What Does Annotation Describe???

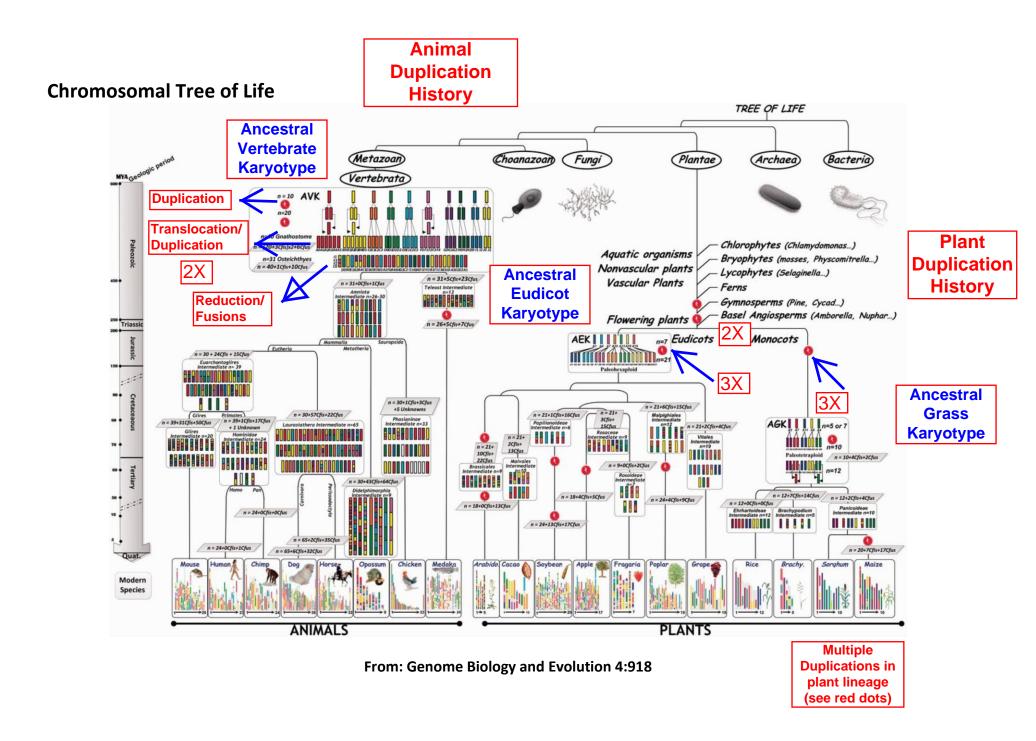
- Genome duplications
- Genes 🚽
- Mobile genetic elements
- Small repeats
- Genetic diversity

Whole Genome Duplications


- Whole genome duplications are a major event in the history of all eukaryotic groups of species
- Duplications can be of
 - The full genome of one species

Autopolyploid

- The mating and retention of both chromosome sets of two species
 - Allopolyploid
- Duplications in the biological kingdoms
 - o Animals


Three ancient whole genome duplications

- o Plants
 - Multiple duplications along the two major lineages

From: Genome Biology and Evolution 4:918

- Post whole-genome duplication events
 - Paleopolyploid
 - An ancient species that results from a genome duplication
- Duplications define
 - Modern relationships between species
 - Ancestral shared segments exist between distant/close
 - Derived from an ancient ancestral species that does not exist today

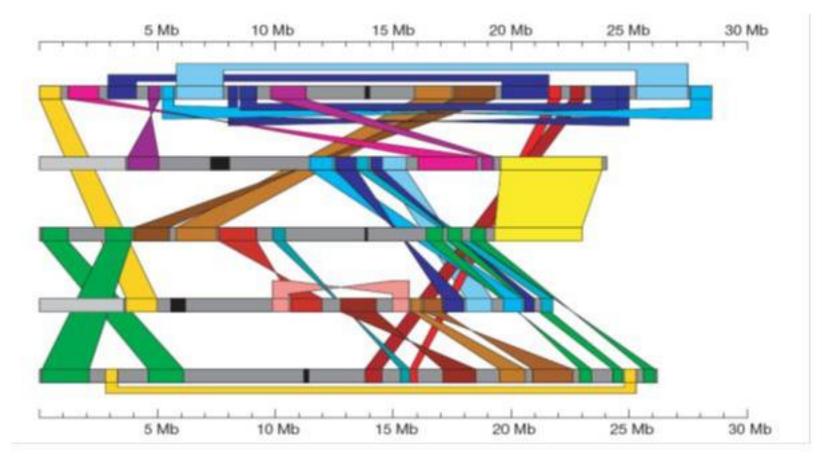
- Major result of duplications
 - Many of the genes in all genomes are related by descent
 - Protein sequences are similar
 - Conserved function can be inferred
 - BUT NOT PROVEN FROM SEQUENCE ANALYSIS

Segmental Gene Duplications

- What are they???
 - Large gene blocks duplicated in the genome
 - Intrachromosomal duplication
 - Duplicated region moved to *same* chromosome
 - Interchromosomal duplication
 - Duplicated region moved to <u>another</u> chromosome
 - Confirms/determines biological function

Are their large blocks of duplications in genomes? YES

• Arabidopsis genome


- Model plant organism
 - Originally considered devoid of gene duplications
- First Sequencing discovery
 - Large blocks of segmental duplication, both
 - Local duplication
 - Intrachromosomal
 - Distal duplications
 - Interchromosomal

o Human genome

- Duplication pattern similar to Arabidopsis
- Mouse genome
 - Lesser degree of duplication

Current Arabidopsis Chromosomes Showing Shared Genomic History

Segmental duplication

• Fragment between two chromosomes that share a color are similar because of the duplication history of the species lineage.

Genes

- Collection of Genes define the phenotypic life-cycle of a species
 - Development
 - Reproduction
 - Response to environment
 - Biotic
 - Abiotic
- What defines the gene???
 - Coding region
 - Contains the information that defines the nature of an expressed protein or a functional RNA molecule
 - Controlling regions
 - Sequences that define where, when, and how much the gene will be expressed
- Major goal of gene annotation
 - Defining genes and their controlling regions

Major functions of all biological organisms

Repetitive Elements

- Repetitive elements
 - **o** Often the major component of genome
 - Generally conserved
 - Fairly ease to discover
 - Example
 - Retrotransposons
 - Reverse transcriptase protein is conserved
- Cataloging the repetitive elements
 - **o** The first step of annotation
 - Greatly reduces the amount of sequence that must be searched for genes
 - Repeat masking the next step
 - Procedure that removes the repetitive elements from the gene discovery process

Mobile Genetic Elements

- Also called transposable elements
 - A major component of some genomes
- Classes
 - Class I elements: Retrotransposons
 - Most abundant class of repeats
 - Abundance
 - Human

- 3 Gb
- o 50% of genome is mobile elements
- Arabidopsis

0.15 Gb

- 10 % of total DNA
 20 % of gene rich-region
- Class II elements: DNA elements
 - McClintock elements

Super families of TEs	Number of TEs (x10 ³)	Coverage of TEs (bp)	Fraction of genome (%)
Class 1 (RNA-based)	283.1	195,948,599	41.47
LTR retrotransposon	244.3	181,963,056	38.51
Ty3-gypsy	146.7	125,312,211	26.52
Ty1-copia	62.2	47,126,880	9.97
Others	35.3	9,523,965	2.02
LINEs	37.8	13,825,275	2.93
SINEs	1.0	160,268	0.03
Class 2 (DNA-based)	87.4	26,832,637	5.68
CACTA	44.0	13,295,207	2.81
Harbinger/PIF	0.5	263,181	0.06
hAT	4.0	1,062,438	0.22
Helitron	18.3	5,095,472	1.08
MULE	20.7	7,116,339	1.51
Unclassified TEs	14.7	2,728,570	0.58
Total	385.2	225,509,806	47.73

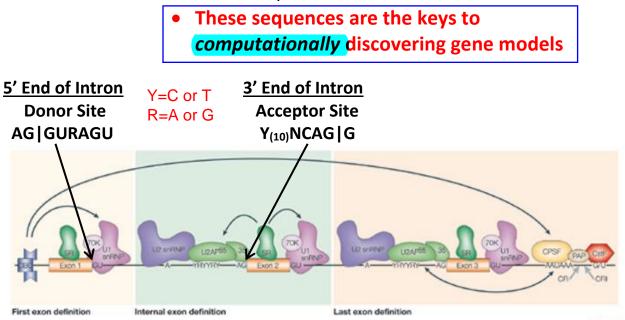
Major Classes of Transposable Elements

Table S8. Summary of transposable elements (TEs) in *Phaseolus vulgaris*. Schmutzet al. (2014).

Other Repeat Elements

- Simple Sequence Repeats
 - \circ SSRs
 - Defined as
 - Localized repetitions of di- or tri-nucleotides
 - Major repetitive class found in genomes
 - >100,000 in many eukaryotic genomes
 - Widely used as molecular markers

Example: (ATA)n; n=10 ATA repeated ten times **Genetic Diversity**


- How can gene sequences among individuals of a species vary?
 - Large deletions
 - Eliminate gene function
 - Small deletions
 - Gene often expressed but phenotype is changed
 - Example
 - Cystic fibrosis gene
 - Three nucleotides (triplet) lost = phenylalanine deleted in protein
 - Mutant CF phenotype expressed

Single nucleotide polymorphisms or variants (SNPs or SNVs)

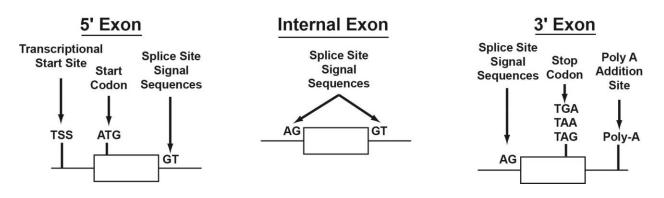
- \circ A difference in a single nucleotide between two alleles
- Resequencing discovers differences
 - Uncovers SNP diversity related to function
 - Examples of functional SNPs
 - o Sickle cell anemia
 - Adenine → thymine in sixth amino acid codon of β-globin gene
 - Change leads to sickle cell phenotype
 - Mendel's plant height gene (Le)
 - Guanine → adenine change at nucleotide 685 of the mRNA
 - First nucleotide of 229th codon
 - Amino acid: Alanine → Threonine
 - Changes function of gibberellin 3
 beta-hydroxylase
 - Plant is short rather than tall

Exon Definition Model

- Key principle in gene modeling
 - Genes consist of exons and introns
 - Based on key sequences that define exons, introns, and 5' and 3' region of genes
 - Defines the sequences that define exons


Figure 3 Exon-definition model. Typically, in vertebrates, exons are much shorter than introns. According to the exon-definition model, before introns are recognized and spliced out, each exon is initially recognized by the protein factors that form a bridge across it. In this way, each exon, together with its flanking sequences, forms a molecular, as well as a computational, recognition module (arrows indicate molecular interactions). Modified with permission from Ref. <u>26</u> © (2002) Macmillan Magazines Ltd. CBC, cap-binding complex; CFI/II, cleavage factor I/II; CPSF, cleavage and polyadenylation specificity factor; CstF, the cleavage stimulation factor; PAP, poly(A) polymerase; snRNP, small nuclear RNP; SR, SR protein; U2AF, U2 small nuclear ribonucleoprotein particle (snRNP) auxiliary factor.

Nature Reviews | Genetics


From: Nature Review Genetics (2002) 3:698-709

Intrinisic gene structure data **data defines some structure found in all gene models

General Features of a Eukaryotic Gene

Specialized Gene Regions That Need Unique Gene Prediction Models

All of this information is called **INTRINSIC DATA!!!**

Finding Genes In a Sea of Nucleotides Extrinsic gene structure data **data related to some function of a gene model **Extrinsic Content Detection** **function = expressed as a RNA molecule Uses data from databases to discover genes • Search genomic sequence as a query against **Historical data sources** Protein databases used to discover gene Nucleotide databases models RNA-seq (and historically EST) data **Best current data** • Best information for gene structures sources to discover Known to represent genes gene models Contain 3' sequences that are normally gene specific Problems • Exon-intron borders not always easy to predict 5'-UTR sequences cannot be predicted **RNA-seq data is**

RNA-seq data is EXTRINSIC DATA!!! In plants today, 90% of gene models are being predicted using RNAseq type data!!!

Definition

A statistical approach that builds on *prior knowledge* and assigns a *probability* that a certain *sequence set* is a *member of specific state*.

State

- o 5'UTR
- o Exon
- o Intron
- 3'UTR
- Polyadenylation site

Example: Predicting a "GT" splice site

- Prior knowledge
 - $\circ~$ Sequence of splice site begins with GT
- Given a specific nucleotide sequence
 - o GTGAG
 - What is the probability that the 5' G is start of an intron splice site if the next nucleotide is a T?
- If the next nucleotide is indeed a T, a high probability exists that it is part of the GT splice site **IF** other properties of the state associate it with the GT splice site state
 - Is the GT preceded by an [A/C]AG sequence?
 - Is the GT followed by [A/G]AGT?
 - If yes, then all criteria met, so
 - [A/C]AG<u>GT[A/G]AGT</u> is a splice site and defines an intron

Intrinsic Content Detection

- Finding internal exons
 - Based on splice site features
 - Acceptor site
 - Exon | Intron
 - AG|GTRAGT (R = A or G)
 - Donor site
 - Intron|Exon
 - YYYYYYYYYYNC<u>AG</u>|G
 - (Y = C or T; N = any nucleotide)

• Finding 5' exons

- Difficult process
 - 5' signal not fully defined
 - Transcriptional start site (TSS)
 - o Few known
 - Promoter
 - Variation among promoters known
- Algorithms search for:
 - CpG island
 - Normally gene rich
 - Some algorithms find TSS within the island
 - Some algorithms find TSS associated with TATA box in island
 - Identify ATG start site in island

• Finding 3' exons

- Identify polyadenylation addition site signal
 - AATAAA
- Use stop codon as a 3' prediction signal
 - Essential for determining where one gene ends and another begins

- Finding intronless exons
 - o Difficult task
 - o Must distinguish these from
 - Long internal exon
 - Pseudogenes that occurred by lost of intron in normal gene

What does a gene prediction program do?

- Calculates best scores for all gene features
 - Defines likelihood that neighboring coding features are really part of a gene
 - $\circ~$ Likelihood is calculated as a
 - Weight
 - Probability
 - Hidden Markov Model (HMM) approach is currently preferred approach
 - DNA fragments (a few nucleotides at a time) are defined as a state
 - Probability that a neighboring state can be coupled with the first state to form a gene feature is calculated
 - This allows interdependencies between exons to be explored
 - Calculation based on a training set of genes
 - Training set are genes from a similar taxonomic group with "putative" similar gene features
 - Probability that multiple states can define a gene is calculated

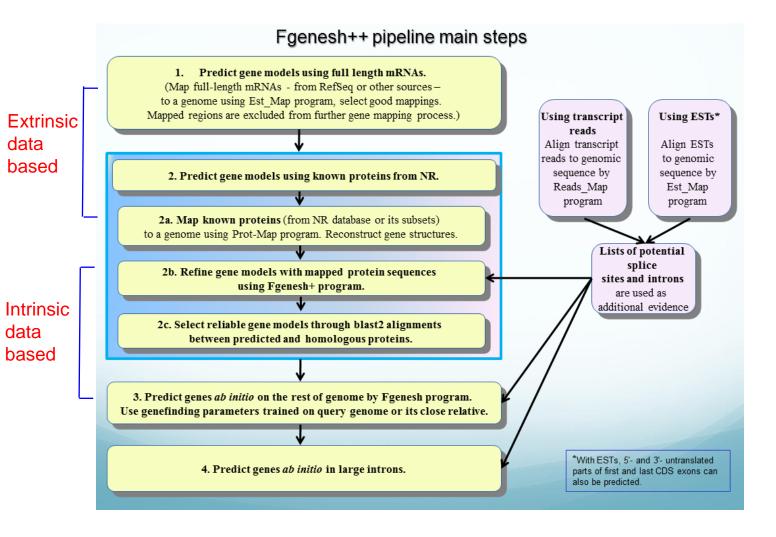
Predicting Multiple Genes

- HMM approaches easily extended to study both strands of a DNA sequence simultaneously
 - Value of modeling both strands
 - Prevents predicting two genes that overlap on the two strands
 - A rare eukaryotic event
- Need to understand features common across chromosomes
 - o Insulator elements
 - o Boundary elements
 - Matrix attachment regions
- Scaffold attachment regions

Comparative analysis

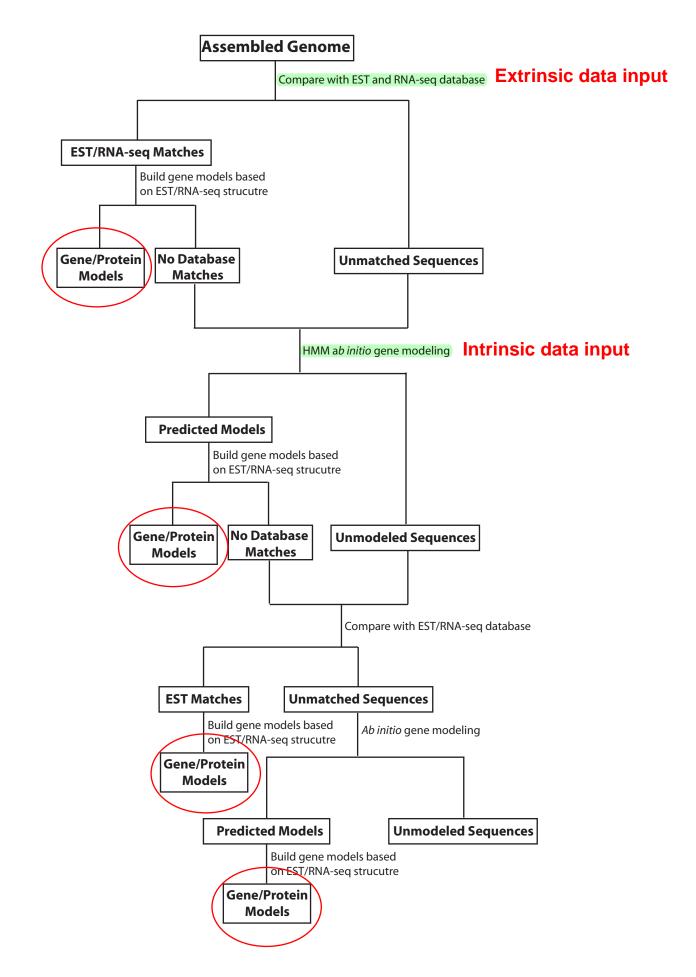
- One gene set can aid discovery in a related species
 - Gene order is conserved
 - Gene structure is conserved
 - Provides additional training set data for gene prediction
 - Example: Human gene models supporting mouse gene discovery

Synteny: important concept **Shared gene order between two species


**Result of related duplication histories

If order conserved,

**The newer genome can inherit gene names of older genomes **If the genes are similar


How does a popular *ab initio* software package do it??

FGENESH++C Pipeline (Softberry; quoted directly from company brochure)

FGENESH Gene Modeling Procedure

(www.softberry.com)

Annotation

Naming The Genes

- Gene naming follows the discovery of potential genes
- Relies upon the significant amount of research already available from other genome projects
 - Historically done on a gene-by-gene approach
 - Goals of gene-by-gene research goal is to clone and characterize an individual gene
 - Each gene is of interest to a specific research group
 - Housekeeping genes
 - Necessary for basic cellular biochemical processes of a cell
 - Nearly all are characterized at the nucleotide and protein levels
 - Sequence information is stored in large databases

The Naming Process

Starting Tool for

- BLAST
 Annotation
 - Software tool most often used to annotate (or name) a gene
 - o <u>Basic Local Alignment Search T</u>ool
 - Series of computer programs
 - Looks for sequence similarities between two sequences
 - Analysis consists of
 All predicted
 - Query gene models
 - Sequence to which you are looking for a match
 - Nucleotide or amino acid sequences
 - - Set of sequences that may be like the query
 - Nucleotide sequences
 - GenBank
 - Protein sequences
 - Swiss-Prot is used to uncover sequences that are similar to the query
 - Translations possible
 - Nucleotide query sequence can be translated
 - Amino acid database sequences can be reverse translated
 - Recent BLAST innovations
 - Gaps can be incorporated to discover matches

Naming The Non-Genes Sequences

- Other RNA molecules
 - o Important components of the genome
 - Ribosomal RNAs and tRNAs
 - Both essential for protein translation
 - Small nuclear RNAs
 - Important for RNA splicing
 - Necessary component of the genome
 - Highly conserved
 - Easily recognizable
 - MicroRNAs
 - Short RNA sequences
 - 21-25 nt long
 - Negative regulators of gene expression
 - Bind target gene mRNAs and prevent their expression
- Programs that search specifically for these genes are available molecules

Regulatory Sequences

- Gene regulation a major area of research
 - Key to understanding gene expression
- Regulatory motifs discovered
 - o Motifs
 - Short sequences that define a function
 - Nucleotide sequences
 - o Sites where regulatory bind
 - Orthology searches
 - Scan promoter sequences
 - Search for conserved regulatory motifs
 - Amino acid sequences
 - Key sequences that bind DNA molecules
 - Orthology searches
 - Scan protein sequences
 - Search for DNA binding motifs
 - Discovered motifs must be tested experimentally
 - Testing motifs is a functional genomics concern

Transcription Factor Binding Motifs

- Sequences upstream to which transcription factors bind
 - Multiple sites possible per transcription factor
 - Motif location can vary because the 5'-UTR length is not consistent

Motif/TF Family Table from: BMC Genomics (2014) 15:317

Motif	Transcription Factor Family
GCTGCCGGAGA	NAC
GCACGTGGAG	bHLH
ATGTGATGC	bHLH
GGTTGTGGT	R2R3-MYB
ACCAAACAT	R2R3-MYB
CACCTAAC	R2R3-MYB