Outline

* Resources/methods/tools for studying gene function

— Induced mutations

o Site-nonspecific mutations induced by chemical, physical,
and insertional mutagen

o Forward and reverse genetic approaches
— Site-specific mutation
— Gene silencing
— QTL/association mapping
— Gene expression profiling

— Multiomics



Mutation

« Mutations are changes in DNA sequence
— Large-scale chromosomal structure changes

v Deletion, insertion, duplication, and inversion of a
chromosome fragment

— Small-scale changes

v" One or a few of nucleotides change, insertion, or
deletion



DNA sequence polymorphism

» Structure variation
— Present/absent variation (PAV)
— Copy number variation (CNV)
* Insertion/deletion (InDel)

» Single nucleotide polymorphism (SNP)



Mutation

« Mutations can result from DNA copying mistakes during
cell division, exposure to ionizing radiation, chemicals, or
iInfection by viruses, etc.

« Germ line mutations occur in the egg and sperm can be
passed on to offspring, while somatic mutations occur in
body cells and are not passed on



Spontaneous point mutation
due to DNA replication error

« Spontaneous mutation rate is very low, about 10-7-10-1 per
gene per generation
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Mutation is a main cause of diversity
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Induced mutations are valuable
resources to study gene function

* Induced mutations provide possibility to understand
gene’s function, where other genes are same between
wild type and mutant. Any phenotype change can be
associated with the mutated gene
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Induced mutation

 Site-nonspecific mutations induced by
— Chemical mutagen
— Physical mutagen

— Insertional mutagen

» Site-specific mutation
— Homologous recombination

— Engineered enzymes, like CRISPR-Cas



Site-nonspecific mutation

« Chemical, physical, and insertional mutagen
v" How do those mutagens create mutations?
v' What are characters of the induced mutations

v" How to use the induced mutations to study gene’s
function

o Reverse genetics

o Forward genetics

v" How to create gene-index catalogue for induced
mutants (locate mutation sites for all mutants)



Chemical mutagens

1940s, Charlotte Auerbach
and J.M. Robson found that
mustard gas can cause
mutations in fruit flies

Large number of chemical
mutagens have been
identified, especially after
the development of the
Ames test in 1970s by
Bruce Ames
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Chemical mutagen induces point
mutation

« Chemical mutagen causes DNA damages (base
modification, change, and loss); the DNA damages lead
to mismatches; some mismatches are not repaired by
mismatch repair system and result in point mutations

« Point mutation is a single nucleotide change of DNA



Chemical mutagen - Deamination

Nitrous acid causes deamination of cytosine (C) and produces uracil
(U), which is a normal base in RNA

If the uracil (U) is not replaced, an adenine (A) will be incorporated
into the new DNA strand, resulting in a CG-to-TA transition mutation
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Flow chart for constructing mutagenized
population using chemical mutagen
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Types of point mutations

Synonymous mutation: no change on the encoded amino acid

Missense mutation: a change in one DNA base pair that results in
the substitution of one amino acid for another

— Conservative missense mutation changes a same type of
another amino acid, which may not change structure of the
protein and do not change its function

— Non-conservative missense mutation changes to another type of
amino acid

Nonsense mutation: the altered DNA sequence prematurely
signals the cell to stop building a protein and results in a shortened
protein that may function improperly or not at all



Types of point mutations

Types of mutations
at the DNA level

Results at the molecular level
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Whole genome sequencing of sorghum
EMS-induced mutants
Sorghum is a plant model species (~730 Mbp)
6400 mutants from EMS-mutagenized BTx623 seeds

Total of 256 mutants were sequenced with an average
coverage of 16x

Revealed >1.8 million EMS-induced mutations, affecting
95% of genes in the sorghum genome

On average, ~7,600 SNPs/mutant and ~10 SNPs/Mbp

The vast majority (97.5%) of the induced mutations
were distinct from natural variations

Jiao et al., The Plant Cell, 2016



Physical mutagens

* In 1927, Hermann Muller discovered that X-ray can
cause genetic mutations in fruit flies

» Lewis Stadler showed the mutational effect of X-rays on
barley in 1928 and ultraviolet (UV) radiation on maize in
1936

* Physical mutagens cause DNA breakage or other
damages and induce mutations



lonizing radiations
and double strand break repair

* lonizing radiations

— Fast moving particles
such as fast neutrons
have sufficient energy
to physically ‘punch
holes’ in DNA directly

— Fast neutron may
induce deletion and
insertion mutations
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UV (a non-ionizing radiation) induces
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Sequencing 1504 rice mutants facilitate
functional genomic studies

Sequenced a fast-neutron-induced mutant population of
1504 lines in rice (~400Mbp) and identified 91,513
mutations

On average, 61 mutations/mutant and 0.15 mutations/
Mbp

Including 43,483 single base substitutions, 31,909
deletions, 7,929 insertions, 3,691 inversions, and 4,436
translocations

Deletions were found for 27,614 genes; the average
deletion size is 8.8 kb, deletions smaller than 100 bp
account for nearly 90% of all deletions

Li et al., Plant Cell 2017



Insertional mutagen

 Insertional mutagen induces mutations of DNA
via incorporation of additional bases

* Insertional mutations can mediated by bacteria,
transposon, or virus



T-DNA inserts into plant genome from
agrobacterium
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Plasmid DNA and T-DNA structure
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Tumor-promoting gene: Auxin and Cytokinin are plant hormones that enable
the plant cell grow uncontrollably, thus forming the tumors

Biosynthetic genes: opine is amino acid derivatives used by the bacterium as
a source of carbon and energy



Agrobacterium as insertional mutagenesis

Insertional mutations can be artificially created in lab

KanR gene confers kanamycin resistance, allowing selection of the
transformed plants (or mutants)

The length of the insert is 17 kb in this case, causing loss of gene
function
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Agrobacterium-mediated transformation
--Tissue culture approach

» Regeneration of whole plants generally requires weeks to months

« Time/labor intensive to construct large scale of mutational lines using tissue-

culture method

Agrobacterium tumefaciens
bacterium
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Agrobacterium-
mediated

transformation
--seed infection method

If a cell with inserts in a
germinated seed forms
reproductive tissues of the
T1 plant, then some T2
seeds from the T1 plant
have T-DNA inserts

How many T-DNA inserts

in a T2 mutant?
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Number of inserts per mutant can be inferred
from segregation ratio of its progenies

 If there is one T-DNA insert in a mutant, the segregation
ratio of transformed plant vs non-transformed plants in its
progenies is 3:1

Pollen
KanR
Kan® (50%) - (50%)
Kan®  KanR/Kan® KanR/-
(0 2 0 2 (0)
Eeg (50%) (25%) (25%)
cell

(50%) Kan®/- (25%) -/- (25%)



Number of inserts per mutant can be inferred from
segregation ratio of its progenies

* One insert in one T2 mutant, the segregation ratio of
transformed plants (kan®) vs non-transformed plants (-/-)
In its progenies is 3:1

— KanR: -/- = 3:1

* Two inserts in one T2 mutant
— KanR: -/- =15:1

* Three inserts in one T2 mutant

— KanR: -/- ?7?

< Average 1.5 inserts per Arabidopsis mutant



ow many insertional mutants are needed to
study most genes in Arabiposis

« Arabidopsis, a plant model species
— Genome size: ~120,000 Kbp
— Gene number: ~30,000

— Average gene size: ~2 Kbp

» If insertional mutations are randomly distributed on
chromosomes, how many mutants do we need to create
so that we can get insertional mutation for every single
gene?



Total number of T-DNA inserts is function of
size of gene and size of genome

The chance that a T-DNA insert is in a gene of x Kbp: x/
120,000

The chance that a insert is not in a gene of x Kbp: 1-x/
120,000

Given n inserts, the chance of none of the n inserts is in
a gene of x Kbp: (1-x/120000)"

Given n inserts, the chance of at least one insertis in a
gene of x Kbp: p = 1-(1-x/120000)"



How many mutants are needed to saturate
the genome?

« Total number of T-DNA inserts is function of size of gene (x kb)
and size of genome

p=1-(1-2x/120,000)"

> A 2.1-kb gene requires 280,000 T-DNA inserts to achieve 99%
probability of being mutated

» Average 1.5 inserts per mutant, ~186,000 mutants are needed

Krysan et al., Plant Cell 1999



T-DNA insertion collections in Arabidopsis

Population size | Reference

Salk Institute 150,000 Alonso et al., 2003
Bielefeld 71,000 Kleinboelting et al., 2012
University,

Germany

Syngenta 100,000 Sessions et al., 2002



Characters of insertional mutant induced by
T-DNA/agrobacterium

T-DNA/agrobacterium induces mutants with large fragment insertion,
which causes loss of the gene function

T-DNA insertional mutations can not be generated for all genes. For
genes required for life, insertion leads to lethal

Low T-DNA insertional rate, ~1.5 inserts per mutant; gene with small
size has low chance to get insertional mutation

T-DNA/agrobacterium does not work for all species



Transposon

* Transposons or transposable elements are DNA
fragments that can move from one location to
another location within the genomes



Transposon discovery
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Silencing of transposons

« Transposons are found in almost all organisms

* For example, transposons make up approximately 50%

of the human genome and up to 90% of the maize
genome

* Most transposons are silenced by epigenetic
modification or other ways. Most transposons are not
actively move around the genome and change
phenotypes



Example 1: Ac-Ds transposon to create
insertional mutations in Arabidopsis

Two transformed plants
as parents, one has Ac
insert and the other has
Ds insert

Cross the two parents
and then self-pollinate
F, hybrid to get many F,
progenies

What genotypes for the
two loci Ac and Ds are in
F, progenies?

Ac Ds
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Page and Grossniklaus, 2002



Genotypes of two loci Ac and Ds in F,

population

Parent1: Ac/Ac -/-; Parent2: -/- Ds/Ds
F,: Ac/- Dsl/-
Genotypes of Ac and Ds loci in the F, progenies

Pollen
Ac Ds Ac - - Ds - -
Ac Ds |Ac/Ac Ds/Ds |Ac/Ac Ds/- |Ac/-Ds/Ds |Ac/-Ds/-
Ac - Ac/Ac Ds/- Ac/Ac-/- |Ac/-Ds/- Ac/- -/-
55 - Ds Ac/- Ds/Ds Ac/- Ds/- -/-Ds/Ds |-/-Ds/-
== Ac/- Ds/- Ac/--/- -/- Ds/- -/--/-




A mini-transposon for insertional
mutagenesis in the bacteria S. pneumoniae

* The mini-transposon has ends with terminal inverted
repeats (IRs) of 9 to 41 bp

Insertion sequence, IS 1
|

IR Transposase gene IR

5’ GGTGATGCTGCCAACTTACTGAT|3’ 5 ATCAATAAGTTGGAGTCATTACC|3’
3’ CCACTACGACGGTTGAATGACTA |5’ 3’ TAGTTATTCAACCTCAGTAATGG |5’

 The artificial mini transposon contains KanR gene and
Mmel restriction site within each inverted repeat

Rfmvmer] ket [vmel]®



Example 2: Create a insertional mutation library
of S. pneumoniae using mini-transposon

* A gene disruption library is constructed by first
transposing the mini-transposon into bacterial genomic
DNA in vitro and then transforming a bacterial
population with the transposed DNA

* The transpose inserts randomly in the genome, requiring
only a TA dinucleotide at the insertion site

d Bacterial Mmel site 1. (o) =)
genomic DNA  \inj-transposon | Transposase = _ 2 ) )
I + T_ + AV o =
Mmel site 4. ..

van Opijnen et al., Nature methods 2009



m Main characteristics

v" Works for all species

v Mainly point mutations

Chemical agents v’ High efficiency, hundreds to hundreds of
(e.g., EMS) thousands of mutations per mutant

v" Provides allelic series, and not just knockouts,
which can yield refined insights into gene function

(Fast neutrons, X-rays, v  Break DNA and cause deletions
etc.) v Medium efficiency

v Not work for all species

v" Insertion of specific DNA sequence and cause
loss of function of a gene

v' Low efficiency, 1-3 mutations per line

Biological agents
(e.g., T-DNA and
transposons)



What need to know for final exam

« (Can describe and explain how chemical and insertional
mutagens induce mutation, how to use those mutagens
to create a population of mutants, characters of
mutations induced by chemical, physical, and insertional
mutagens

« Can describe synonymous mutation, missense mutation,
and nonsense mutation and their differences
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