Mendel, the Chromosomal Theory of Inheritance, and DNA As the Hereditary Material

Why Do We Sequence Nucleic Acids??

- Dumb question???
 - Yes, because we all know that nucleic acids control phenotype.
 - Well we have not known that forever.
 - So how did we learn this?

Three lines of evidence converged that lead to this discovery

- Phenotypes are controlled by genes
- Genes are located on chromosomes
- Chromosomes are made up of DNA (one of the nucleic acids).

Gregor Mendel

Dramatically changed our perception of heredity

- Particulate factor concept
 - Some physical factor existed that controlled phenotype

Traits have a dominant and recessive forms

- Proof
 - F₁ generation
 - Dominant form appears
 - Recessive form disappears
- F₂
- Recessive form reappears
 Some factor is not lost;
 points to a physical entity

Mendel's 1st Law, the Law of Segregation

- A single form of the factor controlling phenotype was passed to the gamete during reproduction.
 - Event occurs during reduction step of meiosis
- One of two forms of the factor was passed through the gamete to the offspring.
 - o Proof??
 - F₂

	Α	а
Α	AA	Aa
а	Aa	aa

- 3:1 ratio in F2 generation segregating for one trait
 - o 3/4 dominant form Again more evidence a
 - o 1/4 recessive form factor is involved
- F₃ generation
 - Offspring of recessive F₂ plants all recessive form
 - Some offspring of F₂ dominant form plants all dominant form
 - Some offspring of F₂ dominant form plants produce 3:1 dominant to recessive forms
 - Ratio of dominant form F₂ plants in F₃ generation
 - 2/3 segregate for dominant and recessive forms in 3:1 ratio
 - 1/3 all dominant F₃ plants

Mendel's 2nd Law, the Law of Independent Assortment

- Each trait was controlled by a unique factor
- Proof??
 - o 9:3:3:1 ratio in the F2 generation segregating for two traits
 - The cross product of two 3:1 ratios is 9:3:3:1

Again a physical factor is involved

Mendel

- DID not consider the actual physical entity that controls experiments
 - Others discovered that entity

Other experiments determined

- Mendel's factors (genes) reside on chromosomes
- DNA was the heredity material.

Naming the Mendelian Laws

- Correns (1900)
 - o Referred to segregation and assortment
- Morgan (1916)
 - o First to use the terms:
 - Law of Segregation
 - Law of Independent Assortment

Concept 1 Confirmed: Genes control phenotypes

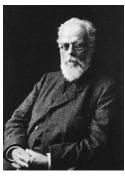
Genes Reside on Chromosomes

Eduard Strasburger (1876)

- Cell division is a universal activity of all higher organisms
 - Same process is observed in plants

Walther Flemming (1878)

- Structures had a string like appearance to them
 - Termed the structures chromatin (or colored substance)
- Also developed the concept of cell division
 - o Called cell division mitosis.


Edouard van Beneden (1883)

- Egg cell + sperm cell fertilization
 - o Resulting cell has the diploid chromosome number
- Sperm and egg cell
 - Each contribute equal numbers of chromosomes to the zygote
- Discovered meiosis

Heinrich Wilhelm Gottfried von Waldeyer-Hartz (1888)

- Called the structures dividing during mitosis chromosomes
 - Chromosomes (=colored bodies)

August Weismann (1892)

- Germline Theory
 - Sperm and egg cells
 - Contain exactly half the number of chromosomes
 - Transmit hereditary information
 - Somatic cells
 - Carry out normal body functions

Hugo deVries (1889 on)

Performed hybridization experiments and discovered

- Each trait controlled by a different factor
 - Observed 3:1 ratio in F₂
- Called the hereditary factor a pangene
- Individual pangenes controlled all traits
 - o Pangenes located in the cell of a diploid organism

Initially unaware that Mendel proved this earlier

- Later tried to publish without referencing Mendel
 - Correns corrected him
 - Admitted that Mendel was the first to discover the laws of genetics

Considered pangenes

- Larger than a single chemical molecule
 - But still invisible

Reproductive cells

- Receive half of the pangenes during meiosis
 - When reproductive cells unite
 - Diploid number of pangenes is restored

See: van Beneden, Weismann above for comparison

First linkage between inheritance and reproductive cells

=Pangenes

Carl Correns (1900)

- Study inheritance in plants
 - Published results in paper
 - "G. Mendel's Law Concerning the Behavior of the Progeny of Racial Hybrids"

Mentions Mendel in title

Erich Tschermak (1900)

- Plant breeder working on wheat, barley, and oats
 - Tried to combine earliness and high yield
 - Considered the "father" of Austrian plant breeding
- Did genetic experiments with pea
 - Referenced Mendel in his publication

Rediscovering Mendel's Concepts of Genetics

- Referenced in publications by:
 - o DeVries (April 1900)
 - o Correns (May 1900)
 - Tschemark (August ??? 1900)

Chromosome Theory of Inheritance (1902-1903)

Chromosomes are the carrier of Mendelian factors and meiosis is the basis of separating the factors into gametes.

Also predicted a mutation in a single cell leads to uncontrolled cancer cell growth

Theodor Boveri (1902)

- Observed
 - All male and female chromosome must be present to develop a functioning organism
 - Linked chromosomes and the factors that were described by Mendel
- Quote

• "... the characters dealt with in Mendelian experiments are truly connected to specific chromosomes."

Note the similarities in the quotes

Walter Sutton (1902)

- Described chromosomes as unique individual units
 - That occur in pairs
 - Separate during meiosis
- Quote
- Chromosomes "...may constitute the physical basis of the Mendelian law of heredity."

Linking Genes and Chromosome

Thomas Hunt Morgan and Calvin Bridges

Headed <u>"The Fly Lab"</u> at Columbia University ***Many of his students made other genetic contributions

Thomas Hunt Morgan (1910)

- Discovered a mutant white eye Drosophila
 - Different than the wild type red eye
- Performed genetic experiments
 - Results proved the eye color gene was located on the X chromosome

Calvin Bridges (1914)

- Studied Morgan's white eye mutant
 - Coupled the presence of the X chromosome with a specific eye color
 - Conclusively demonstrated genes indeed reside on chromosomes

Problem with this concept!!

- Chromosomes carried the genetic information
 - They must contain all the genetic factors
- But, the number of chromosomes is less than the number of traits.
 - Now it was essential to show chromosomes contain many factors

Solution: Multiple Genes Reside on Chromosome!!

- Sturtevant, Bridges, Morgan (1919)
 - Mated among *Drosophila* with several different contrasting phenotypes
 - Multiple genes are organized into a linear linkage group
 - Number of linkage groups equals the number of chromosomes

It could now be stated:

All features necessary for a hereditary unit are found in chromosomes!!!

Finally, heredity and chromosomes are clearly linked.

Concept 2 Confirmed: Genes reside on chromosomes

Position Effect

Sturtevant (1925)


- If the physical environment of a gene is altered
 - Expression of the gene is affected
- Therefore
 - Physical structure of the chromosome is essential for the correct phenotypic expression
 Concept not fully appreciated by most genomic researchers

From a modern perspective

- This is the first solid evidence that we should take a *genomics* approach to fully understand gene expression.
- Therefore
 - Completely characterizing (=sequencing) all of the genetic material in the cell is necessary.

SO WHAT IS THE GENETIC MATERIAL???

History of DNA As the Genetic Material

Ernst Haeckel (1866)

Nucleus transmitted hereditary information to the next generation

Friedrich Miescher (1871-1874)

Studied pus cells collected from bandages from surgeries

- Collected white blood cells
- White blood cells primarily composed of nuclei
 - o Called this nuclear material nuclein

Determined that nuclein contained two classes of chemicals

- Acidic component
 - Now we know the component is DNA and RNA
- Basic component
 - Now know that is histone proteins

Which chemical is the stuff of life??

**nucleic acids??

**proteins??

Most abundant molecules

**Nitrogen

**Phosphorus

Linking DNA and Heredity

Fred Griffith (1928)

- Worked with lethal and non-lethal strains of the *Streptococcus* pneumoniae
 - Converted a non-lethal strain to a lethal strain
- Conversion involved
 - Mixing dead lethal and live non-lethal strains

Griffith's Transforming principle

- Converts one phenotype to another
 - This is the true nature of a gene
 - o These are two alleles of the same gene
- So what is the chemical nature of the transforming principle????

Oswald Avery Colin MacLeoud Maclyn McCarty

Avery, MacLeod, and McCarty (1944)

- Transforming principle
 - DNA was the transforming principle(from the acidic component)
 - Not protein or RNA
 - The other two constituents in the nucleus.

Concept 3 Confirmed: Chromosomes consist of DNA RNA Is Also A Genetic Material

- Heinz Fraenkel-Conrat (1957)
 - RNA viruses exist
 - Interconverted strains of tobacco mosaic virus
 - RNA mediated the interconversion and can be a genetic material

Chemical Structure of DNA

James Watson and Francis Crick (1953)

- DNA is double-stranded
- Strands are oriented in an anti-parallel manner to each other
- Purines nucleotides are opposite pyrimidines nucleotides
 - Guanine hydrogen bonds with cytosine
 - Adenine hydrogen bonds with thymine
- Structure is stabilized by
 - Hydrogen bonds
 - Hydrophobic bonding between stacked bases

Watson and Crick

- Did not perform any experiments
 - Based on research of others

Research results of others that aided Watson and Crick

- **Erwin Chargaff**
 - Concentrations of guanine and cytosine were always equal in DNA
 - Concentrations of adenine and thymine were equal in DNA

- Rosalind Franklin and Maurice Wilkins:
 - Used X-ray crystallography to study structure of DNA

Clearly showed DNA was a two-

Watson and Crick major contributions to describing the structure of

- DNA had a repeating structures (nucleotides)
- DNA was of a constant width
- DNA was double-stranded