Mendel, the Chromosomal Theory of Inheritance, and DNA As the Hereditary Material

Why Do We Sequence Nucleic Acids??

- Dumb question???
 - Yes, because we all know that nucleic acids control phenotype.
 - Well we have not known that forever.
 - So how did we learn this?

Three lines of evidence converged that lead to this discovery

- Phenotypes are controlled by genes
- Genes are located on chromosomes
- Chromosomes are made up of DNA (one of the nucleic acids).

Gregor Mendel Dramatically changed our perception of heredity

- Particulate factor concept
 - Some physical factor existed that controlled phenotype

Traits have a dominant and recessive forms

- Proof
 - \circ F₁ generation
 - Dominant form appears
 - Recessive form disappears
- F₂
- Recessive form reappears

Mendel's 1st Law, the Law of Segregation

- A single form of the factor controlling phenotype was passed to the gamete during reproduction.
 - Event occurs during reduction step of meiosis
- One of two forms of the factor was passed through the gamete to the offspring.
 - Proof??
 - F₂
 - 3:1 ratio in F2 generation segregating for one trait
 - o 3/4 dominant form
 - 1/4 recessive form
 - F₃ generation
 - Offspring of recessive F₂ plants all recessive form
 - Some offspring of F₂ dominant form plants all dominant form
 - Some offspring of F₂ dominant form plants produce 3:1 dominant to recessive forms
 - Ratio of dominant form F_2 plants in F_3 generation
 - 2/3 segregate for dominant and recessive forms in 3:1 ratio
 - $\circ~$ 1/3 all dominant F_3 plants

Mendel's 2nd Law, the Law of Independent Assortment

- Each trait was controlled by a unique factor
- Proof??
 - 9:3:3:1 ratio in the F2 generation segregating for two traits
 - The cross product of two 3:1 ratios is 9:3:3:1

Mendel

- DID not consider the actual physical entity that controls experiments
 - $\circ~$ Others discovered that entity

Other experiments determined

- Mendel's factors (genes) reside on chromosomes
- DNA was the heredity material.

Naming the Mendelian Laws

- Correns (1900)
 - Referred to segregation and assortment
- Morgan (1916)
 - First to use the terms:
 - Law of Segregation
 - Law of Independent Assortment

Genes Reside on Chromosomes

Eduard Strasburger (1876)

- Cell division is a universal activity of all higher organisms
 - $\circ~$ Same process is observed in plants

Walther Flemming (1878)

- Structures had a string like appearance to them
 - Termed the structures chromatin (or colored substance)
- Also developed the concept of cell division
 - Called cell division mitosis.

Edouard van Beneden (1883)

- Egg cell + sperm cell fertilization
 - o Resulting cell has the diploid chromosome number
- Sperm and egg cell
 - Each contribute equal numbers of chromosomes to the zygote
- Discovered meiosis

Heinrich Wilhelm Gottfried von Waldeyer-Hartz (1888)

- Called the structures dividing during mitosis chromosomes
 - Chromosomes (=colored bodies)

August Weismann (1892)

- Germline Theory
 - o Sperm and egg cells
 - Contain exactly half the number of chromosomes
 - Transmit hereditary information
 - $\circ~$ Somatic cells
 - Carry out normal body functions

Hugo deVries (1889 on)

Performed hybridization experiments and discovered

- Each trait controlled by a different factor
 - $\circ~$ Observed 3:1 ratio in F_2
- Called the hereditary factor a *pangene*
- Individual pangenes controlled all traits
 - Pangenes located in the cell of a diploid organism

Initially unaware that Mendel proved this earlier

- Later tried to publish without referencing Mendel
 - Correns corrected him
 - Admitted that Mendel was the first to discover the laws of genetics

Considered pangenes

Larger than a single chemical molecule
O But still invisible

Reproductive cells

- Receive half of the pangenes during meiosis
 - When reproductive cells unite
 - Diploid number of pangenes is restored

First linkage between inheritance and reproductive cells

Carl Correns (1900)

- Study inheritance in plants
 - Published results in paper
 - "G. Mendel's Law Concerning the Behavior of the Progeny of Racial Hybrids"

Erich Tschermak (1900)

- Plant breeder working on wheat, barley, and oats
 - o Tried to combine earliness and high yield
 - Considered the "father" of Austrian plant breeding
- Did genetic experiments with pea
 - Referenced Mendel in his publication

Rediscovering Mendel's Concepts of Genetics

- Referenced in publications by:
 - DeVries (April 1900)
 - Correns (May 1900)
 - Tschemark (August ??? 1900)

Chromosome Theory of Inheritance (1902-1903)

Chromosomes are the carrier of Mendelian factors and meiosis is the basis of separating the factors into gametes.

Theodor Boveri (1902)

- Observed
 - All male and female chromosome must be present to develop a functioning organism
 - Linked chromosomes and the factors that were described by Mendel
- Quote
 - "... the characters dealt with in Mendelian experiments are truly connected to specific chromosomes."

Walter Sutton (1902)

- Described chromosomes as unique individual units
 - That occur in pairs
 - Separate during meiosis
- Quote
- Chromosomes "...may constitute the physical basis of the Mendelian law of heredity."

Linking Genes and Chromosome

Thomas Hunt Morgan and Calvin Bridges

Thomas Hunt Morgan (1910)

- Discovered a mutant white eye Drosophila
 - Different than the wild type red eye
- Performed genetic experiments
 - Results proved the eye color gene was located on the X chromosome

Calvin Bridges (1914)

- Studied Morgan's white eye mutant
 - Coupled the presence of the X chromosome with a specific eye color
 - Conclusively demonstrated genes indeed reside on chromosomes

Problem with this concept!!

- Chromosomes carried the genetic information
 - They must contain all the genetic factors
- But, the number of chromosomes is less than the number of traits.
 - Now it was essential to show chromosomes contain many factors

Solution: Multiple Genes Reside on Chromosome!!

- Sturtevant, Bridges, Morgan (1919)
 - Mated among *Drosophila* with several different contrasting phenotypes
 - Multiple genes are organized into a linear linkage group
 - Number of linkage groups equals the number of chromosomes

It could now be stated: All features necessary for a hereditary unit are found in chromosomes!!!

Position Effect

Sturtevant (1925)

- If the physical environment of a gene is altered
 - Expression of the gene is affected
- Therefore

• Physical structure of the chromosome is essential for the correct phenotypic expression

From a modern perspective

- This is the first solid evidence that we should take a *genomics approach* to fully understand gene expression.
- Therefore
 - Completely characterizing (=sequencing) all of the genetic material in the cell is necessary.

SO WHAT IS THE GENETIC MATERIAL???

History of DNA As the Genetic Material

Ernst Haeckel (1866)

• Nucleus transmitted hereditary information to the next generation

Friedrich Miescher (1871-1874)

Studied pus cells collected from bandages from surgeries

- Collected white blood cells
- White blood cells primarily composed of nuclei
 - Called this nuclear material nuclein

Determined that nuclein contained two classes of chemicals

- Acidic component
 - Now we know the component is **DNA and RNA**
- Basic component
 - Now know that is **histone proteins**

Linking DNA and Heredity

Fred Griffith (1928)

- Worked with lethal and non-lethal strains of the *Streptococcus* pneumoniae
 - Converted a non-lethal strain to a lethal strain
- Conversion involved
 - o Mixing dead lethal and live non-lethal strains

Griffith's Transforming principle

- Converts one phenotype to another
 - $\circ~$ This is the true nature of a gene
 - These are two alleles of the same gene
- So what is the chemical nature of the transforming principle????

Oswald Avery Colin MacLeoud Maclyn McCarty

Avery, MacLeod, and McCarty (1944)

- Transforming principle
 - DNA was the transforming principle(from the acidic component)
 - \circ Not protein or RNA
 - The other two constituents in the nucleus.

RNA Is Also A Genetic Material

- Heinz Fraenkel-Conrat (1957)
 - \circ RNA viruses exist
 - Interconverted strains of tobacco mosaic virus
 - RNA mediated the interconversion and can be a genetic material

Chemical Structure of DNA

James Watson and Francis Crick (1953)

- DNA is double-stranded
- Strands are oriented in an anti-parallel manner to each other
- Purines nucleotides are opposite pyrimidines nucleotides
 - o Guanine hydrogen bonds with cytosine
 - Adenine hydrogen bonds with thymine
- Structure is stabilized by
 - Hydrogen bonds
 - Hydrophobic bonding between stacked bases

Watson and Crick

- Did not perform any experiments
 - o Based on research of others

Research results of others that aided Watson and Crick

• Erwin Chargaff

- Concentrations of guanine and cytosine were always equal in DNA
- o Concentrations of adenine and thymine were equal in DNA

• Rosalind Franklin and Maurice Wilkins:

Used X-ray crystallography to study structure of DNA

Watson and Crick major contributions to describing the structure of

- DNA had a repeating structures (nucleotides)
- DNA was of a constant width
- DNA was double-stranded