Parametrized Surfaces

Recall from our unit on vector-valued functions at the beginning of the semester that an \mathbb{R}^3-valued function $\vec{c}(t)$ in one parameter is a mapping of the form

$$\vec{c} : I \rightarrow \mathbb{R}^3$$

where I is some subinterval of the real line. If \vec{c} is differentiable, we can think of \vec{c} as smoothly embedding the interval I as a closed curve C in \mathbb{R}^3, a parametrized curve.
Recall from our unit on vector-valued functions at the beginning of the semester that an \mathbb{R}^3-valued function $\vec{c}(t)$ in one parameter is a mapping of the form

$$\vec{c} : I \rightarrow \mathbb{R}^3$$

where I is some subinterval of the real line. If \vec{c} is differentiable, we can think of \vec{c} as smoothly embedding the interval I as a closed curve C in \mathbb{R}^3, a parametrized curve.

Our goal now is to study parametrized surfaces, which are a natural next step from parametrized curves. Now instead of embedding a 1-dimensional domain I into \mathbb{R}^3, we will embed 2-dimensional domain D into \mathbb{R}^3 and do calculus on the embedded surface.
Definition
We consider a continuously differentiable \mathbb{R}^3-valued function of two variables $G: \mathbb{R}^2 \rightarrow \mathbb{R}^3$:

$$G(u, v) = (x(u, v), y(u, v), z(u, v))$$
Definition
We consider a continuously differentiable \(\mathbb{R}^3 \)-valued function of two variables \(G : \mathbb{R}^2 \rightarrow \mathbb{R}^3 : \)

\[
G(u, v) = (x(u, v), y(u, v), z(u, v))
\]

The **graph** of \(G \) is the set

\[
\{(x, y, z) \in \mathbb{R}^3 : \text{there exists } (u, v) \text{ with } G(u, v) = (x, y, z)\}.
\]

(This definition is analogous to that of the graph of a vector-valued function.)

The graph of \(G \) is also called a **parametrized surface**.

The domain \(D \) of \(G \) is called the **parameter domain**.
Example (Parametrization of a Sphere)

Fix any $R > 0$. Let $D = [0, 2\pi] \times [0, \pi]$, a rectangle in \mathbb{R}^2. Define a mapping G on D by

$$G(\theta, \phi) = (R \cos \theta \sin \phi, R \sin \theta \sin \phi, R \cos \phi).$$

Then G maps D onto the sphere of radius R in \mathbb{R}^3.
Example (Parametrization of the Graph of a Real-Valued Function of Two Variables)

Let \(f(x, y) \) be any real-valued function of two variables with domain \(D \). Define mapping \(G \) on \(D \) by

\[
G(x, y) = (x, y, f(x, y)).
\]

Then \(G \) maps \(D \) onto the graph of \(f \). (In particular the graph of \(G \) equals the graph of \(f \).)
Definition
Let $G(u, v) = (x, y, z)$ be a continuously differentiable \mathbb{R}^3-valued function of two variables. Define the u-tangent vector and the v-tangent vector functions of G, respectively, to be

$$\vec{T}_u = (x_u, y_u, z_u) \text{ and } \vec{T}_v = (x_v, y_v, z_v).$$

\vec{T}_u and \vec{T}_v are both functions from \mathbb{R}^2 into \mathbb{R}^3, and they output non-parallel tangent vectors to the graph of G at input (u, v).
Definition
Let $G(u, v) = (x, y, z)$ be a continuously differentiable \mathbb{R}^3-valued function of two variables. Define the \textit{u-tangent vector} and the \textit{v-tangent vector} functions of G, respectively, to be

$$\vec{T}_u = (x_u, y_u, z_u) \text{ and } \vec{T}_v = (x_v, y_v, z_v).$$

\vec{T}_u and \vec{T}_v are both functions from \mathbb{R}^2 into \mathbb{R}^3, and they output non-parallel tangent vectors to the graph of G at input (u, v).

Assume both \vec{T}_u and \vec{T}_v are non-zero. Define the \textbf{normal vector} associated to G to be the function

$$\vec{n} = \vec{T}_u \times \vec{T}_v.$$

Then \vec{n} is always orthogonal to the tangent plane of the graph of G at a point $G(u, v)$.
Example

Let $G(\theta, z) = (2 \cos \theta, 2 \sin \theta, z)$ be a parametrization of the cylinder described by $x^2 + y^2 = 4$.

1. Compute \vec{T}_θ, \vec{T}_z, and \vec{n}.

2. Find an equation for the tangent plane to the graph of G at $G(\frac{\pi}{4}, 5)$.
Solution to (1)

Known: \(G(\theta, z) = (2 \cos \theta, 2 \sin \theta, z) \)
Solution to (1)

Known: \(G(\theta, z) = (2 \cos \theta, 2 \sin \theta, z) \)

Taking derivatives, we have

\[
\vec{T}_\theta(\theta, z) = (-2 \sin \theta, 2 \cos \theta, 0) \text{ and } \vec{T}_z = (0, 0, 1),
\]

and hence

\[
\vec{n}(\theta, z) = \vec{T}_\theta \times \vec{T}_z = \det \begin{bmatrix}
\vec{i} & \vec{j} & \vec{k} \\
-2 \sin \theta & 2 \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix} = (2 \cos \theta, 2 \sin \theta, 0).
\]
Solution to (2)

Known: \(G(\theta, z) = (2 \cos \theta, 2 \sin \theta, z)\)
\(\vec{n} = (2 \cos \theta, 2 \sin \theta, 0)\)
Solution to (2)

Known: \(G(\theta, z) = (2 \cos \theta, 2 \sin \theta, z) \)
\(\vec{n} = (2 \cos \theta, 2 \sin \theta, 0) \)

To find the tangent plane, compute the normal at input \((\pi/4, 5)\):

\[
\vec{n}(\pi/4, 5) = (2 \cos \pi/4, 2 \sin \pi/4, 0) = (\sqrt{2}, \sqrt{2}, 0).
\]

The tangent plane passes through the point \(G(\pi/4, 5) = (\sqrt{2}, \sqrt{2}, 5) \), and so its equation [using \(0 = \vec{n} \cdot ((x, y, z) - (x_0, y_0, z_0)) \)] is given by

\[
0 = \sqrt{2}(x - \sqrt{2}) + \sqrt{2}(y - \sqrt{2}).
\]
Surface Integrals

Definition
Let $G(u, v) = (x, y, z)$ be a one-to-one continuously differentiable parametrization of a surface S in \mathbb{R}^3 with domain D, with non-zero tangent vectors \vec{T}_u and \vec{T}_v. Let $f(x, y, z)$ be a real-valued function of three variables. Define the surface integral of f over S to be

$$\int \int_S f(x, y, z) dS = \int \int_D f(G(u, v)) \|\vec{n}(u, v)\| d(u, v).$$
Surface Integrals

Definition
Let \(G(u, v) = (x, y, z) \) be a one-to-one continuously differentiable parametrization of a surface \(S \) in \(\mathbb{R}^3 \) with domain \(D \), with non-zero tangent vectors \(\vec{T}_u \) and \(\vec{T}_v \). Let \(f(x, y, z) \) be a real-valued function of three variables. Define the surface integral of \(f \) over \(S \) to be

\[
\int \int_S f(x, y, z) \, dS = \int \int_D f(G(u, v)) ||\vec{n}(u, v)|| \, d(u, v).
\]

Fact
If \(G \) is as above, then the surface integral \(\int \int_S 1 \, dS \) is exactly the surface area of the graph of \(G \).
Example

1. Calculate the surface area of the portion S of the cone $x^2 + y^2 = z^2$ within the cylinder $x^2 + y^2 = 4$.

2. For the same S, calculate $\int \int_S x^2 zdS$.
Surface Area of S

First we parametrize the cone by G using a variant of spherical coordinates:

$$G(\rho, \theta) = (x, y, z)$$

$$= \left(\rho \cos \theta \sin \frac{\pi}{4}, \rho \sin \theta \sin \frac{\pi}{4}, \rho \cos \frac{\pi}{4} \right)$$

$$= \left(\frac{\sqrt{2}}{2} \rho \cos \theta, \frac{\sqrt{2}}{2} \sin \theta, \frac{\sqrt{2}}{2} \rho \right)$$

on the domain $D = [0, 2\sqrt{2}] \times [0, 2\pi]$ in the (ρ, θ)-plane.
Surface Area of S

First we parametrize the cone by G using a variant of spherical coordinates:

\[G(\rho, \theta) = (x, y, z) = \left(\rho \cos \theta \sin \frac{\pi}{4}, \rho \sin \theta \sin \frac{\pi}{4}, \rho \cos \frac{\pi}{4} \right) = \left(\frac{\sqrt{2}}{2} \rho \cos \theta, \frac{\sqrt{2}}{2} \sin \theta, \frac{\sqrt{2}}{2} \rho \right) \]

on the domain $D = [0, 2\sqrt{2}] \times [0, 2\pi]$ in the (ρ, θ)-plane.

Now compute tangent and normal vectors:

\[\vec{T}_\rho = \left(\frac{\sqrt{2}}{2} \cos \theta, \frac{\sqrt{2}}{2} \sin \theta, \frac{\sqrt{2}}{2} \right) \]
Surface Area of S

First we parametrize the cone by G using a variant of spherical coordinates:

$$G(\rho, \theta) = (x, y, z)$$

$$= \left(\rho \cos \theta \sin \frac{\pi}{4}, \rho \sin \theta \sin \frac{\pi}{4}, \rho \cos \frac{\pi}{4} \right)$$

$$= \left(\frac{\sqrt{2}}{2} \rho \cos \theta, \frac{\sqrt{2}}{2} \sin \theta, \frac{\sqrt{2}}{2} \rho \right)$$

on the domain $D = [0, 2\sqrt{2}] \times [0, 2\pi]$ in the (ρ, θ)-plane.

Now compute tangent and normal vectors:

$$\vec{T}_\rho = \left(\frac{\sqrt{2}}{2} \cos \theta, \frac{\sqrt{2}}{2} \sin \theta, \frac{\sqrt{2}}{2} \right)$$

$$\vec{T}_\theta = \left(-\frac{\sqrt{2}}{2} \rho \sin \theta, \frac{\sqrt{2}}{2} \rho \cos \theta, 0 \right)$$
Surface Area of S

First we parametrize the cone by G using a variant of spherical coordinates:

$$G(\rho, \theta) = (x, y, z)$$

$$= \left(\rho \cos \theta \sin \frac{\pi}{4}, \rho \sin \theta \sin \frac{\pi}{4}, \rho \cos \frac{\pi}{4} \right)$$

$$= \left(\frac{\sqrt{2}}{2} \rho \cos \theta, \frac{\sqrt{2}}{2} \sin \theta, \frac{\sqrt{2}}{2} \rho \right)$$

on the domain $D = [0, 2\sqrt{2}] \times [0, 2\pi]$ in the (ρ, θ)-plane.

Now compute tangent and normal vectors:

$$\vec{T}_\rho = \left(\frac{\sqrt{2}}{2} \cos \theta, \frac{\sqrt{2}}{2} \sin \theta, \frac{\sqrt{2}}{2} \right)$$

$$\vec{T}_\theta = \left(-\frac{\sqrt{2}}{2} \rho \sin \theta, \frac{\sqrt{2}}{2} \rho \cos \theta, 0 \right)$$

$$\vec{n} = \vec{T}_\rho \times \vec{T}_\theta = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\sqrt{2}}{2} \cos \theta & \frac{\sqrt{2}}{2} \sin \theta & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \rho \sin \theta & \frac{\sqrt{2}}{2} \rho \cos \theta & 0 \end{vmatrix}$$

$$= \left(-\frac{1}{2} \rho \cos \theta, -\frac{1}{2} \rho \sin \theta, \frac{1}{2} \rho \right).$$
Surface Area of S, contd.

Known: $\vec{n} = (-\frac{1}{2}\rho \cos \theta, -\frac{1}{2}\rho \sin \theta, \frac{1}{2}\rho)$

Now the length of \vec{n} is

$$||\vec{n}|| = \sqrt{\frac{1}{4} \rho^2 \cos^2 \theta + \frac{1}{4} \rho^2 \sin^2 \theta + \frac{1}{4} \rho^2} = \frac{\sqrt{2}}{2} \rho,$$
Surface Area of S, contd.

Known: $\vec{n} = (-\frac{1}{2}\rho \cos \theta, -\frac{1}{2}\rho \sin \theta, \frac{1}{2}\rho)$

Now the length of \vec{n} is

$$||\vec{n}|| = \sqrt{\frac{1}{4} \rho^2 \cos^2 \theta + \frac{1}{4} \rho^2 \sin^2 \theta + \frac{1}{4} \rho^2} = \frac{\sqrt{2}}{2} \rho,$$

and so we are able to compute the area surface integral:

$$\int \int_S 1dS = \int_D \int ||\vec{n}(u, v)|| d(u, v)$$

$$= \int_0^{2\pi} \int_0^{2\sqrt{2}} \frac{\sqrt{2}}{2} \rho d\rho d\theta$$

$$= \frac{\sqrt{2}}{2} \left[\theta\right]_0^{2\pi} \cdot \left[\frac{1}{2} \rho^2\right]_0^{2\sqrt{2}}$$

$$= 4\sqrt{2}\pi.$$
Surface Integral of x^2z

Known: $\vec{n} = \frac{\sqrt{2}}{2} \rho$

$f(x, y, z) = x^2z$

$G(\rho, \theta) = \left(\frac{\sqrt{2}}{2} \rho \cos \theta, \frac{\sqrt{2}}{2} \sin \theta, \frac{\sqrt{2}}{2} \rho \right)$
Surface Integral of x^2z

Known: $\vec{n} = \frac{\sqrt{2}}{2} \rho$

$f(x, y, z) = x^2z$

$G(\rho, \theta) = \left(\frac{\sqrt{2}}{2} \rho \cos \theta, \frac{\sqrt{2}}{2} \sin \theta, \frac{\sqrt{2}}{2} \rho \right)$

Compute the composition:

$$f(G(\rho, \theta)) = \frac{\sqrt{2}}{4} \rho^3 \cos^2 \theta,$$
Surface Integral of $x^2 z$

Known: $\vec{n} = \frac{\sqrt{2}}{2} \rho$

$f(x, y, z) = x^2 z$

$G(\rho, \theta) = \left(\frac{\sqrt{2}}{2} \rho \cos \theta, \frac{\sqrt{2}}{2} \sin \theta, \frac{\sqrt{2}}{2} \rho \right)$

Compute the composition:

$f(G(\rho, \theta)) = \frac{\sqrt{2}}{4} \rho^3 \cos^2 \theta,$

and hence

$$\int \int_S f dS = \int \int_D f(G(u, v)) ||\vec{n}(u, v)|| d(u, v)$$

$$= \int_0^{2\pi} \int_0^{2\sqrt{2}} \frac{\sqrt{2}}{4} \rho^3 \cos^2 \theta \cdot \frac{\sqrt{2}}{2} \rho d\rho d\theta$$

$$= \frac{1}{4} \int_0^{2\pi} \int_0^{2\sqrt{2}} \rho^4 \cos^2 \theta d\rho d\theta$$

$$= \frac{1}{4} \left[\frac{1}{5} \rho^5 \right]_0^{2\sqrt{2}} \left[\frac{1}{2} \theta + \frac{1}{4} \sin 2\theta \right]_0^{2\pi}$$

$$= \frac{32\sqrt{2}\pi}{5}.$$
Fact

Suppose $g(x, y)$ is a function of two variables let S be the graph of g. Suppose $G(x, y)$ is a parametrization of S. Then

$$\vec{T}_x = (1, 0, g_x) \text{ and } \vec{T}_y = (0, 1, g_y);$$

$$\vec{n} = \sqrt{1 + g_x^2 + g_y^2};$$
Fact
Suppose $g(x, y)$ is a function of two variables let S be the graph of g. Suppose $G(x, y)$ is a parametrization of S. Then

\[\mathbf{T}_x = (1, 0, g_x) \text{ and } \mathbf{T}_y = (0, 1, g_y); \]

\[\mathbf{n} = \sqrt{1 + g_x^2 + g_y^2}; \]

and therefore for any function f with domain S we have

\[\int \int_S f(x, y, z) dS = \int \int_D f(x, y, g(x, y)) \sqrt{1 + g_x^2 + g_y^2} d(x, y). \]
Proof.
Let $g(x, y)$ be a function. Then the graph of g is parametrized by

$$G(u, v) = (x, y, z) = (u, v, g(u, v)).$$
Proof.
Let $g(x, y)$ be a function. Then the graph of g is parametrized by

$$G(u, v) = (x, y, z) = (u, v, g(u, v)).$$

Computing tangent vectors, we have

$$\vec{T}_u = (1, 0, g_x(u, v)) \text{ and } \vec{T}_v = (0, 1, g_y(u, v))$$
Proof.
Let \(g(x, y) \) be a function. Then the graph of \(g \) is parametrized by
\[
G(u, v) = (x, y, z) = (u, v, g(u, v)).
\]
Computing tangent vectors, we have
\[
\vec{T}_u = (1, 0, g_x(u, v)) \quad \text{and} \quad \vec{T}_v(0, 1, g_y(u, v))
\]
and hence
\[
\vec{n} = \det \begin{bmatrix}
\vec{i} & \vec{j} & \vec{k} \\
1 & 0 & g_x(u, v) \\
0 & 1 & g_y(u, v)
\end{bmatrix} = (-g_x, -g_y, 1) \quad \text{and} \\
||\vec{n}|| = (\sqrt{1 + g_x^2 + g_y^2}).
\]
Proof. Let $g(x, y)$ be a function. Then the graph of g is parametrized by

$$G(u, v) = (x, y, z) = (u, v, g(u, v)).$$

Computing tangent vectors, we have

$$\vec{T}_u = (1, 0, g_x(u, v))$$ and $$\vec{T}_v(0, 1, g_y(u, v))$$

and hence

$$\vec{n} = \det \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & g_x(u, v) \\ 0 & 1 & g_y(u, v) \end{bmatrix} = (-g_x, -g_y, 1)$$ and

$$||\vec{n}|| = (\sqrt{1 + g_x^2 + g_y^2}).$$

Therefore if we want to compute the surface integral of f over the graph of g, we get

$$\int \int_S f(x, y, z) dS = \int \int_D f(x, y, g(x, y)) \sqrt{1 + g_x^2 + g_y^2} d(x, y).$$
Example
Compute \(\int \int_S (z - x) dS \), where \(S \) is the graph of \(z = x + y^2 \), \(0 \leq x \leq y \), \(0 \leq y \leq 1 \).
Example
Compute \(\int \int_S (z - x) \, dS \), where \(S \) is the graph of \(z = x + y^2 \), \(0 \leq x \leq y \), \(0 \leq y \leq 1 \).

Solution.
Take \(g(x, y) = x + y^2 \), so \(||\vec{n}|| = \sqrt{1 + 1 + (2y)^2} = \sqrt{2 + 4y^2} \).
Example

Compute \(\int \int_{S} (z - x) \, dS \), where \(S \) is the graph of \(z = x + y^2 \), \(0 \leq x \leq y \), \(0 \leq y \leq 1 \).

Solution.

Take \(g(x, y) = x + y^2 \), so \(||\vec{n}|| = \sqrt{1 + 1 + (2y)^2} = \sqrt{2 + 4y^2} \) \)

and \(f(x, y, g(x, y)) = g(x, y) - x = x + y^2 - x = y^2 \).
Example
Compute $\int \int_S (z - x) dS$, where S is the graph of $z = x + y^2$, $0 \leq x \leq y$, $0 \leq y \leq 1$.

Solution.
Take $g(x, y) = x + y^2$, so $||\vec{n}|| = \sqrt{1 + 1 + (2y)^2} = \sqrt{2 + 4y^2}$

and $f(x, y, g(x, y) = g(x, y) - x = x + y^2 - x = y^2$.

Now compute (using substitution rule with $u = 2 + 4y^2$):

$$\int \int_S (z - x) dS = \int_0^1 \int_0^y y^2 \sqrt{2 + 4y^2} dx \, dy$$

$$= \int_0^1 y^3 \sqrt{2 + 4y^2} \, dy$$

$$= \frac{1}{30} (6\sqrt{6} + \sqrt{2}).$$
Our goal now is to develop an integral which computes the amount of flow of a given vector field in \mathbb{R}^3 through a given oriented surface S, which we call a \textbf{flux integral}.

Definition

Let $G(u, v)$ be a parametrization of the surface S in \mathbb{R}^3, and let \vec{n} be its associated normal vector. Let \vec{F} be a vector field over \mathbb{R}^3. The normal component of \vec{F} with respect to G is $\vec{F} \cdot \vec{n}$. Informally speaking, the normal component of \vec{F} is "how much" of the vector field \vec{F} is orthogonal to the surface S.

The flux integral or vector surface integral $\int\int_S \vec{F} \cdot dS$ of \vec{F} across S is the surface integral of the normal component of \vec{F}, i.e.

$$\int\int_S \vec{F} \cdot dS = \int\int_S (\vec{F} \cdot \vec{n}) \, dS.$$
Flux Integrals

Our goal now is to develop an integral which computes the amount of flow of a given vector field in \mathbb{R}^3 through a given oriented surface S, which we call a **flux integral**.

Definition
Let $G(u, v)$ be a parametrization of the surface S in \mathbb{R}^3, and let \vec{n} be its associated normal vector. Let \vec{F} be a vector field over \mathbb{R}^3. The normal component of \vec{F} with respect to G is $\vec{F} \cdot \vec{n}$. Informally speaking, the normal component of \vec{F} is "how much" of the vector field \vec{F} is orthogonal to the surface S. The flux integral or vector surface integral $\int\int_S \vec{F} \cdot d\vec{S}$ of \vec{F} across S is the surface integral of the normal component of \vec{F}, i.e. $\int\int_S \vec{F} \cdot d\vec{S} = \int\int_S (\vec{F} \cdot \vec{n}) dS$.

Flux Integrals

Our goal now is develop an integral which computes the amount of flow of a given vector field in \mathbb{R}^3 through a given oriented surface S, which we call a flux integral.

Definition

Let $G(u, v)$ be a parametrization of the surface S in \mathbb{R}^3, and let \vec{n} be its associated normal vector. Let \vec{F} be a vector field over \mathbb{R}^3.

The **normal component** of \vec{F} with respect to G is $\vec{F} \cdot \vec{n}$.

Informally speaking, the normal component of \vec{F} is “how much” of the vector field \vec{F} is orthogonal to the surface S.

Flux Integrals

Our goal now is develop an integral which computes the amount of flow of a given vector field in \mathbb{R}^3 through a given oriented surface S, which we call a flux integral.

Definition

Let $G(u, v)$ be a parametrization of the surface S in \mathbb{R}^3, and let \vec{n} be its associated normal vector. Let \vec{F} be a vector field over \mathbb{R}^3.

The **normal component** of \vec{F} with respect to G is $\vec{F} \cdot \vec{n}$.

Informally speaking, the normal component of \vec{F} is “how much” of the vector field \vec{F} is orthogonal to the surface S.

The **flux integral** or **vector surface integral** $\int \int_S \vec{F} \cdot dS$ of \vec{F} across S is the surface integral of the normal component of \vec{F}, i.e.

$$\int \int_S \vec{F} \cdot dS = \int \int_S (\vec{F} \cdot \vec{n})dS.$$
Fact
Let G, S, \vec{n}, \vec{F} be as in the previous definition, and let D be the domain of G. Then

$$\int \int_S \vec{F} \cdot dS = \int \int_D \vec{F}(G(u, v)) \cdot \vec{n}(u, v) d(u, v).$$

To help remember the formula, note the analogy here: computationally, flux integrals are to surface integrals as vector field line integrals are to scalar line integrals.
Example

Compute $\int \int_S \vec{F} \cdot dS$, where $\vec{F} = (0, 0, x)$ and S is the graph of $G(u, v) = (u^2, v, u^3 - v^2)$ with domain $D = [0, 1] \times [0, 1]$.
Example

Compute $\int \int_{S} \vec{F} \cdot dS$, where $\vec{F} = (0, 0, x)$ and S is the graph of $G(u, v) = (u^2, v, u^3 - v^2)$ with domain $D = [0, 1] \times [0, 1]$.

Solution.

Compute the tangents and normal of G:

$$\vec{T}_u = (2u, 0, 3u^2) \text{ and } \vec{T}_v = (0, 1, -2v),$$

and
Example
Compute \(\int \int_S \vec{F} \cdot dS \), where \(\vec{F} = (0, 0, x) \) and \(S \) is the graph of \(G(u, v) = (u^2, v, u^3 - v^2) \) with domain \(D = [0, 1] \times [0, 1] \).

Solution.
Compute the tangents and normal of \(G \):

\[
\vec{T}_u = (2u, 0, 3u^2) \text{ and } \vec{T}_v = (0, 1, -2v), \text{ and}
\]

\[
\vec{n} = \det \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2u & 0 & 3u^2 \\ 0 & 1 & -2v \end{bmatrix} = (-3u^2, 4uv, 2u).
\]
Example
Compute \(\int \int_S \vec{F} \cdot dS \), where \(\vec{F} = (0, 0, x) \) and \(S \) is the graph of \(G(u, v) = (u^2, v, u^3 - v^2) \) with domain \(D = [0, 1] \times [0, 1] \).

Solution.
Compute the tangents and normal of \(G \):

\[
\vec{T}_u = (2u, 0, 3u^2) \quad \text{and} \quad \vec{T}_v = (0, 1, -2v), \quad \text{and} \\
\vec{n} = \det \begin{bmatrix}
\vec{i} & \vec{j} & \vec{k} \\
2u & 0 & 3u^2 \\
0 & 1 & -2v
\end{bmatrix} = (-3u^2, 4uv, 2u).
\]

Now compute the normal component of \(\vec{F} \):

\[
\vec{F}(G(u, v)) \cdot \vec{n} = (0, 0, u^2) \cdot (-3u^2, 4uv, 2u) = 2u^3.
\]
Example

Compute \(\int \int_S \vec{F} \cdot dS \), where \(\vec{F} = (0, 0, x) \) and \(S \) is the graph of \(G(u, v) = (u^2, v, u^3 - v^2) \) with domain \(D = [0, 1] \times [0, 1] \).

Solution.

Compute the tangents and normal of \(G \):

\[
\vec{T}_u = (2u, 0, 3u^2) \quad \text{and} \quad \vec{T}_v = (0, 1, -2v), \quad \text{and} \quad \vec{n} = \det \begin{bmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2u & 0 & 3u^2 \\ 0 & 1 & -2v \end{bmatrix} = (-3u^2, 4uv, 2u).
\]

Now compute the normal component of \(\vec{F} \):

\[
\vec{F}(G(u, v)) \cdot \vec{n} = (0, 0, u^2) \cdot (-3u^2, 4uv, 2u) = 2u^3.
\]

Finally compute the integral:

\[
\int \int_S \vec{F} \cdot dS = \int_0^1 \int_0^1 2u^3 \, du \, dv = \frac{1}{2} u^4 \Big|_0^1 \cdot [v]_0^1 = \frac{1}{2}.
\]
Example

Let \(\vec{v} = (x^2 + y^2, 0, z^2) \) model the velocity (in cm/s) of a three-dimensional body of water. Compute the volume of water passing each second through the upper hemisphere \(S \) of the unit sphere centered at the origin. (Hint: Compute the corresponding flux integral.)

Solution.

First parametrize the upper hemisphere using spherical coordinates:

\[
G(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)
\]

on \([0, 2\pi] \times [0, \pi/2]\) in the \((\theta, \phi)\)-plane.

Now compute tangents and normals.

\[
\vec{T}_\theta = (-\sin \theta \sin \phi, \cos \theta \sin \phi, 0)
\] and

\[
\vec{T}_\phi = (\cos \theta \cos \phi, \sin \theta \cos \phi, -\sin \phi);
\]

\[
\vec{n} = \vec{T}_\theta \times \vec{T}_\phi = (\cos \theta \sin^2 \phi, \sin \theta \sin^2 \phi, \cos \phi).
\]

Now \(\vec{v}(G(\theta, \phi)) = (\sin^2 \phi, 0, \cos^2 \phi) \), and so

\[
\vec{v}(G(\theta, \phi)) \cdot \vec{n}(\theta, \phi) = \sin^4 \phi \cos \theta + \sin \phi \cos^3 \phi.
\]

Then we compute the surface integral (using symmetry on the first half):

\[
\int \int_S \vec{v} \cdot dS = \int_{\pi/2}^0 \int_{2\pi}^0 (\sin^4 \phi \cos \theta + \sin \phi \cos^3 \phi) \, d\theta \, d\phi = 0 + \frac{\pi}{2}.
\]

So the volume of water flow is \(\frac{\pi}{2} \) cubic centimeters per second.
Example
Let \(\vec{v} = (x^2 + y^2, 0, z^2) \) model the velocity (in cm/s) of a three-dimensional body of water. Compute the volume of water passing each second through the upper hemisphere \(S \) of the unit sphere centered at the origin. (Hint: Compute the corresponding flux integral.)

Solution.
First parametrize the upper hemisphere using spherical coordinates:

\[
G(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi) \text{ on } [0, 2\pi] \times [0, \frac{\pi}{2}] \text{ in the } (\theta, \phi)-\text{plane.}
\]
Example

Let $\vec{v} = (x^2 + y^2, 0, z^2)$ model the velocity (in cm/s) of a three-dimensional body of water. Compute the volume of water passing each second through the upper hemisphere S of the unit sphere centered at the origin. (Hint: Compute the corresponding flux integral.)

Solution.

First parametrize the upper hemisphere using spherical coordinates:

$$G(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi) \text{ on } [0, 2\pi] \times [0, \frac{\pi}{2}] \text{ in the }(\theta, \phi)-\text{plane.}$$

Now compute tangents and normals.

$$\vec{T}_\theta = (-\sin \theta \sin \phi, \cos \theta \sin \phi, 0) \text{ and } \vec{T}_\phi = (\cos \theta \cos \phi, \sin \theta \cos \phi, -\sin \phi);$$

$$\vec{n} = \vec{T}_\theta \times \vec{T}_\phi = (\cos \theta \sin^2 \phi, \sin \theta \sin^2 \phi, \cos \phi).$$
Example

Let $\vec{v} = (x^2 + y^2, 0, z^2)$ model the velocity (in cm/s) of a three-dimensional body of water. Compute the volume of water passing each second through the upper hemisphere S of the unit sphere centered at the origin. (Hint: Compute the corresponding flux integral.)

Solution.

First parametrize the upper hemisphere using spherical coordinates:

$$G(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$$

on $[0, 2\pi] \times [0, \frac{\pi}{2}]$ in the (θ, ϕ)-plane.

Now compute tangents and normals.

$$\vec{T}_\theta = (-\sin \theta \sin \phi, \cos \theta \sin \phi, 0) \quad \text{and} \quad \vec{T}_\phi = (\cos \theta \cos \phi, \sin \theta \cos \phi, -\sin \phi);$$

$$\vec{n} = \vec{T}_\theta \times \vec{T}_\phi = (\cos \theta \sin^2 \phi, \sin \theta \sin^2 \phi, \cos \phi).$$

Now $\vec{v}(G(\theta, \phi)) = (\sin^2 \phi, 0, \cos^2 \phi)$, and so

$$\int \int_S \vec{v} \cdot dS = \int_{\pi/2}^0 \int_0^{2\pi} (\sin^2 \phi \cos \theta + \sin \phi \cos^3 \phi) \, d\theta \, d\phi = \frac{\pi}{2}.$$
Example
Let \(\vec{v} = (x^2 + y^2, 0, z^2) \) model the velocity (in cm/s) of a three-dimensional body of water. Compute the volume of water passing each second through the upper hemisphere \(S \) of the unit sphere centered at the origin. (Hint: Compute the corresponding flux integral.)

Solution.
First parametrize the upper hemisphere using spherical coordinates:

\[
G(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi) \text{ on } [0, 2\pi] \times [0, \frac{\pi}{2}] \text{ in the } (\theta, \phi)-\text{plane}.
\]

Now compute tangents and normals.

\[
\vec{T}_\theta = (-\sin \theta \sin \phi, \cos \theta \sin \phi, 0) \text{ and } \vec{T}_\phi = (\cos \theta \cos \phi, \sin \theta \cos \phi, -\sin \phi);
\]

\[
\vec{n} = \vec{T}_\theta \times \vec{T}_\phi = (\cos \theta \sin^2 \phi, \sin \theta \sin^2 \phi, \cos \phi).
\]

Now \(\vec{v}(G(\theta, \phi)) = (\sin^2 \phi, 0, \cos^2 \phi) \), and so

\[
\vec{v}(G(\theta, \phi)) \cdot \vec{n}(\theta, \phi) = \sin^4 \phi \cos \theta + \sin \phi \cos^3 \phi.
\]
Example

Let $\vec{v} = (x^2 + y^2, 0, z^2)$ model the velocity (in cm/s) of a three-dimensional body of water. Compute the the volume of water passing each second through the upper hemisphere S of the unit sphere centered at the origin. (Hint: Compute the corresponding flux integral.)

Solution.

First parametrize the upper hemisphere using spherical coordinates:

$$G(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$$
on $[0, 2\pi] \times [0, \frac{\pi}{2}]$ in the (θ, ϕ)-plane.

Now compute tangents and normals.

$$\vec{T}_\theta = (-\sin \theta \sin \phi, \cos \theta \sin \phi, 0) \text{ and } \vec{T}_\phi = (\cos \theta \cos \phi, \sin \theta \cos \phi, -\sin \phi);$$
$$\vec{n} = \vec{T}_\theta \times \vec{T}_\phi = (\cos \theta \sin^2 \phi, \sin \theta \sin^2 \phi, \cos \phi).$$

Now $\vec{v}(G(\theta, \phi)) = (\sin^2 \phi, 0, \cos^2 \phi)$, and so

$$\vec{v}(G(\theta, \phi)) \cdot \vec{n}(\theta, \phi) = \sin^4 \phi \cos \theta + \sin \phi \cos^3 \phi.$$

Then we compute the surface integral (using symmetry on the first half):

$$\int \int_S \vec{v} \cdot dS = \int_0^{\pi/2} \int_0^{2\pi} (\sin^4 \phi \cos \theta + \sin \phi \cos^3 \phi) d\theta d\phi$$
$$= 0 + \frac{\pi}{2}.$$