Metric Space Topology (Spring 2016) Selected Homework Solutions

HW1 Q1.2. Suppose that d is a metric on a set X. Prove that the inequality $|d(x, y) - d(z, w)| \leq d(x, z) + d(y, w)$ holds for all $w, x, y, z \in X$.

Proof. Let $w, x, y, z \in X$ be arbitrary. By the triangle inequality applied twice in succession,

$$d(x, y) \leq d(x, z) + d(z, y) \leq d(x, z) + d(z, w) + d(w, y).$$

Subtracting $d(z, w)$ from both sides yields

$$d(x, y) - d(z, w) \leq d(x, z) + d(y, w).$$

Now, the equality above holds for all points w, x, y, z. So swapping x with z, and y with w, and using the symmetry of the metric d, we obtain $d(z, w) - d(x, y) \leq d(x, z) + d(y, w)$. Flipping signs on this inequality yields

$$-d(x, z) - d(y, w) \leq d(x, y) - d(z, w).$$

So we have shown $-d(x, z) - d(y, w) \leq d(x, y) - d(z, w) \leq d(x, z) + d(y, w)$, which is equivalent to the inequality we hoped to show. □

HW1 Q1.8. Let $\mathcal{F}(S)$ be the set of all finite subsets of a set S. Define a function d on $\mathcal{F}(S) \times \mathcal{F}(S)$ by the rule $d(A, B) = \#(\Delta(A, B))$ for all $A, B \in \mathcal{F}(S)$, where Δ denotes symmetric difference and $\#$ denotes cardinality. Is d a metric?

We claim d is a metric, and prove our assertion below.

Proof. Clearly $d(A, B) \geq 0$ for all $A, B \in \mathcal{F}(S)$, with $d(A, A) = \#(\emptyset) = 0$. If $d(A, B) = \#(\Delta(A, B)) = 0$, then $\Delta(A, B) = \emptyset$, from which we conclude $A = B$. Since $\Delta(A, B) = \Delta(B, A)$, we have $d(A, B) = d(B, A)$. So to finish the proof, we need only check the triangle inequality for d.

So let $A, B, C \in \mathcal{F}(S)$ be arbitrary. We know $\Delta(A, B) = (A \setminus B) \cup (B \setminus A)$; let us first consider $A \setminus B$. We note that

$$A \setminus B = [(A \setminus B) \cap C] \cup [(A \setminus B) \setminus C] \subseteq (C \setminus B) \cup (A \setminus C).$$

Similarly, $B \setminus A \subseteq (C \setminus A) \cup (B \setminus C)$. So we have
\[\Delta(A, B) = (A \setminus B) \cup (B \setminus A) \]
\[\subseteq (C \setminus B) \cup (A \setminus C) \cup (C \setminus A) \cup (B \setminus C) \]
\[= (A \setminus C) \cup (C \setminus A) \cup (C \setminus B) \cup (B \setminus C) \]
\[= \Delta(A, C) \cup \Delta(C, B). \]

It follows that
\[d(A, B) = \#(\Delta(A, B)) \]
\[\leq \#(\Delta(A, C) \cup \Delta(C, B)) \]
\[\leq \#(\Delta(A, C)) + \#(\Delta(C, B)) \]
\[= d(A, C) + d(C, B). \]

\(\square\)

HW2 #1. Suppose \((X, d)\) is a metric space and \(e(x, y) = \frac{d(x, y)}{1 + d(x, y)}\) for every \(x, y \in X\). Prove that \(e\) is a metric on \(X\).

Proof. Since \(d\) is a metric to begin with, the positivity and symmetry conditions for \(e\) obviously hold. So we need to check the triangle inequality for \(e\).

To that end, suppose \(x, y, z \geq 0\) are three nonnegative real numbers, and further suppose that \(x \leq y + z\). Since adding nonnegative terms can only make the right side bigger, it follows that \(x \leq y + z + 2yz + xyz\). Now, adding \((xy + xz + xyz)\) to both sides yields the inequality
\[x + xy + xz + xyz \leq y + xy + yz + xyz + z + xz + yz + xyz, \]

in other words,
\[x(1 + y)(1 + z) \leq y(1 + x)(1 + z) + z(1 + x)(1 + y). \]

Dividing through above by the positive number \((1 + x)(1 + y)(1 + z)\), we obtain
\[\frac{x}{1 + x} \leq \frac{y}{1 + y} + \frac{z}{1 + z}. \]

To finish the proof, we simply observe that if \(a, b, c\) are any three points in \(X\), then we can set \(x = d(a, b), y = d(a, c), z = d(c, b)\). Since \(d\) is a metric, \(x \leq y + z\), and now the above line implies that the triangle inequality holds for \(e\).

\(\square\)

HW2 #2. For \((X, e)\) in the previous problem, prove that \(X\) has finite diameter.
Proof. Let \(x, y \in X \) be arbitrary. Then \(d(x, y) < 1 + d(x, y) \), and hence \(e(x, y) = \frac{d(x, y)}{1 + d(x, y)} < 1 \). So 1 is a lower bound for the set \(\{d(x, y) : x, y \in x\} \). Therefore \(\text{diam}(X) = \inf\{d(x, y) : x, y \in x\} \leq 1 \).

\[\text{HW2 } \#3. \text{ For the metric space } (\mathbb{N}, d) \text{ in Example 1.1.12, show that } \mathbb{N} \text{ has exactly one accumulation point.}\]

Proof. We will show \(\infty \) is the sole accumulation point. To see this, compute the distance from \(\infty \) to \(\mathbb{N}\{\infty\} = \mathbb{N} \):

\[
\text{dist}(\infty, \mathbb{N}) = \inf \{d(\infty, n) : n \in \mathbb{N}\} = \inf \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}.
\]

Now the infimum in the last line above is at least 0, since \(0 < \frac{1}{n} \) for every \(n \in \mathbb{N} \). On the other hand, notice that for every \(\epsilon > 0 \), \(\epsilon \) fails to be a lower bound: because there are always integers \(n \in \mathbb{N} \) for which \(n > \frac{1}{\epsilon} \), whence \(\frac{1}{n} < \epsilon \). So the infimum above is exactly 0. This shows \(\infty \) is an accumulation point.

On the other hand, if \(n \in \mathbb{N} \), we claim \(n \) is an isolated point of \(\mathbb{N} \) (and hence \(\infty \) is the only accumulation point). To see this, we must show \(\text{dist}(n, \mathbb{N}\{n\}) > 0 \). So, for our fixed \(n \), let us consider the following quantity:

\[
B = \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)}.
\]

Now consider an arbitrary \(m \in \mathbb{N}\{\infty\} \). Either \(m = \infty \), or \(m \in \mathbb{N} \) and \(m < n \), or \(m \in \mathbb{N} \) and \(m > n \). If \(m = \infty \), then \(d(n, m) = d(n, \infty) = \frac{1}{n} > \frac{1}{n} - \frac{1}{n+1} = B \).

If \(m \in \mathbb{N} \) and \(m < n \), then \(m \leq n-1 \). Therefore \(\frac{1}{m} \geq \frac{1}{n-1} \), whence \(d(n, m) = \frac{1}{m} - \frac{1}{n} \geq \frac{1}{n-1} - \frac{1}{n} = \frac{1}{n(n-1)} > \frac{1}{n(n+1)} = B \).

If \(m \in \mathbb{N} \) and \(m > n \), then \(n+1 \leq m \). Therefore \(\frac{1}{n+1} \geq \frac{1}{m} \), whence \(d(n, m) = \frac{1}{n} - \frac{1}{m} \geq \frac{1}{n+1} - \frac{1}{n} = B \).

By checking all cases, we have shown that \(B \) is a lower bound for the set \(\{d(n, m) : m \in \mathbb{N}\{n\}\} \). It follows that \(\text{dist}(n, \mathbb{N}\{n\}) \geq B > 0 \), and \(n \) is an isolated point as claimed. This completes the proof.

\[\text{HW2 } \#4. \text{ For the metric space } (\mathbb{R}^2, d) \text{ in Example 1.1.15, show that there exists exactly one isolated point of } \mathbb{R}^2.\]

Proof. First, we claim \((0, 0)\) is an isolated point. To see this, note that by definition of the metric, \(d((0, 0), x) \geq 1 \) for every \(x \in \mathbb{R}^2 \), \(x \neq (0, 0) \). It follows that \(\text{dist}((0, 0), \mathbb{R}^2\{(0, 0)\}) \geq 1 > 0 \), i.e. \((0, 0)\) is isolated.

On the other hand, we claim every other point \(x \in \mathbb{R}^2 \), \(x \neq (0, 0) \) is an accumulation point. To see this, let \(e \) denote the usual metric on \(\mathbb{R}^2 \), and observe that by the definition of \(d \), we have \((\mathbb{R}^2\{(0, 0)\}, d) = (\mathbb{R}^2\{(0, 0)\}, e) \). That is to say, \(d \) and \(e \) agree everywhere
except at the origin.

Now let \(\epsilon > 0 \) be arbitrary. The set of points \(y \) for which \(e(x, y) < \epsilon \) is clearly infinite; so find such a \(y \) satisfying \(y \neq (0, 0) \). Then \(d(x, y) = e(x, y) < \epsilon \). It follows that \(\text{dist}(x, \mathbb{R}^2 \setminus \{x\}) = \inf\{d(x, y) : y \in \mathbb{R}^2, y \neq (0, 0)\} \) cannot be equal to any positive \(\epsilon \) (since no such \(\epsilon \) is a lower bound for \(\{d(x, y) : y \in \mathbb{R}^2, y \neq (0, 0)\} \)). So \(\text{dist}(x, \mathbb{R}^2 \setminus \{x\}) = 0 \), i.e. \(x \) is an accumulation point. \(\square \)

HW3 #1. Let \((X, d)\) be a metric space. Let \(x \in X \) and let \(r \) be a positive real number. Define the set

\[
B = \{ y \in X : d(y, x) < r \}.
\]

Show that \(B \) is open and \(\text{diam}(B) \leq 2r \).

Proof. Let \(b \in B \); we will show \(b \notin \partial B \). Since \(b \in B \), \(d(b, x) < r \). Set \(R = d(b, x) \), and set \(t = r - R \), so \(t > 0 \).

We claim that for every \(z \in B^c \), \(d(b, z) \geq t \). Indeed, if this were not the case, we would have \(d(b, z) < t \), and therefore by the triangle inequality we would have \(d(x, z) \leq d(x, b) + d(b, z) < R + t = r \), contradicting the fact that \(z \in B^c \).

So \(d(b, z) \geq t \) for all \(z \in B^c \). It follows that \(\text{dist}(b, B^c) = \inf\{d(b, z) : z \in B^c\} \geq t > 0 \), and hence \(b \notin \partial B \). Since \(B \) was arbitrary, we have shown \(B \cap \partial B = \emptyset \) and hence \(B \) is open. \(\square \)

HW3 #2. Let \((X, d)\) be a metric space. For any \(x \in X \), show that \(x \in \text{iso}(X) \) if and only if \(\{x\} \) is open.

Proof. For any \(x \in X \),

\[
x \in \text{iso}(X) \iff \text{dist}(x, X \setminus \{x\}) > 0
\]

\[
\iff \text{dist}(x, \{x\}^c) > 0
\]

\[
\iff x \notin \partial \{x\}
\]

\[
\iff \{x\} \cap \partial \{x\} = \emptyset
\]

\[
\iff \{x\} \text{ is open.}
\]

\(\square \)

HW3 #3. Let \(X \) be any set and let \(d \) be the discrete metric on \(X \) (see Example 1.1.7). Show that every subset of \(X \) is open. Conclude that every subset of \(X \) is closed.

Proof. First note that for each \(x \in X \), \(x \in \text{iso}(X) \) since

\[
\text{dist}(x, X \setminus \{x\}) = \inf\{d(x, y) : y \in X, y \neq x\} \geq \inf\{1\} = 1.
\]

Therefore \(\{x\} \) is open by the result in Problem 2 above.

Now let \(S \subseteq X \) be an arbitrary subset. Then \(S = \bigcup \{ \{x\} : x \in S \} \) is the union of its collection of singleton subsets. Hence, \(S \) is a union of open sets and therefore open. Since \(S \) was arbitrary, every subset of \(X \) is open.
Likewise, if \(S \subseteq X \) is an arbitrary subset, then the argument above shows that \(S^c \) is open. Therefore \(S \) is closed. Therefore every subset of \(X \) is closed. \(\square \)

HW3 #4. Consider the metric space \((\mathbb{N}, d)\) as defined in Example 1.1.12. Let \(A \subseteq \mathbb{N} \) (so \(\infty \notin A \)). Show that \(\infty \in A \) if and only if \(A \) is an infinite set.

Proof. First suppose \(A \) is an infinite subset of \(\mathbb{N} \). It means that \(A \) is not bounded above. So if \(\epsilon > 0 \) is arbitrary, we may find \(n \in A \) for which \(n > \frac{1}{\epsilon} \) and hence \(\frac{1}{n} < \epsilon \). Therefore \(\text{dist}(\infty, A) = \inf \{d(\infty, n) : n \in A\} = \inf \{\frac{1}{n} : n \in A\} = 0 \). So \(\infty \in \partial A \subseteq A \).

Conversely, suppose \(A \) is a finite subset of \(\mathbb{N} \). In this case, \(\text{dist}(\infty, A) = \inf \{d(\infty, n) : n \in A\} = \min \{d(\infty, n) : n \in A\} > 0 \), since the infimum of a finite set is just the minimum, and all distances \(d(\infty, n) \) for \(n \in A \) are strictly positive. So \(\infty \notin \partial A \). Since \(\infty \notin A \) by hypothesis, we conclude \(\infty \notin A \). \(\square \)

HW3 #5. Again consider \((\mathbb{N}, d)\) as in Example 1.1.12. Let \(A \subseteq \mathbb{N} \) and suppose \(\infty \in A \). Show that \(A \) is open if and only if \(A \) is cofinite (that is, \(\mathbb{N} \setminus A \) is a finite set).

Proof. First suppose \(A \) is cofinite. Then \(A^c \) is finite, and therefore closed. So \(A \) is open.

Conversely, suppose \(A \) is not cofinite. Then \(A^c \) is an infinite set, and \(\infty \notin A^c \) by hypothesis. Then by the result of Problem 4 above, \(\infty \in \partial A^c \) (whence \(A^c = A^c \) is open). It follows that \(A^c \) is not closed, and therefore \(A \) is not open. \(\square \)

HW3 #6. Consider \(\mathbb{Q} \) as a metric space with the usual metric. Let \(a \) and \(b \) be irrational numbers such that \(a < b \). Define the set \(E = \{q \in \mathbb{Q} : a < q < b\} \)

Is \(E \) open? Is \(E \) closed? Prove your answers.

We claim \(E \) is both open and closed, and prove it below.

Proof. To show \(E \) is clopen, it suffices to prove that \(\partial E = \emptyset \) (whence \(E = E^o = \overline{E} \)). So let \(x \in \mathbb{Q} \); we will show \(x \notin \partial E \). There are three cases: either \(x < a \), or \(x > b \), or \(a < x < b \).

First suppose \(x < a \). If \(q \in E \) is arbitrary, then \(a < q \), and hence \(d(x, q) = q - x > a - x \). It follows that \(\text{dist}(x, E) = \inf \{d(x, q) : q \in E\} \geq a - x > 0 \).

So \(x \notin \partial E \).

Next suppose \(x > b \). For every \(q \in E \), we have \(q < b \) and therefore \(d(x, q) = x - q > x - b \). So \(\text{dist}(x, E) = \inf \{d(x, q) : q \in E\} \geq x - b > 0 \).

So again \(x \notin \partial E \).

Lastly, suppose \(a < x < b \). Set \(R = \min\{x - a, b - x\} \). For every \(p \in E^c \), we have either \(p < a \) or \(p > b \). If \(p < a \), then \(d(x, p) = x - p > x - a \geq R \). If \(p > b \), then \(d(x, p) = p - x > b - x \geq R \). So we have shown that
\[\text{dist}(x, E^c) = \inf \{ d(x, p) : p \in E^c \} \geq R > 0. \]

So \(x \notin \partial E \). Since we checked all cases, \(\partial E \) is empty and \(E \) is clopen. \(\square \)

HW4 \#1. Show that every subset of \(\tilde{\mathbb{N}} \) is open or closed, but not every subset is clopen.

Proof. Let \(A \subseteq \tilde{\mathbb{N}} \). Note that for each \(n \in \mathbb{N} \), \(n \) is an isolated point of \(\tilde{\mathbb{N}} \) by HW2 \#3. So each singleton \(\{n\} \) is open by HW3 \#2, for \(n \in \mathbb{N} \). Thus, if \(A \subseteq \mathbb{N} \), then \(A = \bigcup_{n \in A} \{n\} \) is a union of open singletons and is therefore an open set. On the other hand, if \(A \nsubseteq \mathbb{N} \), then \(\infty \in A \). It then follows that \(A^c \subseteq \mathbb{N} \), whence \(A^c \) is open by our previous remarks. So \(A \) is closed. Since \(A \) was arbitrary, we have shown every subset of \(\tilde{\mathbb{N}} \) is either open or closed.

On the other hand, \(\tilde{\mathbb{N}} \) has non-clopen subsets. One example is the subset \(\mathbb{N} \). \(\mathbb{N} \) is open in \(\tilde{\mathbb{N}} \), but the closure of \(\mathbb{N} \) contains \(\infty \) by HW3 \#4. So \(\mathbb{N} = \tilde{\mathbb{N}} \neq \mathbb{N} \), whence \(\mathbb{N} \) is not closed. It follows from these arguments that the complementary set \(\{\infty\} \) is a closed set which is not open. \(\square \)

HW4 \#2. Show that the open subsets of the subspace \(\mathbb{R} \times \{0\} \) of \(\mathbb{R}^2 \) with the usual metric are precisely those subsets of the form \(U \times \{0\} \) where \(U \) is open in \(\mathbb{R} \). Show also that none of those sets, except the empty set, is open in \(\mathbb{R}^2 \).

Let us start by proving the following lemma.

Lemma. Suppose \((X, d)\) and \((Y, e)\) are metric spaces and \(f : X \to Y \) is an isometry of \(X \) onto \(Y \). Then \(U \subseteq X \) is open in \(X \) if and only if \(f(U) \subseteq Y \) is open in \(Y \).

Proof. Let \(U \subseteq X \) be an arbitrary subset. Since \(f \) is a bijection, for any point \(x \in U \) there corresponds some point \(y \in f(U) \), such that \(y = f(x) \). Now since \(f \) is an isometry, i.e. a distance-preserving bijection, we compute the following equality for all \(x \in U \) and \(y = f(x) \in f(U) \):

\[
\text{dist}(y, Y\setminus f(U)) = \inf \{ e(y, w) : w \in Y\setminus f(U) \} \\
= \inf \{ e(f(x), f(z)) : f(z) \in Y\setminus f(U) \} \\
= \inf \{ e(f(x), f(z)) : z \in X\setminus U \} \\
= \inf \{ d(x, z) : z \in X\setminus U \} \\
= \text{dist}(x, X\setminus U).
\]

Given the equality above, it is easy to finish proving the lemma:

\[
U \text{ is open in } X \iff \forall x \in U \text{ dist}(x, X\setminus U) > 0 \\
\iff \forall y \in f(U) \text{ dist}(y, Y\setminus f(U)) > 0 \\
\iff f(U) \text{ is open in } Y.
\]

\(\square \)
Proof of HW4 #2. Note that \mathbb{R} is isometric to $\mathbb{R} \times \{0\}$ via the isometry f defined by $f(x) = (x, 0)$, for all $x \in \mathbb{R}$. (The fact that f is an isometry is extremely easy to check.) So by the lemma we just proved, a subset W of $\mathbb{R} \times \{0\}$ is open if and only if $U = f^{-1}(W)$ is open in \mathbb{R}, if and only if $W = U \times \{0\}$ for some open $U \subseteq \mathbb{R}$.

On the other hand, no such set is open in \mathbb{R}^2, unless $U = \emptyset$. If U is nonempty, then there exists $(x, 0) \in U \times \{0\}$. Every open ball about $(x, 0)$ will intersect the complement of $\mathbb{R} \times \{0\}$, so $(x, 0) \in \partial(U \times \{0\})$. This shows $U \times \{0\}$ is not open. \hfill \square

HW4 #3. Suppose X is a metric space and $S \subseteq X$. Show that S is dense in X if and only if S has nonempty intersection with every open ball of X.

Proof. First suppose S is dense and let $b[x; r)$ be some open ball in X (for some $x \in X$, $r \in \mathbb{R}^+)$). Since S is dense, $x \in \overline{S}$. It follows then that $S \cap b[x; r) \neq \emptyset$.

Conversely, suppose S has nonempty intersection with every open ball of X. Let $x \in X$ be arbitrary. Then for every $r \in \mathbb{R}^+$, $S \cap b[x; r) \neq \emptyset$ by hypothesis. Therefore $x \in \overline{S}$. Since x was arbitrary, we have shown $X \subseteq \overline{S}$, which implies S is dense. \hfill \square

HW4 #4. Find all dense subsets of \mathbb{N}. Prove you have found them all.

We claim \mathbb{N} and \mathbb{N} are the only two dense subsets of \mathbb{N}.

Proof. It is obvious that \mathbb{N} is dense in \mathbb{N}. To see that \mathbb{N} is dense, simply note that \mathbb{N} is an infinite set and hence $\infty \in \overline{\mathbb{N}}$ by HW3 #4; so $\mathbb{N} \subseteq \mathbb{N}$.

Now if A is any other subset of \mathbb{N} other than \mathbb{N} or \mathbb{N}, then A must be missing some integer, i.e. there exists $n \in \mathbb{N}$ with $n \notin A$. But we have shown in previous problems that $\{n\}$ is open; hence $\{n\}$ is an open ball in \mathbb{N} that has empty intersection with A. By the previous problem, A is not dense. \hfill \square

HW5 #1. Prove the Bounded Monotone Convergence Theorem: If (x_n) is a bounded monotone sequence in \mathbb{R} (with the usual metric), then (x_n) converges to some point in \mathbb{R}.

Proof. Either (x_n) is nondecreasing or nonincreasing; first suppose nondecreasing. Set $z = \sup\{x_n : n \in \mathbb{N}\}$. Note that since (x_n) is bounded above by some number M by hypothesis, we have $z \leq M < \infty$ and hence $z \in \mathbb{R}$. We claim that $x_n \to z$.

To see this, let $r \in \mathbb{R}^+$ be arbitrary. By our definition of z, and our bonus homework characterizing suprema, we know that there exists $m \in \mathbb{N}$ for which $x_m > z - r$. But then since (x_n) is a nondecreasing sequence, we have $z - r < x_m \leq x_n \leq z$ for all $n \geq m$. In other words, we see that $\operatorname{tail}_m(x_n) \subseteq (z - r, z] \subseteq b[z; r)$. Since r was arbitrary, we have shown $x_n \to z$.

The nonincreasing case is very similar and we leave it to the reader. \hfill \square

HW5 #2. Prove the Squeeze Theorem: Suppose (a_n), (b_n), and (c_n) are sequences in \mathbb{R} (with the usual metric), and suppose there exists an $M \in \mathbb{N}$ such that

$$
\text{for all } n \geq M, \quad a_n \leq b_n \leq c_n.
$$

If $a_n \to L$ and $c_n \to L$ for some $L \in \mathbb{R}$, then $b_n \to L$.
Proof. Let \(r \in \mathbb{R}^+ \) be arbitrary. Since \(a_n \to L \), it means there exists \(m_1 \in \mathbb{N} \) such that
\[
\text{tail}_{m_1}(x_n) \subseteq b[L; r] = (L - r, L + r).
\]

Likewise since \(c_n \to L \), there exists \(m_2 \in \mathbb{N} \) for which
\[
\text{tail}_{m_2}(x_n) \subseteq b[L; r] = (L - r, L + r).
\]

Now set \(N = \max(M, m_1, m_2) \). Then for every \(n \geq N \), the term \(b_n \) satisfies \(a_n \leq b_n \leq c_n \) by hypothesis, and also \(b_n \) lies in both tails mentioned above. So we have
\[
L - r < a_n \leq b_n \leq c_n < L + r,
\]
so \(b_n \in (L - r, L + r) \). Therefore \(\text{tail}_N(x_n) \subseteq b[z; r] \). Since \(r \) was arbitrary, \(b_n \to L \) and the theorem is proved. \(\square \)

HW6 #1. Let \(X \) and \(Y \) be sets, let \(A \subseteq X \) and \(B \subseteq Y \), and let \(f : X \to Y \) be a function. Prove that \(f^{-1}(f(A)) \supseteq A \) and \(f(f^{-1}(B)) \subseteq B \), but it is not necessarily the case that \(f^{-1}(f(A)) = A \), nor that \(f(f^{-1}(B)) = B \).

Proof. Let \(a \in A \). Then \(f(a) \in f(A) \), and therefore \(a \in f^{-1}(f(A)) \). Since \(a \in A \) was taken arbitrarily, we have shown \(A \subseteq f^{-1}(f(A)) \). However, it is not necessarily the case that \(f^{-1}(f(A)) = A \) for instance one could take the function \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = x^2 \) for all \(x \in \mathbb{R} \), and observe that \(f^{-1}(f([0, 2])) = f^{-1}([0, 4]) = [-2, 2] \neq [0, 2] \).

Next let \(y \in f(f^{-1}(B)) \). It means there exists an \(x \in f^{-1}(B) \) so that \(f(x) = y \). Since \(x \in f^{-1}(B) \), \(f(x) \in B \). Therefore \(y \in B \). So we have shown \(f(f^{-1}(B)) \subseteq B \). But equality need not hold: for instance take \(f \) as in the previous paragraph, and observe that \(f(f^{-1}([-1, 0])) = f(\{0\}) = \{0\} \neq [-1, 0] \).

HW6 #2. Let \(X, Y \), and \(f \) be as in the previous problem. Prove that \(f^{-1}(f(A)) = A \) for all \(A \subseteq X \) if and only if \(f \) is an injection.

Proof. (\(\Rightarrow \)) First assume \(f^{-1}(f(A)) = A \) for all \(A \subseteq X \). Let \(x, y \in X \) be arbitrary and assume \(f(x) = f(y) \). Then \(f(\{x\}) = f(\{y\}) \), and therefore by hypothesis \(\{x\} = f^{-1}(f(\{x\})) = f^{-1}(f(\{y\})) = \{y\} \). So \(x = y \). This shows \(f \) is injective.

(\(\Leftarrow \)) On the other hand assume \(f \) is injective, and let \(A \subseteq X \) be arbitrary. By the previous problem, \(f^{-1}(f(A)) \supseteq A \), so we need only show that \(f^{-1}(f(A)) \subseteq A \). So let \(x \in f^{-1}(f(A)) \) be arbitrary. It means \(f(x) \in f(A) \). I.e. there exists an \(a \in A \) so that \(f(a) = f(x) \). But since \(f \) is injective, this implies \(a = x \). Therefore \(x \in A \) in the first place. So \(f^{-1}(f(A)) \subseteq A \) as claimed. \(\square \)

HW6 #4. Prove that every affine map \(f \) is a continuous bijection. Deduce as an immediate corollary that the inverse mapping \(f^{-1} \) is also continuous.

Proof. Let \(f : \mathbb{R} \to \mathbb{R} \) be an affine map, so \(f(x) = mx + b \) for all \(x \in \mathbb{R} \), for some \(m, b \in \mathbb{R} \) with \(m \neq 0 \).

\(f \) is injective.) Let \(x, y \in \mathbb{R} \) be arbitrary and assume \(f(x) = f(y) \). Clearly \(mx + b = my + b \) implies \(x = y \).
(f is surjective.) Let \(z \in \mathbb{R} \) be arbitrary. Setting \(x = \frac{z - b}{m} \) (which makes sense because \(m \neq 0 \)), we see that \(f(x) = z \).

(f is continuous.) Fix any \(x \in \mathbb{R} \) and any \(\epsilon \in \mathbb{R}^+ \). Set \(\delta = \frac{\epsilon}{|m|} \). Assume \(z \in \mathbb{R} \) satisfies \(|x - z| < \delta \). Then \(|f(x) - f(z)| = |mx + b - mz - b| = m|x - z| < |m|\delta = \epsilon \). So \(f \) is continuous at \(x \), for each \(x \in \mathbb{R} \).

\((f^{-1} \) is continuous.\() The inverse mapping is given by \(f^{-1}(y) = \frac{1}{m}y - \frac{b}{m} \), which is also an affine map, hence continuous by our earlier remarks.

 HW6 #6. Prove that the map \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = x^3 \) for all \(x \in \mathbb{R} \) is continuous.

Proof. Fix any \(x \in \mathbb{R} \) and any \(\epsilon \in \mathbb{R}^+ \). Let \(\delta = \min\{1, \frac{\epsilon}{3x^2 + 3|x| + 1}\} \), and let \(z \in \mathbb{R} \) be such that \(|x - z| < \delta \). Then we have

\[
|f(x) - f(z)| = |x^3 - z^3| = |x - z||x^2 + xz + z^2|.
\]

Since \(|x - z| \leq 1 \), we have \(|z| \leq |x| + 1 \) by the triangle inequality, and hence the above implies:

\[
|f(x) - f(z)| \leq |x - z|[x^2 + |x||z| + z^2] \\
\leq |x - z|[x^2 + |x|(|x| + 1) + (|x| + 1)^2] \\
= |x - z|[3x^2 + 3|x| + 1] \\
< \delta[3x^2 + 3|x| + 1] \\
\leq \epsilon.
\]

Thus \(f \) is continuous at \(x \), for every \(x \in \mathbb{R} \).

 HW6 #7. Prove that the function \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = 0 \) iff \(x \in \mathbb{Q} \), and \(f(x) = 1 \) iff \(x \in \mathbb{R}\setminus\mathbb{Q} \), is not continuous at any point in \(\mathbb{R} \).

Proof. Let \(x \in \mathbb{R} \); we will show \(f \) is not continuous at \(x \). Set \(\epsilon = 1 \), and let \(\delta \in \mathbb{R}^+ \) be arbitrary. Now either \(x \in \mathbb{Q} \) or \(x \in \mathbb{R}\setminus\mathbb{Q} \). Both \(\mathbb{Q} \) and \(\mathbb{R}\setminus\mathbb{Q} \) are dense in the real line. Hence, we can find \(z \in (x - \delta, x + \delta) \) so that \(x \) and \(z \) are not both rational. Then by the definition of the map \(f \), we get \(|f(x) - f(z)| = 1 \geq \epsilon \). So \(f \) fails continuity at \(x \) as claimed.

 HW6 #8. Prove that the function \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = 0 \) iff \(x \in \mathbb{Q} \), and \(f(x) = x \) iff \(x \in \mathbb{R}\setminus\mathbb{Q} \), is continuous at 0.

Proof. Let \(\epsilon \in \mathbb{R}^+ \). Set \(\delta = \epsilon \). Let \(z \in \mathbb{R} \) be such that \(|z| = |z - 0| < \delta = \epsilon \). Either \(z \in \mathbb{Q} \) or \(z \not\in \mathbb{Q} \). If \(z \in \mathbb{Q} \), then \(|f(0) - f(z)| = |0 - 0| = 0 < \epsilon \). If \(z \not\in \mathbb{Q} \), then \(|f(0) - f(z)| = |0 - z| = |z| < \epsilon \). So \(f \) is continuous at 0.