
1 The basics of Ordinary Differential Equations

You start learning MATH 266: Introduction to Ordinary Differential Equations. I will often abbreviate
Ordinary Differential Equation (or Equations) as ODE, irrespective of whether I am speaking about
one or several equations, you should read this abbreviation depending on the context. There will be
other abbreviations in this course, but this one is by far the most frequent one, so please memorize it.
As in any other course, it is of paramount importance to understand the meaning of every word that
I am using. Can you actually explain to yourself what every word in the title of the course means?

So let us start with “Introduction.” This obviously means that we will not go very deep into the
mathematical theory of ODE, however, you should not deceive this word with “simple”; we are going
to cover quite a number of topics at a reasonably fast pace, so start working from the first lecture.
The word “Equation” means “equality with unknowns,” or even more formally, “a formula of the
form A = B, where A are B are expressions containing one or several variables called unknowns.”
The word “Differential” means that we are dealing with derivatives; from your Calculus course you
should remember that we find derivatives of functions, and it implies that our unknowns or variables
in the equations will be functions. Finally, to decipher the word “Ordinary” you should recall that in
Calculus you studied ordinary derivatives and partial derivatives; the distinction is that in the former
case the function in the question depends on a single variable, whereas in the latter, the function is
multivariable.

Therefore, the conclusion is that the main object of our study in this course is the equations which
contain unknown functions, depending on a single variable, and derivatives of these functions. (Q:
Can you now think of an example of an ODE? I will use the letter “Q:” to ask questions throughout
the notes, and a student should spend a minute or two contemplating on these questions.)

1.1 Main definitions

So, here is a general definition.

Definition 1. An explicit ODE of the n-th order is the expression of the form

y(n)(x) = f
(
x, y(x), y′(x), . . . , y(n−1)(x)

)
. (1)

A few words of explanation are necessary.

• First, the function f of n variables is given.

• In the definition there is the word “explicit.” This means that the highest derivative y(n)(x)
can be expressed as the function of the independent variable x, unknown function or dependent
variable y(x), and its derivatives y′(x), . . . , y(n−1)(x) up to the order n − 1. I remind that the
notation y(n)(x) means the n-th derivative (so we use y′(x), y′′(x), y′′′(x) but y(4)(x), y(5)(x),
etc). Only such ODE will be studied in this course. Therefore, the word “explicit” will be
usually dropped. (Q : Can you come up with an example of an implicit ODE?)

• The order of an ODE is the order of the highest derivative in the equation (the most important
definitions will be usually given in the formal form as above; however, for a number of terms I
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will use the italic font to give a definition, so pay attention). For instance, an ODE of the first
order (note I dropped the word explicit) is defined as the equation of the form

y′(x) = f(x, y(x)).

• Very often the dependence on the independent variable x of the unknown function is suppressed.
I.e., the definition is very often stated as

y(n) = f(x, y, y′, . . . , y(n−1))

for the ODE of the n-th order and
y′ = f(x, y)

for the ODE of the first order.

• Is is very often that y denotes the dependent variable (the unknown function) and x denotes
the independent variable (the variable with respect to which the derivative is taken), however,
nothing prohibits considering the letter x as the dependent variable and y as an independent
variable, or choose different letters. For instance, in many occasions instead of x I will use t
since this variable will be playing the role of time. Therefore, it is the first task for a person
studying a particular differential equation to determine what is what, and which letter actually
denotes the unknown function. For example, in the equation

ρ′ = ρ(1− ρ),

ρ is the dependent variable (unknown function) and we actually do not know how the independent
variable is denoted, hence we free to choose our own, e.g., θ (ρ and θ are the usual notations for
the polar coordinates on the plane, often letter ρ denoting radial distance is replaced with r).

• There are several different notations to denote derivatives. We will use the following: the
usual prime notation y′(x), y′′(x), . . . (this notation is due to Joseph-Louis Lagrange, 1736–
1813, a French mathematician, physicist and astronomer); Isaac Newton’s (1642–1725, English
polymath) notation is when the derivatives are denoted by dots:

ẏ := y′, ÿ := y′′,
...
y := y′′′,

this notation is still very popular in classical mechanics and other fields when the independent
variable physically is time; and finally the differential notation due to Gottfried Wilhelm Leibnitz
(1646–1716, German polymath and philosopher, together with Newton is generally considered
the founding father of Calculus) is given by

dy

dx
:= y′,

d2y

dx2
:= y′′, . . . ,

dny

dxn
:= y(n).

The sign “:=” means “the expression on the left is defined to be equal to the expression on the
right” (think about the assignment operator, if you have some programming experience). Of
course, to use this sign we need to know already what the right-hand side means.

• Finally, f in the definitions above is different for different definitions, which is hopefully under-
stood.

2



Now it is time to switch from the general abstract definitions to some concrete examples.

Example 2. Consider the following ODE of the second order

y′′ + λy = 0, λ ∈ R.

Convince yourself that this ODE is explicit. This ODE includes the parameter λ, which is assumed
to be a real number. The notation λ ∈ R means that λ is an element of the set of real numbers,
which is usually denoted as R or R (I prefer the former). y in this equation is obviously the dependent
variable or our unknown, and we do not know how the independent variable is denoted, so we can pick
any letter, e.g., x; thence y = y(x). A significant part of the course will be devoted to solving such
ordinary differential equations. It turns out that the form of the solution depends on the sign of λ.
The solution to this ODE is given by (we will learn how to actually find this solution in due course)

y(x) =

{
Ae

√
−λx +Be−

√
−λx, if λ < 0,

A cos(
√
λx) +B sin(

√
λx), if λ > 0.

(Q : Can you find a solution if λ = 0?) Here A and B are arbitrary real constants, i.e., A,B ∈ R.
How to check that the given function is actually a solution to the given differential equation? The

same as for the usual algebraic equations — just plug the formula into the equation (make this exercise
for the example above!)

Example 3. Actually, during your Calculus courses you already solved a lot of differential equations
(Isaac Newton invented Calculus to solve ODE). Indeed, consider a very special case of the first order
ODE

y′(x) = f(x).

Here the right-hand side depends only on the independent variable. If the derivative of y is given by
f(x), what is y? As you were taught in Calculus this is an antiderivative of f(x), i.e., such function
F (x) that F ′(x) = f(x), and to find it we need to take the indefinite integral

y(x) = F (x) =

∫
f(x) dx.

Here is a concrete example. Solve
y′(x) = 2x.

Obviously, one solution is x2. But we also have more: e.g., x2 + 5 or x2 − π. In general,

y(x) =

∫
2xdx = x2 + C,

where C is an arbitrary constant. Hence, a very important conclusion follows: any ODE has infinitely
many solutions (well, to be precise, most of the ODE have infinitely many solutions since it is possible
to build pathological examples for which this is not true. We will not bother about such examples.
Q: Can you give an example of an ODE without any (real) solutions?).
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Example 4. Consider a physical example. Assume that we drop a stone from the height of l meters.
How long will it take for it to hit the ground? The movement of the stone is governed by the second
Newton’s law, which says that for the stone

ma = F,

where F is the net force applied to the stone. In our case, if we disregard the air resistance, this is
only gravitation, which is given by the Newton gravitational law:

F = −G
Mm

r2
,

where G is the gravitational constant, M is the mass of the Earth, and r is the distance from the
center of mass of the Earth to the stone, which simply can be taken as the Earth radius R (this is
a very good approximation since R is way bigger than l). The minus sign here is necessary since we
suppose that the axis along which the force is applied has the direction opposite to the force of gravity.
So we obtain

a = −g, g := G
M

R2
,

where g is the acceleration of the free falling body (Q: Do you remember the actual numerical value
of this constant from your Physics classes?). So where is an ODE here? Recall that the acceleration a
is the derivative of the velocity v, and velocity is the derivative of the displacement x, hence, denoting
our independent variable here as t for “time,” we obtain an ODE of our problem:

x′′ = −g.

Again, here x = x(t) is the dependent variable. Since we can write (x′)′ = −g, we find that

x′(t) =

∫
(−g) dt = −gt+ C1,

and finally,

x(t) =

∫
x′ dt =

−gt2

2
+ C1t+ C2,

which is the general solution to our ODE. C1 and C2 are arbitrary constants.
There are several conclusions from this example. First, the number of arbitrary constants in the

solution to ODE is equal to the order of this equation (look at the examples above). Second, for
our physical problem, we actually would like to answer a simple and concrete question: How long
will it take for the stone to hit the Earth? We cannot answer this question having infinitely many
solutions. Something is missing. A few seconds thinking helps realize that we also need to know the
initial position of the stone (in our case x(0) = l) and the initial velocity (x′(0) = 0). This is enough
to determine uniquely what the values of C1 and C2 are. The initial position condition implies that

C2 = l,

and the initial velocity condition implies that C1 = 0, hence, finally, our unique solution is

x(t) =
−gt2

2
+ l.

(Q: So, if l is 20 meters, how long will it take for the stone to hit the ground?)
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There is a lot of important information in the last examples. We summarize it in a formal way.

Definition 5. A function ϕ(x) is a solution to ODE (1) on the interval I = (a, b) if, first, this
function is n times continuously differentiable with respect to x on I and, second,

ϕ(n)(x) ≡ f
(
x, ϕ(x), ϕ′(x), . . . , ϕ(n−1)(x)

)
, x ∈ I.

In this definition ≡ means “identically equal,” i.e., for any x ∈ I. In the following lectures I will
use the notation ϕ ∈ C(p)(U ;V ) for the function ϕ : U −→ V to be p times continuously differentiable.
Hence in the definition above I could have used the notation ϕ ∈ C(n)(I;R). It is often abbreviated
C(U ;V ) := C(0)(U ;V ) for the set of continuous functions.

We already learned that usually there are infinitely many solutions to ODE (1). Here is the way
to present them all at the same time — the concept of the general solution to an ODE.

Definition 6. The function ϕ(x) = ϕ(x,C1, ..., Cn) is called the general solution to ODE (1) if any
solution to (1) can be obtained from ϕ(x) for a particular choice of constants C1, . . . , Cn.

The general solution is a formula that depends on arbitrary constants and any particular solution to
ODE can be represented using this formula, we only need to choose correctly the values of C1, . . . , Cn.

To find a particular solution to an ODE, it is usually necessary to supplement the ODE with some
initial conditions; the number of the initial conditions coincides with the number of the arbitrary
constants in the general solutions and hence with the order of the ODE. For example, for the first
order ODE y′ = f(x, y) one needs one initial condition y(x0) = y0, where x0, y0 are given numbers.

Definition 7. An ordinary differential equation plus the initial conditions are called the initial value
problem (or Cauchy’s problem).

Initial value problem is usually abbreviated as IVP, and this is the second abbreviation in our
course that has to be memorized.

To sum up, if we are given an ODE then it is a good guess that we are looking for the general
solution, i.e., for a formula, or for several formulas, that depend on arbitrary constants and describe all
possible solutions to this ODE. If, instead, we consider IVP, i.e., equation plus initial conditions, then
we are looking for a particular solution that 1) solves the equation, 2) satisfies these initial conditions.

1.2 Where do ODE come from?

Formally, ODE describe a deterministic process with a finite dimensional state space. The process
is deterministic if its law does not change “spontaneously,” and finite dimensional if a finite number
of values is enough to describe the process at any time moment. A great deal of different real-world
processes can be considered as deterministic and finite dimensional, at least at the first approximation.
This is especially true for the physics and in particular for the classical mechanics.

Here are a few examples.

• Physics. As we already discussed in one of the examples, the second Newton’s law is actually an
ODE. To make things more realistic, recall that displacement, velocity, and acceleration generally
are vectors, not scalars. In we consider our usual 3D space R3, then the second Newton’s law
has the form

ma =
∑
k

F k,
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where the bold font means vectors, in particular, in R3, a = (a1, a2, a3) in coordinates, and
the same is true for the forces applied to the body. Now consider two bodies in R3. What
differential equations govern the movement of these bodies if the only force that they experience
is the gravitational force (i.e., these two bodies attract to each other with the force proportional
to the product of their masses and inversely proportional to the square of the distance between
them)? Let x1(t), x2(t) be the displacements of the two bodies respectively. Then the second
Newton’s law together with the Newton law of gravity say that for the first body

m1ẍ1 = G
m1m2

∥x1 − x2∥2
(x2 − x1)

∥x2 − x1∥
,

where ∥x1−x2∥ is the usual Euclidian distance between the two bodies, and (x2−x1)
∥x2−x1∥ is the unit

vector in the direction from the first to the second body. A similar equation holds for the second
body. After some simplifications we obtain a system of two second order ODE

ẍ1 = G
m2(x2 − x1)

∥x1 − x2∥3
,

ẍ2 = G
m1(x1 − x2)

∥x1 − x2∥3
.

Recall that x1 and x2 are vectors, each having three coordinates, therefore we actually have six
second order ordinary differential equations, which should be solved if we would like to find out
the behavior of the bodies. To get a unique solution one needs twelve initial conditions — three
initial coordinates of the first body, three initial components of the velocity of the first body,
and the same for the second body. Q: Can you guess what are possible solutions of this system
(think about the system the Sun and the Earth)?

• Biology. Consider the change with time of the population number N(t). In a small period of
time ∆t the change can be decomposed into births with the rate b, deaths with the rate d, and
immigration with the rate i. Hence,

N(t+∆t)︸ ︷︷ ︸
the size at t+∆t

= N(t)︸︷︷︸
the size at t

+ bN(t)∆t︸ ︷︷ ︸
births

− dN(t)∆t︸ ︷︷ ︸
deaths

+ i∆t︸︷︷︸
immigration

.

Rearranging as
N(t+∆t)−N(t) =

(
(b− d)N(t) + i

)
∆t,

dividing by ∆t and using the limit ∆t → 0, we find

Ṅ = (b− d)N + i.

Assuming that the population is closed (i.e., no immigration, i = 0) and denoting m := b − d,
we finally obtain a most important ODE, which is called in biology the Malthus equation (after
Thomas Robert Malthus, 1766–1834, an English economist and demographer),

Ṅ = mN.

Q: Can you guess its solution (first think about the case m = 1)? In general, of course, both b
and d should depend on the population size N(t). Here we need only one initial condition: The
initial population size N(t0) = N0.
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• Chemistry. Consider a theoretical chemical reaction when compound A reacts with compound
B to produce, at the rate k, compound C, schematically

A+B
k−→ C.

The law of mass action states that the reaction rate is proportional to the reactant concentra-
tions. This means in our case, denoting by [X] the concentration of X,

d[A]

dt
= −k[A][B],

d[B]

dt
= −k[A][B],

d[C]

dt
= k[A][B].

This is a system of three nonlinear first order ODE.

The list of various application of ODE in natural sciences can be easily continued, as we will see in
our course. In particular, an ODE can be stumbled upon in Psychology, Economics, Social Sciences,
Geometry, etc; in short, you can find ODE in almost any field of study.
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