
12 Solving nonhomogeneous equations: Method of an educated guess

Consider n-th order linear ODE with constant coefficients

y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = f(t). (1)

We know by now that the general solution to this equation can be represented in the following form:

y = yh + yp,

where yh = C1y1 + . . . + Cnyn is the general solution to the homogeneous equation (i.e., (1) with
f(t) = 0), {y1, . . . , yn} is the fundamental set of solutions, and yp is a particular solution to the non-
homogeneous equation. “Particular solution” in this context means any solution, the only requirement
is that it satisfies the equation. The last two lectures were devoted to the procedure of finding yh(t)
(we need to write down the characteristic polynomial, find its roots together with multiplicities, and
write down the linearly independent solutions). In this lecture we’ll learn how to find yp in the cases
when f(t) has a special form. In particular, we’ll discuss the cases when

f(t) = Pm(t)eαt, or f(t) = Pm(t)eαt cosβt, or f(t) = Pm(t)eαt sinβt,

where Pm(t) is a polynomial of degree m. The expressions of this form are sometimes called quasipoly-
nomials. I start with some examples, and after that I will present a general scheme.

12.1 An example and the general rule

Example 1. Solve
y′′ + y = 4et.

We start with solving the homogeneous equation

y′′ + y = 0.

The characteristic polynomial is
λ2 + 1 = 0 =⇒ λ1,2 = ±i.

Therefore, the real valued solutions are y1 = cos t and y2 = sin t. Hence, the general solution to the
homogenous equation is

yh(t) = C1 cos t+ C2 sin t.

To find a particular solution to the nonhomogeneous equation we guess that it has to have the form

yp(t) = Aet,

where A is a constant to be determined. That is why sometimes this method is called the method of
undetermined coefficients. We plug our guess into the equation, cancel exponents, and get

A+A = 4 =⇒ A = 2.
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Therefore, the solution
yp(t) = 2et

solves nonhomogeneous equation, and hence final general solution to the nonhomogeneous equation is
given by

y(t) = C1 cos t+ C2 sin t+ 2et.

Too easy? Let’s proceed to another example.

Example 2. Solve
y′′ − y = 4et.

As before, we find the characteristic polynomial

λ2 − 1 = 0 =⇒ λ1 = 1, λ2 = −1,

which means that
yh(t) = C1e

t + C2e
−t.

Now we can try to look for a particular solution to the nonhomogeneous equation as before: yp = Aet.
And it will not work. Actually, try it! What is the problem then? The reason this form for a particular
solution does not work is that the coefficient at t in the exponent in f(t) coincides with one of the
roots (namely, λ1). To bypass this obstacle we can try

yp(t) = Atet.

We’ll find

y′p(t) = Aet +Atet

y′′p(t) = 2Aet +Atet,

and after plugging into our equation

2Aet +Atet −Atet = 4et =⇒ A = 2.

Hence the general solution is
y(t) = C1e

t + C2e
−t + 2tet.

Example 3. Solve
y′′ − 2y′ + y = 4et.

The roots of the characteristic polynomial are λ = 1 of multiplicity 2. The particular solution yp(t) =
Atet will not work here (try it!). Instead, one needs to try

yp = At2et.

We have

y′p(t) = At2et + 2Atet

y′′p(t) = At2et + 4Atet + 2Aet.
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Plugging these into the equation we obtain

2A = 4 =⇒ A = 2.

(And it is a mere coincidence that in all these examples I got A = 2.) Therefore, the general solution
is

y(t) = C1e
t + C2te

t + 2t2et.

Now we are ready to make a first generalization. It goes like this: If linear ODE with constant
coefficients has the right hand side of the form Ceαt, where C is some constant, then a particular
solution to the nonhomogeneous equations has to be sought in the form

yp(t) = Atreαt,

where A is a constant to be determined, r is the multiplicity of α as a root of a characteristic polynomial
(r = 0 is α is not a root, r = 1 if α is a simple root, r = 2 if α is a root multiplicity two and so on).

Example 4. Solve
y′′ − 5y′ + 4y = 4t2e2t.

Now our f(t) can be represented as f(t) = P2(t)e
2t, where P2(t) = 4t2 is a polynomial of degree 2.

We start again with the characteristic equation

λ2 − 5λ+ 4 = (λ− 4)(λ− 1),

therefore
yh(t) = C1e

4t + C2e
t.

Note that 4 ̸= 2 and 1 ̸= 2, where 2 is the coefficient of our exponent e2t. Hence, it would be a good
idea to look for a solution in the form

yp(t) = Q2(t)e
2t = (At2 +Bt+ C)e2t,

where Q2(t) is a polynomial of degree 2 with undetermined coefficients. Our task is to find A,B,C.
For this we need to plug our yp(t) into the equation:

y′p(t) = (2At+B)e2t + 2(At2 +Bt+ C)e2t

y′′p(t) = 2Ae2t + 4(2At+B)e2t + 4(At2 +Bt+ C)e2t.

Plugging this into the equation and canceling all the exponents implies

2A− 2At−B − 2At2 − 2Bt− 2C = 4t2,

or, after some rearrangement:

(−2A)t2 + (−2A− 2B)t+ (2A−B − 2C) = (4)t2 + (0)t+ (0).

Now we need to recall that two polynomials equal if and only if they have equal coefficients at t in
the same power. Hence, we get 

−2A = 4,

−2A− 2B = 0,

2A−B − 2C = 0,
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which is a system of three linear algebraic equations with three unknowns. The solution is

A = −2, B = 2, C = −3.

Therefore,
y(t) = C1e

4t + C2e
t + (−2t2 + 2t− 3)e2t

is our general solution.

Finally, we state the general rule:

Rule: If f(t) = Pm(t)eαt is the right-hand side of (1), where Pm(t) is a polynomial of degree m,
then a particular solution to the nonhomogeneous equation can be chosen in the form

yp(t) = Qm(t)treαt,

where Qm(t) is a polynomial of degree m with undetermined coefficients, and r is the multiplicity of
α as a root of the characteristic equation of the homogeneous ODE.

Example 5. Consider
y′′ − 5y′ + 4y = f(t).

The following table lists, according to the general rule, the form of the particular solutions depending
on f(t). Make sure that you can fill the right column on your own:

f(t) yp(t)

5e2t Ae2t

te2t (At+B)e2t

tet (At+B)tet

t2 At2 +Bt+ C

Consider one more example.

Example 6. Solve
y′′ + y = 4 sin t.

The roots of the characteristic polynomial are

λ1,2 = ±i,

and
yh(t) = C1 cos t+ C2 sin t.

What about yp(t)? It seems that we did not discuss this case yet. However, this case also can be
covered by the general rule above! For this we need to note that if a complex valued function of real
argument, let us call it z(t) = x(t) + iy(t), solves a linear ODE

Lz = f,

then its real and imaginary parts solve the equations

Lx = Re f
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and
Ly = Im f

respectively (here we assume that L has only real valued coefficients). To prove this note that

L(x+ iy) = Re f + i Im f =⇒ Lx+ iLy = Re f + i Im f,

which completes the proof. Therefore, here is a strategy: Instead of solving, e.g., Ly = Im f , which is
a real ODE, we can consider Lz = f . Solve this equation, and find y = Im z. Similarly, we can work
with x.

Coming back to our example, we can note that, by Euler’s formula,

sin t = Im eit.

Therefore, instead of solving the original equation, let us solve

z′′ + z = 4eit,

and after that we can find y = Im z. We are only interested in a particular solution, which, according
to the general rule above, can be looked in the form

zp(t) = Ateit,

since i is a root of the characteristic polynomial. We have (the derivatives of the exponent with
imaginary unit are taken exactly in the same fashion as it was taught in Calculus, e.g., (eit)′ = ieit)

z′p(t) = Aeit + iAteit, z′′p (t) = 2iAeit −Ateit,

hence
2iA = 4 =⇒ A = −2i,

and
zp = −2iteit.

To get yp, we have

yp(t) = Im zp(t) = Im(−2iteit) = Im(−2it cos t+ 2t sin t) = −2t cos t.

Finally, the general solution to the original problem is

y(t) = C1 cos t+ C2 sin t− 2t cos t.

It usually takes some time for a student to feel comfortable with this approach, so here are some
other examples, with some details left out.

Example 7. Solve
y′′ + y = t cos 2t.

The general solution to the homogeneous equation is

yh(t) = C1 cos t+ C2 sin t.
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Note that t cos 2t = Re(te2it). Therefore, instead of the original equation we consider

z′′ + z = te2it.

Since 2i is not a root of the characteristic equation, then

zp(t) = (At+B)e2it.

Plugging this into the equation, we find

4iA− 3At− 3B = t,

which implies

−3A = 1, 4iA− 3B = 0 =⇒ A = −1

3
, B = −4i

9
.

Finally, to find yp:

yp(t) = Re zp(t) = Re

((
− t

3
− 4i

9

)
e2it

)
=

= Re

((
− t

3
− 4i

9

)
(cos 2t+ i sin 2t)

)
=

= Re

(
− t

3
cos 2t− it

3
sin 2t− 4i

9
cos 2t+

4

9
sin 2t

)
=

= − t

3
cos 2t+

4

9
sin 2t.

Therefore, the general solution to the original equation is

y(t) = C1 cos t+ C2 sin t−
t

3
cos 2t+

4

9
sin 2t.

Example 8. Find the general solution to

y′′ − 9y = e3t cos t.

The general solution to the homogeneous equation is

yh(t) = C1e
3t + C2e

−3t.

Consider instead the equation
z′′ − 9z = e(3+i)t,

since
e3t cos t = Re e(3+i)t.

Look for a solution in the form

zp(t) = Ae(3+i)t =⇒ A =
1

6i− 1
.

Hence

yp = Re

(
1

−1 + 6i
e(3+i)t

)
= Re

(
−1− 6i

37
(e3t cos t+ ie3t sin t)

)
= −e3t

37
cos t+

6e3t

37
sin t,

and the final answer is

y(t) = C1e
3t + C2e

−3t − e3t

37
cos t+

6e3t

37
sin t.
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12.2 ∗For a mathematically inclined student

The whole idea to guess a solution in mathematics should not sound very satisfactory. Here I give a
justification of the method employed above to solve nonhomogeneous ODE.

12.2.1 Operator rules for differential operators with constant coefficients

I wrote

L =
dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0

for a linear n-th order differential operator. I will use here the notation

Dn =
dn

dtn
,

and therefore
L = Pn(D) = Dn + an−1D

n−1 + . . .+ a1D + a0

is a polynomial of the symbol D. Pn(D) or simply P (D) is a polynomial differential operator. Here
are some rules for dealing with such operators:

• Sum rule. For any sufficiently differentiable function u and polynomial operators P (D) and
Q(D) (

P (D) +Q(D)
)
u = P (D)u+Q(D)u.

• Linearity rule. For any sufficiently differentiable functions u1, u2 and polynomial operator P (D)

P (D)(α1u1 + α2u2) = α1P (D)u1 + α2P (D)u2.

• Multiplication rule. If P (D) = Q(D)H(D) as polynomials in D then

P (D)u = Q(D)
(
H(D)u

)
= H(D)

(
Q(D)u

)
.

Note that this only true for polynomial differential operators (with constant coefficients).

For example,
Dm(αDku) = αDm+ku.

• Substitution rule.
P (D)eat = P (a)eat,

for any a ∈ C. The proof follows from the fact that Dkeat = akeat.

This rule allows to prove a very useful theorem.

Theorem 9. The ODE
P (D)y = Aeat, A, a ∈ C

has a particular solution

yp(t) =
Aeat

P (a)
,

if P (a) ̸= 0.
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Proof. For the proof note that

P (D)yp = P (D)
Aeat

P (a)
= Aeat.

�

What if P (a) = 0? Then

yp(t) =
Atreat

P (r)(a)
,

if a is a root of P (D) multiplicity r. The proof of this last formula is left as an exercise (Hint:
First show that if a is a root of multiplicity r, then P (D) = Q(D)(D − a)r, where Q(a) ̸= 0).

• The exponential shift rule.
P (D)eatu = eatP (D + a)u.

The proof follows from the fact that

Deatu = eatDu+ aeatu = eat(D + a)u.

12.2.2 Justification of the method of an educated guess

What is so special about the right hand sides for which the method works? They are actually solutions
of some homogeneous linear ODE with constant coefficients. In other words, there exists a polynomial
differential operator H(D) for any of such function f that H(D)f = 0 (it is said that this polynomial
operator annihilates f). Therefore, if we are looking for a particular solution of

P (D)y = f,

and f satisfies
H(D)f = 0,

then the form of a particular solution can be found from the form of the general solution to the
homogeneous equation

H(D)P (D)y = 0.

Example 10. What is the form of a particular solution to

y′′ − 2y′ + y = et?

Let us note that the polynomial operator H(D) = D − 1 annihilates et:

(D − 1)et = 0.

Therefore,
y′′ − 2y′ + 1 = (D − 1)2y = et =⇒ (D − 1)3y = 0.

We know that the general solution to the last homogeneous ODE is

yh(t) = C1e
t + C2te

t + C3t
2et.

But the first two terms can be dropped because they are the part of the general solution to (D−1)2y =
0. Hence my particular solution has the form

yp(t) = C3t
2et,

exactly as we guessed in the first part of this section.
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