14 Mass on a spring and other systems described by linear ODE

Now we are in a position to consider applications of our mathematical technique to certain physical
systems.

14.1 Mass on a spring

Consider a mass hanging on a spring (see Fig. 1). The position of the mass in uniquely defined by
one coordinate x(t) along the z-axis, whose direction is chosen to be along the direction of the force
of gravity. Note that if this mass is in an equilibrium, then the string is stretched, say, by amount of
s units. The origin of the x-axis is chosen such that the position of the mass at rest coincides with
the zero coordinate.

Figure 1: Mechanical system “mass on a spring.”

We know that the movement of the mass is determined by the second Newton’s law, that can be
stated (for our particular one-dimensional case) as

ma=Y_F,
%

where m is the mass of the object, a is the acceleration, which, as we know from Calculus, is the
second derivative of the displacement x(t), a = &, and ), F; is the net force applied (the sum of
all the forces applied to the body along the chosen axis). What we know about the net force? This
has to include the gravity, of course: Fy; = mg, where g is the acceleration due to gravity (¢ ~ 9.8
m/s? . The restoring force of the spring is governed by Hooke’s law (after Robert
Serae, 10 g3===British polymath and natural scientist), which says that the restoring force in
pposite taFEeE=movement direction is proportional to the distance stretched: Fy = —k(s + x),




expression often allows to find the spring constant k£ given the amount of s the spring is stretched
by the mass m). When the mass is not at rest, we can also have damping, which is acting in the
direction opposite to the direction of velocity. Observations say that it is reasonable to assume that
the damping is proportional to the speed when x is small enough, hence F3 = —c&, where c is the
constant of proportionality. Finally, we might have that an external force Fy = F(t) is applied to the
mass. Summing,

mi=F+Fh+F3+F, = mi=mg—k(s+x)—ci+ F(t),
and finally, after some simplifications and rearrangements:
mi + cx + kx = F(t), (1)

which is a second order linear nonhomogeneous ODE with constant coefficients: Exactly the one we
were studying in the last 3 lectures.

The parameters of the problem are all nonnegative: m,c,k > 0 (Q: What would be the physical
meaning if ¢ < 0 or k < 07). To solve the problem of the movement of a mass on a spring it is
necessary to set the initial conditions — the initial position and initial velocity:

z(0) = zg, x(0) = vp. (2)

Remark about units: You should always remember about the units of the parameters and vari-
ables in the mathematical model and cannot use different units for different terms in the equation.
Eventually, all the units in the model must agree. For the metric system the units are newtons (N)
for the force, kilograms (kg) for mass, meters (m) for length and seconds (s) for time, therefore the
velocity is measured in m/s, the acceleration is measured in m/s?, the spring constant has units N/m,
and the damping coefficient is measured in Ns/m= kg/s, finally newtons can be expressed through
the basic measurements as N = kg - m/s?, i.e., force in 1 N is the force required to accelerate a mass
of 1 kg to the rate of 1 m per second squared.

For the English measurement system the force is measured in pounds (lbs), mass is in slugs
(Ibs-s?/ft), length is in feet (ft), and time is in seconds (s) as well, you should express the units of the
parameters in this system. In different measurement systems different numerical values for the same
constants occur. For example, in metric system the acceleration of the free falling body g ~ 9.8 m/s?,
whereas in the English units g ~ 32.2 ft/s2.

After the equation is written down we can forget about the original physical system and study the
mathematical model (1)—(2), whose solutions can be given later a physical interpretation.

We start consider cases one by one, starting with the simplest one.

Harmonic oscillations
Here we assume that ¢ = 0 and F'(t) = 0. Hence we have
mi + kx =0,
or, after using the new notation w3 = k/m (note that both k and m are positive),

i+ wiz = 0.



This equation has the general solution
xp(t) = C} cos wot + Cy sin wot,

where C1, Cy are arbitrary constants that are determined by the initial conditions (2).
For the following it will be convenient to rewrite the last expression in a different form. For this
recall that if we have a and b such that a® + b = 1 then it is always possible to find ¢ such that

sing =a, cosp=~".
We will also need the formula
cos(a — ) = cos acos 5 + sin asin 3.
Now, assuming that at least one of the arbitrary constants is not zero, we have

xp(t) = C1 coswpt + Ca sin wpt =

:\/C'2+C2 Lceswd%—isinwot =
Lo\t ez VCI+C3

= A(coswyt cos ¢ + sinwpt sin @) =

= A cos(wot — ¢),

where instead of old constants C,Cy we have new constants A and ¢, which can be determined by
the initial conditions (2) and related to the old constants as
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The solution formula
xp(t) = Acos(wot — )

gives a simple way to analyze the displacement z,(¢) in this particular case (see Fig. 2).

We know that cost is a periodic function with period 27, and bounded between 1 and —1 (recall that
function g is T-periodic if g(t) = g(t +T) for all ¢ and T is the smallest such number). Trigonometric
functions cos and sin describe periodic oscillations that are called simple harmonic motion. Therefore
the original system & + wg:z = 0 is often called the simple harmonic oscillator. Function coswypt has
period (Q: Can you see why?)

2
T=—.

wo
The frequency f (number of complete oscillations per time unit, measured usually in hertz (Hz = 1/s))
is defined as the reciprocal of the period:

1 wo
f=7=5_

and wy is called the angular frequency (wo = 27 f, measured in radians per seconds).

Hence we have that the harmonic oscillator produces periodic motion with the angular frequency
wp. By subtracting ¢ we simply shift the graph of our function, and this constant is called the phase.



Finally, the harmonic oscillations are bounded now by A and —A, and this constant is called the
amplitude of oscillations. Therefore, if we are given a simple harmonic oscillator, then its behavior is

defined by the angular frequency
[k
wo = >
m

which is the intrinsic property of the system, that is why it is sometimes called the natural frequency
of the system, and by the amplitude and phase, which can be found given the initial conditions zq, vp.

Note that the period of oscillations
m
T=2m/—
"Wk

does not depend on the initial conditions and hence on the amplitude, which is the property of linear
systems. For nonlinear system this usually does not hold.

Figure 2: Simple harmonic oscillations.

Example 1. To consider a specific example, assume that a mass weighting 24 pounds attached to the
end of the string stretches it four inches. Initially, the mass is released from a point 3 inches above the
equilibrium position with the upward velocity 1 foot per second. Assuming that there is no damping
find the equation of motion, the amplitude, and the period of oscillations.

First we need to convert inches into feet, which means that the mass stretches the spring s =
4/12 = 1/3 foot. Since the weight of the mass is 24 pounds, this means that the actual mass (not
force) satisfies mg = 24, and since g ~ 32 foot per second squared, m = 24/32 = 3/4 slug. Finally,
from Hook’s law I have mg = ks or k = 24 -3 = 72. Hence my IVP takes the form

—i, Cy = ——~ and hence I found the equation of motion
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The period of oscillations is simply

21 m T
T=—=214]/—=—==~0.64 s.

wo VE 2V6

1 /7
A= 2 2:\/7% 27 ft.
VO +C3 =g =027 fi

To present an equivalent formula for the equation of motion, let me also find the phase in the given
example. I have that

The amplitude is computed as

cos p = % ~ —0.93, sinp= % = —0.38,

and hence

C
tan p = 62 ~ 0.41.
1

Since both cosine and sine are negative, my angle must be in the third quadrant, i.e. between 7 and
37 /2 radians, which finally gives the value

p = m + arctan 0.41 ~ 3.53 radians,

which allows me to write my equation of motion in an equivalent form
2(t) = 0.27 cos (4\/& - 3.53) .

This last equation is more convenient for the analysis. For instance if I was asked to find the time
moments at which the mass passes the equilibrium point, all I need to do is to solve the equation

0.27 cos (4\/675 — 3.53) —0

for the unknown time moments ¢ (note that there will be infinitely many of them).

Simple harmonic oscillator predicts that the oscillations continue forever, which is not true for the
real systems. The reason for this is that we assumed that there is no damping. Now consider the case
when ¢ # 0.

Damping

Let now F(t) =0 and ¢ > 0. Hence,
mi + ct + kx = 0.

To solve it we write down the characteristic equation
mA2 4+ eA+k=0,

which can be solved as

Here we need to consider 3 cases:



e Overdamped motion. Assume that ¢ — 4mk > 0, therefore, the characteristic equation has two
negative real roots (Q: Do you see why they both are negative?) Aj, A2, and the general solution
is given by

w(t) = CreM’ 4 Coe?,

Depending on the values of C and Cy we see that this solution will either never cross zero (the
equilibrium point), or cross it only once. Moreover, since both lambdas are negative, the solution
approaches zero: z(t) — 0 as ¢t — oo, which physically means that if the damping is really large,
the mass on a spring will return to its equilibrium position either without complete oscillations
or with just one oscillation.

e Critically damped motion. Let ¢ — 4mk = 0, then A = —c/(2m) is the only root of the
characteristic polynomial with multiplicity 2. Therefore,

z(t) = CreM + Cyte.

Here the situation is very similar to the previous case. Since \ is negative, z(t) — 0 as t — o0
without oscillations.

e Damped oscillations. Let ¢ — 4mk < 0, therefore we have two complex conjugate roots A\; =

Ao = «a + i3, where

c VAmk — c2 5 c \2
2m 2m 2m

We have
z(t) = e*(Cy cos Bt + Cysin Bt),

or, using the same manipulations as in the case of the simple harmonic oscillator,
z(t) = Ae™ cos(Bt — @),

where A and ¢ are new arbitrary constants. Note that if we consider A(t) = Ae® as our
“amplitude,” then, since o < 0, A(t) — 0 as should be expected for damped oscillations (Fig.
3). The solution in this case is not periodic, but sometimes called quasiperiodic, because we
observe oscillations with decreasing amplitude and the quasiperiod is given by
2 27
T = F = —2 R
2
wp = (36)

which is larger than the period of simple harmonic oscillations with the angular velocity wg, as
also should be intuitively expected.

Harmonic oscillator with an external force

Now assume that ¢ = 0 and F(t) = Fjcoswt, i.e., the external force is a periodic function with
amplitude Fj and angular frequency w. We have, using the same notation as before,

. 2 FO
T+ wyxr = — coswt.
m



Figure 3: Damped oscillations.

The solution to this equation is, as we know,
z(t) = wp(t) + xp(t),

where x,(t) is the general solution to the homogeneous equation and z,(t) is a particular solution to
the nonhomogeneous equation. z,(t) was already found in this lecture:

xp(t) = Acos(wot — ¢).
Now, since coswt = Ree!, consider instead the equation

. Fo
it wiz= =

Assume first that iw is not a root of the characteristic polynomial, i.e., w # wg. Then

: F
_ iwt _ 0
2p(t) = Ce" = C'= 7m(w§ —

Therefore,
Fy

zp(t) = Rezp(t) = m(? — o7

cos wt,

and the general solution is

x(t) = Acos(wot — ) + cos wt,

m(wg — w?)
where A and ¢ are determined by the initial conditions.

Here we need to note two things: First, the general solution is the sum of two periodic functions
with different periods. Will the solution be also periodic? The answer is generally “no,” for the general
solution to be periodic we have to ask that wy/w is a rational number (I will not go into further details

z(t)here but invite an interested student to contemplate on the last statement). Second, if the angular
A__frequency of th% eictﬁrggl force approaches the natural frequency of the system, then |x,(t)| will grow
gs,.) To sSee gc(flsi(sﬁ%it_gc?pr}gusly, now let w = wy. In this case,
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and hence

Fi
xp(t) = Re zp(t) = Qm(;otsinwot,

which satisfies |z, (t)| — oo as t = oo (see Fig. 4).

In physics the phenomenon when the amplitude grows without bounds if the natural frequency of
the system equals the angular frequency of the external force is called resonance and is responsible
for some very unfortunate events including the collapse of Tacoma bridge! (watch it on YouTube).

Figure 4: Resonance in the system without damping.

Ok, you might say that the resonance was actually the consequence of the assumption that ¢ = 0,
i.e., that we did not include damping, which is obviously not true for any mechanical system on our
planet.

Full equation

Consider now the full equations with all the forces included:
mi + ct + kx = Fycos wt.
The general solution is given by the sum

z(t) = wp(t) + zp(t),

where z,(t) was already found above (I assume the damped oscillations occur in the system without
external force):
xp,(t) = Ae™ cos(Bt — ).

A particular solution can be found using the same approach as in the case ¢ = 0 and is given by (fill

in the details)
Fi
Tp(t) = - cos(wt — @),

m((w% —w?)2 + (cw/m)2)1/2

where
tanp = 9
k—mw?’

Well, the reality is actually more complicated, if you want to see the details, read Billah, K. Y., & Scanlan, R. H.
(1991). Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks. American Journal of Physics,
59(2), 118-124.
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Since xp(t) — 0 as t — oo (this is the transient part of the solution), then x(t) — x,(t), which is
called the stationary part of the solution. Hence we conclude that the mass on the spring, when the
damping and external periodic force are taken into account, will eventually produce oscillations with
the frequency equal to the frequency of the external force, and with the amplitude given by

Fy

m((wd —w?)? + (cw/m)Q)l/2 ’

Alw) =

which is maximal when (check it)
2
2 2 ¢

w :wO_TmQ,

provided that w3 — ¢?/(2m?) > 0 (in the opposite case the highest amplitude happens at w = 0). This
value of the angular frequency of the external force is defined to be resonant (see Fig. 5).

W

Figure 5: Resonance in the system with damping. The parameters are chosen Fp =k =m =1,¢ = 0.2.
The resonance occurs at w = 1/0.98, which is shown by the dashed line.

Since it is easy to get lost in all the different parameters of the system, let me consider a specific
example.

Example 2. A mass of 1 slug is attached to a spring whose constant is 5 Ib/ft. Initially the mass
is released 1 foot below the equilibrium position with downward velocity of 5 ft/s, and the motion
takes place in the medium with damping coefficient ¢ = 2. Find the equation of motion if the mass is
driven by an external force F'(t) = 3sin2¢. Find the transient and steady state solution. Determine
the eventual amplitude of oscillations.

My mathematical model takes the form

i+ 2+ 5x = 3sin2t, x(0) =1, i(0) = 5.

Using the standard technique and the method of an educated guess I find (fill in the omitted steps)
that the general solution is given by

3
x(t) = —1—7(4 cos 2t — sin 2t) 4+ Cre” " cos 2t + Coe ™' sin 2t.

Using the initial conditions yields C; = 29/17,Cy = 54/17, hence the transient solution is given by

29 54
xtransient(t) = 1*76% cos(2t) + ﬁeft sin(2t),



which approaches zero as ¢ — oo, and the steady state solution

12 3
msteady-state(75) 17 cos 2t + 17 sin 2¢.

Finally, to find the eventual amplitude I will use the same approach as in the discussion of the harmonic

oscillator and find that
12\ 2 3\? 3
Aeventual = -] Tl ) = :
17 17 V17

You can see the comparison of the full solution with its transient and steady state parts in Fig. 6.

(1)

/.. \K LN

Figure 6: Comparison of the full solution (black) with its transient (dark grey) and steady-state (light
grey) parts. The dotted lines show the eventual amplitude of oscillations.

14.2 Other physical systems

The power of mathematical modeling lies in the fact that literally the same models appear in quite
unrelated physical systems. Here I give two more examples of physical systems, for which the analysis
in the previous section provides (full or approximate) description of the dynamic behaviors.

14.2.1 LRC-circuit

Consider now the LRC-circuit as presented in Fig. 7. This circuit consists of three elements: resistor
with resistance R measured in ohms (£2), capacitor with capacitance C' measured in farads (F'), and
an inductor with inductance L measured in henrys (H). There is also a source of electricity E(t)
measured in volts (V). We need to find the current I(¢) in the circuit measured in amperes (A).

Kirchhoff’s law states that the sum of the voltage drops across the circuit elements has to
be equal E(t).

To be able to apply this law to our situation, we need to know that the voltage drop on the resistor
is given by
IR (Ohms’ law),

10



on the inductor is given by

df
L—
dt”’
and on the capacitor is
Q
C )
where )(t) is the charge of the capacitor (measured in coulombs (C')) that is related to the current as
dQ
I(t) = —(t).
() ="320
Putting everything together we obtain
dI @
1 L—+ ==E(t
R+ a + C (1),
" QL dQ  Q
L—— — + = =E(t
w e te ®)

which is a second order linear nonhomogeneous equation with constant coefficients. By analogy with
the mass on the spring we see that the inductance plays the role of the mass, the resistance is analogous
to damping, and capacitance is inversely related to the spring constant. Assuming that R = 0 we can
find the natural frequency of the system

and hence the harmonic oscillations of the charge in LRC-circuite will occur with the period
T=2nVvLC.

Note that the resonance in an electric circuit may be a desirable phenomenon (signal amplification).

Figure 7: LRC-circuit.
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Figure 8: Pendulum.

14.2.2 Pendulum

Consider now the pendulum (see Fig. 8). We will use again the second Newton’s law to find the
equation of motion. Let the length of the pendulum be [ and the mass be m. Now we need to consider
the projections of the forces onto the two axes. One is along the pendulum itself, and there the force
of tension is equal to mg cos @, they cancel each other. The only projection on the axis perpendicular
to the pendulum is —mgsin @ (the minus is because the force is restoring).

Hence we have
ms§ = —mgsin 6,

where s(t) is the displacement at time ¢. In our case s(t) = [0(t), therefore, finally

6= —%sin&,

or, using the notation w% =g/l: )
6+ wising = 0.

This is a nonlinear equation of the second order, for which only an implicit solution can be written
down. To make things easier, recall that if the angle, measured in radians, is small enough, then

0 ~ sin 6.

Therefore, the nonlinear equation for the pendulum can be replaced, as a first approximation, with

the equation of small oscillations: )
0 +wio=0,

12



which produces harmonic oscillations with angular frequency wy and period

T:2—7r:27r £
wo g

(I note, however, that in the full nonlinear equation the period of oscillations depends on the amplitude,
but analysis of this phenomenon belongs to a next level course.)
Additionally, damping and an external force can be considered. In this case we end up with the
equation
10+ cO+gb = F(t),

where the resonance can occur (think about the swings).
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