
15 Laplace transform. Basic properties

We spent a lot of time learning how to solve linear nonhomogeneous ODE with constant coefficients.
However, in all the examples we have considered, the right hand side (function f(t)) was continuous.
This is not usually so in the real world applications. In particular, we can consider the differential
operator L as a black box, which receives as input the external signal f(t) and produces as output the
solution y(t), symbolically, y = L−1f . It is more often than not the external signal can be represented
as a piecewise continuous function, hence it would be of great value to have an efficient method to
solve such problems. In the next three lectures we will learn one such possible method, which is based
on the Laplace transform.

Definition 1. Let function f be defined on [0,∞). Then its Laplace transform L {f} is another
function F , which is defined as

F (s) = L {f} :=

∫ ∞

0
e−stf(t) dt. (1)

The Laplace transform, according to this definition, is an operator: It is defined on functions, and
it maps functions to another functions. Generally s is a complex variable, but in most of the examples
we consider, we will not bother about the domain of F or about the question on the existence of the
Laplace transform, for all the functions we deal with their Laplace transforms are well defined.

Note that in (1) the Laplace transform is defined as an improper integral. Strictly speaking, while
evaluating this integral, we need to consider the limit

lim
c→∞

∫ c

0
e−stf(t) dt.

It is a good idea to remember about this limit, but in the calculations that follow I will usually use
shortcut notations. Let me start with several examples.

Example 2. Let f(t) = 1. Find L {f}. By definition,

L {1} =

∫ ∞

0
e−st dt = −1

s
e−st|∞0 =

1

s
.

Example 3. Let f(t) = eat for some a ∈ R. Using the integration,

L
{
eat

}
=

∫ ∞

0
e−steat dt =

∫ ∞

0
e−(s−a)t dt = − 1

s− a
e−(s−a)t|∞0 =

1

s− a
,

where I assumed that s > a.

Example 4. Let f(t) = t. Here I will use integration by parts:

L {t} =

∫ ∞

0
e−sttdt = − t

s
e−st|∞0 +

1

s

∫ ∞

0
e−st dt =

1

s2
.
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Example 5. Find L {sin t} and L {cos t}. Probably you remember that to evaluate the integrals of
the form

∫
eat sin bt dt or

∫
eat cos btdt you need to use a clever trick with integration by parts twice

(do it). I, however, will choose a different approach. From Euler’s formula eit = cos t+ i sin t, we can
find that

sin t =
eit − e−it

2i
, cos t =

eit + e−it

2
.

Now,

L {sin t} =
1

2i

∫ ∞

0
(eit − e−it)e−st dt =

1

2i

(
1

s− i
− 1

s+ i

)
=

1

s2 + 1
.

Analogously,

L {cos t} =
s

s2 + 1
.

We can continue evaluating these integrals and extending the list of available Laplace transforms.
However, a much more powerful approach is to infer some general properties of the Laplace transform,
and use them, instead of calculating the integrals. First very useful property is the linearity of the
Laplace transform:

1◦ Linearity. L is a linear operator. This means that for any two functions f and g for which the
Laplace transform is defined, and two constants a, b ∈ R we have

L {af + bg} = aL {f}+ bL {g} .

This follows from the linearity of the integrals.

Example 6. Using this property we can easily find, using the information above, the Laplace trans-
form of, e.g., 5− 3t+ π cos t:

L {5− 3t+ π cos t} = 5L {1} − 3L {t}+ πL {cos t} =
5

s
− 3

s2
+

πs

s2 + 1
.

2◦ Shifting property. If L {f} = F (s) then L
{
eatf(t)

}
= F (s− a).

To prove this property, consider

L
{
eatf(t)

}
=

∫ ∞

0
eatf(t)e−st dt

=

∫ ∞

0
e−(s−a)tf(t) dt (let p = s− a)

=

∫ ∞

0
e−ptf(t) dt = F (p) = F (s− a).

Example 7. Now, to find, e.g., L
{
e3t sin t

}
we do not need to evaluate the integral:

L
{
e3t sin t

}
=

1

(s− 3)2 + 1
,

since L {sin t} = 1
s2+1

.
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3◦ Time scaling. Let L {f(t)} = F (s) then

L {f(at)} =
1

a
F
(s
a

)
,

for any a > 0.

To prove, we start again with the definition

L {f(at)} =

∫ ∞

0
f(at)e−st dt,

and use the change of variables at = τ , from where dt = dτ/a. Note that for a > 0 the limits
of integration will not change:

L {f(τ)} =
1

a

∫ ∞

0
f(τ)e−

s
a
τ dτ =

1

a
F
(s
a

)
as required. Note that if we allow any sign for a ̸= 0 then (prove)

L {f(at)} =
1

|a|
F
(s
a

)
.

Example 8. Find L {cos 3t}. By the previous property and the fact that L {cos t} = s
s2+1

we find

L {cos 3t} =
1

3

s/3

(s/3)2 + 1
=

s

s2 + 32
.

4◦ Differentiation of the frequency. Let L {f(t)} = F (s). Then

L {tf(t)} = −F ′(s).

Or, more generally,
L {tnf(t)} = (−1)nF (n)(s), n ∈ N.

To show that this is true, consider the derivative of F (s):

F ′(s) =

∫ ∞

0
(−t)f(t)e−st dt,

which implies the property.

Example 9. What is L
{
t3
}
? We can evaluate the integral, but it is easier to find, using Property

4 and the fact that L {1} = 1/s, that

L
{
t3
}
= (−1)3

(
1

s

)′′′
=

3 · 2
s4

.

3



5◦ Differentiation. Let L {f(t)} = F (s). Then

L
{
f ′(t)

}
= sF (s)− f(0).

For the proof, consider

L
{
f ′(t)

}
=

∫ ∞

0
f ′(t)e−st dt

and use the integration by parts

L
{
f ′(t)

}
= e−stf(t)|∞0 + s

∫ ∞

0
f(t)e−st dt = −f(0) + sL {f} = sF (s)− f(0).

We can generalize this property to differentiation of any order. For instance, to find L {f ′′(t)}
just consider f ′′(t) as the derivative of f ′(t) for which we already found the Laplace transform
sF (s)− f(0). Hence, according to the property,

L
{
f ′′(t)

}
= s(sF (s)− f(0))− f ′(0) = s2F (s)− sf(0)− f ′(0).

It is useful to make a separate table with properties and Laplace transforms of frequently occurring
functions.

Inverse Laplace transform. If we are given a function f we can find its Laplace transform by
evaluating the corresponding integral:

F (s) = L {f(t)} .

It is also possible to go in the opposite direction: We are given F (s) and asked to find a function f(t),
for which f = L –1 {F}, i.e., find the inverse Laplace transform. This is possible due to the following
important uniqueness theorem

Theorem 10. If two functions f1 and f2 have the same Laplace transform, then they coincide at
every point t at which they both are continuous.

There exists a general formula for finding the inverse Laplace transform:

L –1 {F} =
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
estF (s) ds,

but we will never use it (if you’d like to understand what this formula means, consider taking a course
on Complex Analysis).

Our algorithm of finding the inverse Laplace transform is by using the table. As an example, we
know that

L {cos 4t} =
s

s2 + 16
.

This means that

L –1

{
s

s2 + 16

}
= cos 4t.

While finding the inverse Laplace transform it is important to remember that it is also linear.
Therefore,

L –1

{
1

s2 + 16

}
= L –1

{
4 · 1

4

s2 + 42

}
=

1

4
L –1

{
4

s2 + 42

}
=

1

4
sin 4t.

More about it in the next lecture.
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15.1 Table of the most useful Laplace transforms

In this section I list the Laplace transforms of the most frequently encountered functions.

f(t), t ∈ [0,∞) F (s) = L {f}

1
1

s

eat, a ∈ R
1

s− a

tn, n ∈ N
n!

sn+1

sinωt, ω ∈ R
ω

s2 + ω2

cosωt, ω ∈ R
s

s2 + ω2

sinhωt, ω ∈ R
ω

s2 − ω2

coshωt, ω ∈ R
s

s2 − ω2

eat sinωt, a, ω ∈ R
ω

(s− a)2 + ω2

eat cosωt, a, ω ∈ R
s− a

(s− a)2 + ω2

eat sinhωt, a, ω ∈ R
ω

(s− a)2 − ω2

eat coshωt, a, ω ∈ R
s− a

(s− a)2 − ω2

t sinωt, ω ∈ R
2ωs(

s2 + ω2
)2

t cosωt, ω ∈ R
s2 − ω2(
s2 + ω2

)2
tneat, a ∈ R, n ∈ N

n!

(s− a)n+1

u(t), Heaviside function
1

s
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