21 Solving linear systems of ODE with constant coefficients. Part II. Complex eigenvalues

Consider

$$
\begin{equation*}
\dot{\boldsymbol{y}}=\boldsymbol{A} \boldsymbol{y}, \quad \boldsymbol{A}=\left[a_{i j}\right]_{n \times n} \in \mathbf{M}_{n}(\mathbf{R}) \tag{1}
\end{equation*}
$$

together with the initial condition

$$
\begin{equation*}
\boldsymbol{y}\left(t_{0}\right)=\boldsymbol{y}_{0} \in \mathbf{R}^{n} \tag{2}
\end{equation*}
$$

From the previous lecture we know that the general solution to (1) has the form

$$
\boldsymbol{y}(t)=C_{1} \boldsymbol{v}_{1} e^{\lambda_{1} t}+\ldots+C_{n} \boldsymbol{v}_{n} e^{\lambda_{n} t},
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues and $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ are the corresponding eigenvectors, provided all the eigenvalues are distinct. However, even in this simple case we can have complex eigenvalues with complex eigenvectors. The goal here is to show that we still can choose a basis for the vector space of solutions such that all the vectors in it are real.

Proposition 1. If $\boldsymbol{y}(t)$ is a solution to (1) then $\operatorname{Re} \boldsymbol{y}(t)$ and $\operatorname{Im} \boldsymbol{y}(t)$ are also solutions to (1).
Proof. Let $\boldsymbol{y}(t)=\boldsymbol{u}_{1}(t)+\mathrm{i} \boldsymbol{u}_{2}(t)$, where $\boldsymbol{u}_{1}(t)=\operatorname{Re} \boldsymbol{y}(t)$ and $\boldsymbol{u}_{2}(t)=\operatorname{Im} \boldsymbol{y}(t)$. Plug this into (1) and use the linearity to find

$$
\left(\dot{\boldsymbol{u}}_{1}-\boldsymbol{A} \boldsymbol{u}_{1}\right)+\mathrm{i}\left(\dot{\boldsymbol{u}}_{2}-\boldsymbol{A} \boldsymbol{u}_{2}\right)=0,
$$

which implies that

$$
\dot{\boldsymbol{u}}_{1}=\boldsymbol{A} \boldsymbol{u}_{1}, \quad \dot{\boldsymbol{u}}_{2}=\boldsymbol{A} \boldsymbol{u}_{2}
$$

Note that both $\boldsymbol{u}_{1}(t)$ and $\boldsymbol{u}_{2}(t)$ are real valued solutions, therefore, instead of one complex-valued solution $\boldsymbol{y}(t)$ we have two real valued solutions. To finalize the argument we need to show that the new basis, where two complex valued solutions corresponding to λ and $\bar{\lambda}$ are substituted with $\boldsymbol{u}_{1}(t)$ and $\boldsymbol{u}_{2}(t)$ is still a linearly independent set. To see this first note that if λ is a complex eigenvalue with eigenvector \boldsymbol{v}, then $\bar{\lambda}$ is an eigenvalue with eigenvector $\overline{\boldsymbol{v}}$. This follows from

$$
\overline{\boldsymbol{A} \boldsymbol{v}}=\overline{\lambda \boldsymbol{v}} \Longrightarrow \boldsymbol{A} \overline{\boldsymbol{v}}=\bar{\lambda} \overline{\boldsymbol{v}}
$$

Now we need to show that if $\left\{\boldsymbol{v}, \overline{\boldsymbol{v}}, \boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{n}\right\}$ is a linearly independent set, then $\left\{\operatorname{Re} \boldsymbol{v}, \operatorname{Im} \boldsymbol{v}, \boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{n}\right\}$ is also a linearly independent set (left as an exercise).

Finally, let us see in details how our new real-valued solution looks like in coordinates. We have $\boldsymbol{y}(t)=\boldsymbol{v} e^{\lambda t}$ is a complex valued solution, here $\lambda=\alpha+\mathrm{i} \beta, \boldsymbol{v}=\boldsymbol{v}_{1}+\mathrm{i} \boldsymbol{v}_{2}$. We find

$$
\begin{aligned}
\boldsymbol{y}(t) & =\left(\boldsymbol{v}_{1}+\mathrm{i} \boldsymbol{v}_{2}\right) e^{(\alpha+\beta \mathrm{i}) t} \\
& =\left(\boldsymbol{v}_{1}+\mathrm{i} \boldsymbol{v}_{2}\right) e^{\alpha t}(\cos \beta t+\mathrm{i} \sin \beta t) \\
& =e^{\alpha t}\left(\boldsymbol{v}_{1} \cos \beta t-\boldsymbol{v}_{2} \sin \beta t\right)+\mathrm{i} e^{\alpha t}\left(\boldsymbol{v}_{1} \sin \beta t+\boldsymbol{v}_{2} \cos \beta t\right) .
\end{aligned}
$$

Therefore, instead of two complex-valued solutions $\boldsymbol{v} e^{\lambda t}$ and $\overline{\boldsymbol{v}} e^{\bar{\lambda} t}$ we have two real-valued solutions

$$
\begin{aligned}
& \boldsymbol{u}_{1}(t)=e^{\alpha t}\left(\boldsymbol{v}_{1} \cos \beta t-\boldsymbol{v}_{2} \sin \beta t\right) \\
& \boldsymbol{u}_{2}(t)=e^{\alpha t}\left(\boldsymbol{v}_{1} \sin \beta t+\boldsymbol{v}_{2} \cos \beta t\right)
\end{aligned}
$$

Example 2. Solve

$$
\dot{\boldsymbol{y}}=\boldsymbol{A} \boldsymbol{y}
$$

where

$$
\boldsymbol{A}=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]
$$

First we find the characteristic polynomial

$$
\operatorname{det}(\boldsymbol{A}-\lambda \boldsymbol{I})=\lambda^{2}-2 \lambda+5,
$$

which means that we have two complex eigenvalues

$$
\lambda_{1,2}=1 \pm 2 \mathrm{i} .
$$

An eigenvector corresponding to λ_{1} can be found as a solution to

$$
\left[\begin{array}{cc}
3-1-2 \mathrm{i} & -2 \\
4 & -1-1-2 \mathrm{i}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right],
$$

or, in coordinates,

$$
\begin{array}{r}
(1-\mathrm{i}) v_{1}-v_{2}=0, \\
2 v_{1}-(1+\mathrm{i}) v_{2}=0 .
\end{array}
$$

This is not quite obvious from the first view that the two equations are equivalent, but they are (multiply the first by $1+\mathrm{i}$), hence we have

$$
v_{2}=(1-\mathrm{i}) v_{1},
$$

if I take v_{1} as a free variable. Therefore, any solution to our system is given by the vector $\left(v_{1},(1-\mathrm{i}) v_{1}\right)^{\top}$, and for my eigenvector I can choose, e.g., $v_{1}=1$, therefore,

$$
\boldsymbol{v}_{1}=\left[\begin{array}{c}
1 \\
1-\mathrm{i}
\end{array}\right]
$$

I do not need to look for an eigenvector corresponding to λ_{2}, because, as it was shown above, $\boldsymbol{v}_{2}=\overline{\boldsymbol{v}}_{1}$. By making these calculations I proved that my system has two linearly independent solutions

$$
\boldsymbol{y}_{1}(t)=\left[\begin{array}{c}
1 \\
1-\mathrm{i}
\end{array}\right] e^{(1+2 \mathrm{i}) t}, \quad \boldsymbol{y}_{2}(t)=\left[\begin{array}{c}
1 \\
1+\mathrm{i}
\end{array}\right] e^{(1-2 \mathrm{i}) t}
$$

and the general solution is

$$
\boldsymbol{y}(t)=C_{1} \boldsymbol{y}_{1}(t)+C_{2} \boldsymbol{y}_{2}(t),
$$

where C_{1}, C_{2} are arbitrary constants. However, this solution is complex-valued. To find a real valued solution I will follow the algorithm from the first part of the lecture and take $\operatorname{Re} \boldsymbol{y}_{1}(t)$ and $\operatorname{Im} \boldsymbol{y}_{2}(t)$
as new two linearly independent real-valued solutions.

$$
\begin{aligned}
\boldsymbol{y}_{1}(t) & =\left[\begin{array}{c}
1 \\
1-\mathrm{i}
\end{array}\right] e^{(1+2 \mathrm{i}) t}=\left[\begin{array}{c}
1 \\
1-\mathrm{i}
\end{array}\right] e^{t}(\cos 2 t+\mathrm{i} \sin 2 t) \\
& =e^{t}\left[\begin{array}{c}
\cos 2 t+\mathrm{i} \sin 2 t \\
\cos 2 t+\sin 2 t+\mathrm{i}(-\cos 2 t+\sin 2 t)
\end{array}\right] \\
& =\underbrace{e^{t}\left[\begin{array}{c}
\cos 2 t \\
\cos 2 t+\sin 2 t
\end{array}\right]}_{\boldsymbol{u}_{1}(t)}+\underbrace{\mathrm{i} e^{t}\left[\begin{array}{c}
\sin 2 t \\
-\cos 2 t+\sin 2 t
\end{array}\right]}_{\boldsymbol{u}_{2}(t)}
\end{aligned}
$$

Please do not include i into $\boldsymbol{u}_{2}(t)$!
Therefore, the general solution to the problem has the form

$$
\boldsymbol{y}(t)=C_{1} e^{t}\left[\begin{array}{c}
\cos 2 t \\
\cos 2 t+\sin 2 t
\end{array}\right]+C_{2} e^{t}\left[\begin{array}{c}
\sin 2 t \\
-\cos 2 t+\sin 2 t
\end{array}\right],
$$

or

$$
\begin{aligned}
& y_{1}(t)=e^{t}\left(C_{1} \cos 2 t+C_{2} \sin 2 t\right) \\
& y_{2}(t)=e^{t}\left(\left(C_{1}-C_{2}\right) \cos 2 t+\left(C_{1}+C_{2}\right) \sin 2 t\right)
\end{aligned}
$$

in coordinates.
Example 3. Solve the IVP

$$
\dot{\boldsymbol{y}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 1 & 1
\end{array}\right] \boldsymbol{y}, \quad \boldsymbol{y}(0)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

First we find the characteristic polynomial

$$
P_{3}(\lambda)=(1-\lambda)\left(\lambda^{2}-2 \lambda+2\right),
$$

which means that we have

$$
\lambda_{1}=1, \quad \lambda_{2,3}=1 \pm \mathrm{i} .
$$

We can choose eigenvector $\boldsymbol{v}_{1}=(1,0,0)^{\top}$ corresponding to λ_{1}. Similarly, we find that eigenvector $\boldsymbol{v}_{2}=(0, \mathrm{i}, 1)^{\top}$ can be taken for λ_{2}. Since we are looking for a real-valued solution, we do not care about λ_{3}. We find that

$$
\boldsymbol{y}_{2}(t)=\left[\begin{array}{l}
0 \\
\mathrm{i} \\
1
\end{array}\right] e^{(1+2 \mathrm{i}) t}=e^{t}\left[\begin{array}{c}
0 \\
-\sin t \\
\cos t
\end{array}\right]+\mathrm{i} e^{t}\left[\begin{array}{c}
0 \\
\cos t \\
\sin t
\end{array}\right],
$$

therefore, the general solution to our problem can be written as

$$
\boldsymbol{y}(t)=C_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] e^{t}+C_{2}\left[\begin{array}{c}
0 \\
-\sin t \\
\cos t
\end{array}\right] e^{t}+C_{3}\left[\begin{array}{c}
0 \\
\cos t \\
\sin t
\end{array}\right] e^{t}=e^{t}\left[\begin{array}{c}
C_{1} \\
-C_{2} \sin t+C_{3} \cos t \\
C_{2} \cos t+C_{3} \sin t
\end{array}\right] .
$$

Now we use the initial conditions and find that $C_{1}=C_{2}=C_{3}=1$. Thence, the final answer is

$$
\boldsymbol{y}(t)=e^{t}\left[\begin{array}{c}
1 \\
\cos t-\sin t \\
\cos t+\sin t
\end{array}\right] .
$$

