
23 Phase plane analysis for linear systems

23.1 Basic introduction

In this lecture we are going to talk about systems of two linear ODE of the first order in the form

ẋ = a11x+ a12y,

ẏ = a21x+ a22y.
(1)

Here I chose the notations
(

x(t), y(t)
)⊤

for the unknown functions, and the independent variable is, as before,
denoted by t, meaning “time.” Note that planar system (1) is a particular case of the general nonlinear system

ẋ = f(x, y),

ẏ = g(x, y),
(2)

where f, g ∈ C1(U ;R), U ⊆ R2, are given functions of two variables. The common point between (1) and (2)
is that their right-hand sides do not depend explicitly on t. They, of course, depend on t through the variables
x(t) and y(t), but t itself is absent. Such systems are called autonomous (cf. autonomous first order ordinary
differential equations).

Assume that system (2) (or (1)) has a solution x = x(t;x0), y = y(t; y0), where (x0, y0)
⊤ are the initial

conditions. We can consider this solution as a parametrically defined curve: for each time moment t we have
two numbers (x, y) ∈ R2, which can be represented as a point on the plane xy. If we change t, the point
position will change, but since x(t;x0) and y(t;x0) are differentiable, then the change will be small, and we
actually obtain a smooth curve. Moreover, by increasing or decreasing t we move on xy plane along this curve.
Such curve with the direction of time increase on it is called an orbit, or a trajectory of system (2) (or system
(1)). Our task here is to analyze the structure of orbits of system (1) on the plane xy, which is called the phase
plane. Since some of the properties of the orbits of (1) hold in the general case (2), I will start with the more
general system.

• If (x̂, ŷ) are such that f(x̂, ŷ) = 0 and g(x̂, ŷ) = 0, then x = x̂, y = ŷ is a solution to (2), and the
corresponding orbit is simply a point on the phase plane with coordinates (x̂, ŷ). For the linear system
(1) point (x̂, ŷ) has to be a solution to

0 = a11x+ a12y,

0 = a22x+ a22y,

i.e., a solution to a homogeneous system of two linear algebraic equations with the matrix

A =

[

a11 a12
a21 a22

]

.

This system always has solution (x̂, ŷ) = (0, 0). This solution is unique if and only if detA 6= 0. If
detA = 0 then we have infinitely many solutions. In order not to complicate the following discussion I
will assume that detA 6= 0.

Such points (x̂, ŷ) are called equilibrium points, or rest points, or stationary points, or critical points of
system (2). Hence the assumption for (1) that detA 6= 0 is equivalent to saying that system (1) has only
one equilibrium at the origin.

• If x = x(t), y = y(t) is a solution to (2), then x̃ = x(t+ c), ỹ = y(t+ c) is a also a solution to (2) for any
constant c.
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Proof. Note that if (x(t), y(t)) is a solution, then for the first equation in (2) it means that

dx

dt
(t) = f

(

x(t), y(t)
)

,

and since this is true for any t, it is true for t+ c:

dx

dt
(t+ c) = f

(

x(t + c), y(t+ c)
)

,

which, due to the chain rule, can be rewritten as

dx

d(t+ c)
(t+ c) = f

(

x(t+ c), y(t+ c)
)

,

or, using new variable τ = t+ c,
dx

dτ
(τ) = f

(

x(τ), y(τ)
)

.

But since x(τ) = x̃(t), y(τ) = ỹ(t), this exactly means that x̃(t) = x(t + c), ỹ(t) = y(t + c) is a solution
to (2). �

This simple and very important fact means that if (x(t), y(t)) is the solution to (2) with the initial condition
x(t0) = x0, y(t0) = y0, then (x(t + t0), y(t + t0)) is the solution to system (2) with the initial condition
x(0) = x0, y(0) = y0. From the geometric point of view it means that we can use different parametrizations
to define the same curve on the phase plane.

For the linear system we can prove this fact explicitly. Recall that any solution to (1) is given by eAt
v

for some vector v ∈ R2. Now consider eA(t+c)v = eAtu, where u = eAcv, which is clearly a solution to
the linear system.

• Orbits do not intersect. Suppose contrary: there are two orbits
(

x(t), y(t)
)

and
(

x̃(t), ỹ(t)
)

that pass
through the same point (x0, y0) for different time moments t1 and t2: i.e.,

(x0, y0) =
(

x(t1), y(t1)
)

=
(

x̃(t2), ỹ(t2)
)

.

Since
(

x̃(t), ỹ(t)
)

is a solution, then, according to the previous property,
(

x̃(t+ (t2 − t1)), ỹ(t+ (t2 − t1))
)

is also a solution, which corresponds to the same orbit, but with a different time parametrization. On the
other hand, the value of this solution at the point t1 coincides with the value of

(

x(t), y(t)
)

at the same

point, which according to the uniqueness and existence theorem means that
(

x̃(t+(t2−t1)), ỹ(t+(t2−t1))
)

and
(

x(t), y(t)
)

coincide, which yields that the existence of a common point for two orbits implies that
these orbits coincide, hence no intersections.

This property, as well as the previous one, is not true for non-autonomous systems.

We obtained that the phase plane consists of orbits, which cannot intersect. It is impossible to depict all the
orbits, but it is usually enough to draw only a few to get a general idea of the behavior of the solutions of
system (2). In particular, it is always advisable first to plot equilibria. Several key orbits on the phase plane
representing the general picture are called the phase portrait. It is usually quite difficult to draw the phase
portrait of the general nonlinear system (2). For system (1), especially assuming that detA 6= 0, this problem
can be solved completely, as I will show next.
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23.2 Phase portraits of linear system (1)

There are only a few types of the phase portraits possible for system (1). Let me start with a very simple one:

ẋ = λ1x,

ẏ = λ2y.

This means that the matrix of the system has the diagonal form

A =

[

λ1 0
0 λ2

]

,

i.e., it has real eigenvalues λ1, λ2 with the eigenvectors (1, 0)⊤ and (0, 1)⊤ respectively. The equations are
decoupled and the general solution to this system is given by

[

x(t)
y(t)

]

= C1

[

1
0

]

eλ1t + C2

[

0
1

]

eλ2t.

Note that this is a fancy way to write that

x(t) = C1e
λ1t, y(t) = C2e

λ2t.

Now to figure out the behavior of the orbits (i.e., their qualitative form and the directions on them), we can
argue as follows: Consider initially only special orbits corresponding to C1 = 0,±1 and C2 = 0,±1. First of all
there is always the equilibrium (0, 0), which means that the corresponding orbit is a point at the origin. Next,
take C1 = +1 and C2 = 0, which implies that x(t) = eλ1t and y(t) = 0. To get further information we need to
specify the signs of λ1 and λ2.

Case λ1 > 0 > λ2. I repeat that I consider the case C1 = 1 and C2 = 0. This corresponds to the line, whose
direction is given by the first eigenvector v1 = (1, 0)⊤. If t → ∞ then x(t) → ∞ for λ1 > 0, hence the orbit
constitutes the half line (x > 0, y = 0) with the direction from the origin to infinity (since also x(t) → 0 if
t → −∞). Similarly, taking C1 = −1, C2 = 0 we will find that x(t) → −∞ if t → ∞ and x(t) → 0 if t → −∞
on the half line (x < 0, y = 0). Hence we fully described the orbit structure on the line corresponding to the
direction of v1 (see the figure below): There are three orbits there, two half-lines separated by the equilibrium
at the origin, and on both half lines the direction is from the origin (the corresponding eigenvalue is positive).
Now take C1 = 0, C2 = ±1. In this case we find ourselves on the direction corresponding to v2 = (0, 1)⊤, i.e.,
on y-axis. We again have three orbits there, but the direction is reversed, we approach the origin along these
orbits because λ2 is negative (see the figure below).

What about the case C1 6= 0 and C2 6= 0? For both t → ∞ and t → −∞ one of the coordinate will approach
infinity. Moreover, our intuition tells us that close orbits should behave similarly, therefore we do not have much
choice as to obtain the orbit structure shown in the figure above. An equilibrium point for which we have two
real eigenvalues, one is negative and one is positive, is called saddle.

I actually was quite vague about why the orbits not on the axes have this particular shape. Here is a proof.
We have, again, that

x(t) = C1e
λ1t, y(t) = C2e

λ2t,

or
x

C1
= eλ1t,

y

C2
= eλ2t.

Raise the first equality to the power λ2 and the second equality to the power λ1. We find, by eliminating t, that

xλ2

Cλ2

1

=
yλ1

Cλ1

2

=⇒ y = Ax
λ2

λ1 ,

3



x

y v1

v2

Figure 1: Saddle. The case λ1 > 0 > λ2. The first eigenvector corresponds to x-axis, and the second one
corresponds to y-axis

where A is a new constant depending on C1 and C2. Since the eigenvalues have opposite signs, we find that
orbits corresponds to “hyperbolas”

y = Ax−γ , γ > 0,

which we can see in the figure. By eliminating t we lost the information on the direction along the orbits. But
since we already know the directions along the axes, we can restore it for our curves by continuity.

Q: Can you plot a phase portrait of the system with the diagonal matrix A = diag(λ1, λ2) such that λ1 <
0 < λ2? What will be the difference with respect to the figure above?

Case λ2 > λ1 > 0. Formally, we have exactly the same general solution
[

x(t)
y(t)

]

= C1

[

1
0

]

eλ1t + C2

[

0
1

]

eλ2t,

but note that opposite to the previous case here for any choice of C1 and C2 (x, y) → (0, 0) if t → −∞, hence
geometrically all the orbits represent curves coming out from the origin and approaching infinity as t → ∞.
This is true in particular for the characteristic directions corresponding to the eigenvectors v1 and v2 (see the
figure below, left panel).

The subtle question is however how exactly orbits approach the origin for t → −∞. For this we recall that
the equation for the curves on the plane is given by

y = Ax
λ2

λ1 ,

and since we assumed that λ2 > λ1 then we have

y = Axγ , γ > 1,

which corresponds to “parabolas,” i.e., to the curves that are tangent to the x-axis at the origin. Another
way to see why x-axis is more important in this case is to note that when t → −∞, then eλ2t is much much
smaller than eλ1t, hence it is the first eigenvector that plays the most important role. For t → ∞ the situation
is opposite, since eλ2t is much much bigger than eλ1t and the second eigenvector shows the slope of the orbits.

An equilibrium point for which we have two real eigenvalues of the same sign is called node.
To obtain more intuition about how exactly the orbits approach the origin consider
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Figure 2: Left: Node. The case λ2 > λ1 > 0. The first eigenvector corresponds to x-axis, and the second one
corresponds to y-axis. Right: Node. The case λ1 < λ2 < 0. The first eigenvector corresponds to x-axis, and
the second one corresponds to y-axis

Case λ1 < λ2 < 0. Here the general solution shows that the direction on any orbits is from ±∞ to the origin
as t goes from −∞ to ∞. Now however when t → ∞ eλ2t is much much bigger than eλ1t and hence the orbits
behave as the second eigenvector v2, whereas for t → −∞ the first eigenvector becomes dominant, and therefore
the orbits far from the origin are parallel to the first eigenvector (see the right panel of the figure above). The
same conclusion can be seen from the equation for the phase curves

y = Axγ , 0 < γ < 1.

It is a good exercise to consider two remaining cases λ2 < λ1 < 0 and λ1 > λ2 > 0.

Case λ1 = λ2 < 0. To make our discussion full, consider also the case of equal negative eigenvalues for the
diagonal matrix A = diag(λ1, λ2). Since the eigenvalues are negative, the direction on the orbits is to the origin
(see the left panel in the figure below). Q: Do you know what to change on the figure to present a phase portrait
for λ1 = λ2 > 0?

Up till now we discussed only diagonal matrix A = diag(λ1, λ2), where λ1 and λ2 are real numbers. It turns
out that not much changes if we consider a general matrix A with two real eigenvalues. Consider two examples.

Example 1. Consider the system

ẋ = x+ 3y,

ẏ = x− y,

which means that we have matrix

A =

[

1 3
1 −1

]

with the eigenvalues λ1 = 2 and λ2 = −2 (cf. our very first example of the saddle point) and the corresponding
eigenvectors v1 = (3, 1)⊤ and v2 = (−1, 1)⊤. Hence the general solution to our problem is given by

[

x(t)
y(t)

]

= C1

[

3
1

]

e2t + C2

[

−1
1

]

e−2t.

The analysis of the general solution shows that on the characteristic direction corresponding to v1 the orbits
point from the origin (because λ1 = 2 > 0) and on the line with the direction v2 the orbits point to the origin
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Figure 3: Left: Node. The case λ1 = λ2 < 0. The first eigenvector corresponds to x-axis, and the second one
corresponds to y-axis. Right: Saddle. The case λ1 > 0 > λ2. Here the eigenvector directions do not coincides
with the axes

(because λ2 = −2 < 0). The rest of the orbits do not approach the origin either for t → ∞ or for t → −∞, and
can be plotted by continuity (see the right panel in the figure above).

So what is exactly different from the first example in this lecture, when we considered the diagonal matrix?
Not much actually. You can see that the resulting picture in this example can be obtained from the figure of the
first considered case by some stretching and rotation (without any tear!). It is true in general: If the eigenvalues
of a general matrix A2 are real and have opposite sign, then the origin is a saddle. To plot it you first need to
plot two lines with the directions corresponding to the eigenvectors, put arrows to the origin on the line which
corresponds to the negative eigenvalue, and put the arrows from the origin on the line corresponding to the
positive eigenvalue. The rest of the orbits are plotted by continuity and remembering that the orbits cannot
intersect.

Example 2. Consider

ẋ = −y,

ẏ = 8x− 6y,

hence our eigenvalues are −2,−4 with the eigenvectors (1, 2)⊤, (1, 4)⊤. Because both eigenvalues are negative,
we know that all the orbits approach the origin when t → ∞. Again, the only subtle thing here is to decide
along which direction the orbits tend to the origin. Since we have that λ2 < λ1 < 0 then for t → ∞ λ1 is more
important, hence the orbits will be parallel to v1 when the orbit is close to the origin. For t → −∞, far from
the origin, λ2 becomes dominant, and therefore the orbits will be parallel to v2 (see the figure, left panel).

Therefore, for any matrix with two real eigenvalues λ1 and λ2 with two distinct eigenvectors, we have the
equilibrium point at the origin, which is called node. This point attracts orbits (in the sense that the direction
on the orbits points to the origin) if eigenvalues are negative and repels them if eigenvalues are positive. To
determine the direction along which the orbits approach the origin, you need to look for the eigenvector that
corresponds to the eigenvalue that is closer to zero. Contrary, to see the behavior of the orbits far from the
origin, we need to look for the direction of the eigenvector corresponding to the eigenvalue that is further from
zero.

To conclude the discussion of the case when the matrix has real eigenvalues, recall that it is possible to have
equal eigenvalues with only one eigenvector. Consider such a case with

A =

[

λ 1
0 λ

]

,
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Figure 4: Left: Node. The case λ2 < λ1 < 0. Here the eigenvector directions do not coincides with the axes.
Right: The case of equal eigenvalues with only one eigenvector

which has eigenvalue λ multiplicity 2 with the eigenvector v = (1, 0)⊤. In this case we have only one charac-
teristic direction, and the orbits approach the origin along it. Moreover, the direction on the orbits from the
origin if λ > 0 and to the origin is λ < 0 (see figure, right panel for an example).

Now we switch to the case when the eigenvalues are not real.
Consider the system

ẋ = ax− by,

ẏ = bx+ ay,

for some constants a and b. Hence we have the matrix

A =

[

a −b
b a

]

.

We can analyze this case exactly as before, by finding the eigenvalues and eigenvectors (for example, the
eigenvalues are λ1,2 = a± ib). However, there is a simple way to figure out the behavior of the orbits. Multiply
the second equation by i and add them, after some simplifications we will find that for z = x+iy it is true that:

ż = λz, λ = a+ ib.

Now I use the polar form of a complex number z = ρeiθ, from which (fill in the details)

ρ̇ = aρ, θ̇ = b,

from which we find
ρ(t) = C1e

at, θ(t) = bt+ C2,

for the polar coordinates ρ and θ. To see how exactly the orbits look like, assume that a > 0 and b > 0.
Therefore, we find that ρ → ∞ as t → ∞ and ρ → 0 as t → −∞. For b positive it means that the polar angle
changes in the positive direction, which is counterclockwise. Considering superposition of these two movements,
we find that all the orbits (safe for the equilibrium point at the origin) are spiral, which the direction on them
from the origin. An example for the same matrix with a < 0 and b > 0 is given on the right panel in the same
figure. An equilibrium with such structure of orbits is called focus or spiral.

The general case is when the matrix has two complex conjugate eigenvalues λ1,2 = a±b. By the sign of a we
know the direction on the orbits: If a > 0 then the direction is from the origin, and if a < 0 then the direction
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Figure 5: Left: Focus. a > 0, b > 0. Right: Focus. a < 0, b > 0

towards the origin. However, the subtle thing here is to determine whether the rotation occurs clockwise or
counterclockwise. To make sure that you find the correct direction, it is useful to take any point (x, y) 6= (0, 0)
and find the direction at this point (this direction is given be the vector (a11x+a12y, a21x+a22y)). If you know
whether the origin attracts or repels the orbits and one point with the precise direction, it becomes clear what
is the whole picture on the phase plane.

As an example, and to make the discussion complete, consider the linear system with the matrix

A =

[

0 −3
1 0

]

,

with the eigenvalues λ1,2 = ±i
√
3. Since a = 0 we find that the orbits neither approach nor leave the origin.

Actually, it can be shown that all the orbits in this case are ellipses. To infer the direction of rotation, pick
a point, e.g., (x, y) = (1, 0). At this point we find the vector (0, 1)⊤, which points in the counterclockwise
direction, hence the orbits look like ellipses with the counterclockwise directions on them (see the figure). An
equilibrium with such phase portrait is called center.

23.3 Summary

In the previous section we found that it is possible to have the phase portrait around the origin that belongs to
one of the following types:

• saddle (two real eigenvalues of opposite sign);

• node (two real eigenvalues of the same sign);

• degenerate node (one eigenvalue of multiplicity two with only one eigenvector);

• focus (two complex conjugate eigenvalues, moreover, Reλ 6= 0);

• center (two imaginary eigenvalues, Reλ = 0).

However, the analysis was mostly based on three types of matrices:
[

λ1 0
0 λ2

]

,

[

λ 1
0 λ

]

,

[

a −b
b a

]

.

To state why it is enough to consider only these three matrices, I will need the following
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Figure 6: Center, the eigenvalues are purely imaginary

Definition 3. Matrices A,B ∈ Mn(R) are called similar is there exists an invertible matrix S, such that

A = S
−1

BS.

Similar matrices share a lot of properties. For example, they have the same eigenvalues (can you prove it?).
The main fact is the next theorem, which I state without proof.

Theorem 4. Any 2× 2 matrix is similar to one of the three matrices above.

As an important corollary we obtain that for any matrix A ∈ M2(R) such that detA 6= 0, the only possible
phase portraits are given in the previous section.

23.4 Stability of the origin

Having at our disposable all the possible phase portraits of linear planar systems of ODE makes it very intuitively
clear what it means to have the origin stable.

Definition 5. The origin of the linear system

ẋ = a11x+ a12y,

ẏ = a22x+ a22y,

with detA 6= 0 is called

• Lyapunov stable, if any orbit, starting close enough to the origin, stays close to the origin for all positive
t;

• asymptotically stable, if any orbit, starting close enough to the origin, is 1) Lyapunov stable, and 2) tends
to the origin as t → ∞;

• unstable, if there exits an orbit starting close enough to the origin that leaves a small neighborhood of the
origin for some positive t.

Using this definition we find that
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• saddles are always unstable, since it is possible to find orbits close to the origin that eventually leave any
neighborhood of the origin;

• nodes can be either asymptotically stable (this requires that both eigenvalues are negative) or unstable
(both eigenvalues are positive);

• foci can be either asymptotically stable (if Reλ1,2 < 0) or unstable (Reλ1,2 > 0);

• center is Lyapunov stable, but not asymptotically stable, since the orbits do not approach the origin.

Putting everything together, we obtain a very important fact that says that

Theorem 6. The origin of the linear planar system with the matrix A such that detA 6= 0, is stable if for all
the eigenvalues Reλ ≤ 0 and unstable otherwise. Moreover, it is asymptotically stable if Reλ1,2 < 0.

Since there is only one equilibrium in the linear system, it is often said that the system is stable or asymp-
totically stable, meaning that the origin is stable or asymptotically stable.

It is convenient to summarize all the information about the linear planar systems using two parameters:
trace and determinant of matrix A. For an arbitrary matrix A the characteristic polynomial has the form

λ2 − (a11 + a22)λ + (a11a22 − a12a21) = λ2 − trAλ+ detA,

where I used the notation trA := a11+a22 for the trace of matrix A, which is given by the sum of the elements
on the main diagonal. Therefore, the eigenvalues can be found as

λ1,2 =
trA±

√

(trA)2 − 4 detA

2
.

For example, if trA > 0, detA > 0, and ∆ = (trA)2 − 4 detA > 0 then we obtain that there are two real
eigenvalues of the same sign, which means that in this parameter region we have unstable node.

trA

detA

detA = (trA)2

4

unstable nodesstable nodes

stable foci unstable foci

saddlessaddles

Figure 7: Parametric portrait of linear planar systems. There are six domains here, with the boundaries
detA = 0, trA = 0 and detA = (trA)2/4. Note that on the line trA = 0 when detA > 0 we have centers,
and if detA < 0 we still have saddles. On the line detA = (trA)2/4 we have two equal eigenvalues, and hence
degenerate nodes

Note that the theorem above now can be restated as follows: The origin of the planar system with matrix
for which detA 6= 0 is asymptotically stable if and only if trA < 0 and detA > 0. No need to compute any
eigenvalues!
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23.5 Examples

Here we’ll consider a few more detailed examples, where all the bits of the theory developed above will be used.

23.5.1 A mass on a spring revisited

We start with the system that we already analyzed in detail. Now we will look at it from a slightly different
angle.

Recall that if we have a mass m > 0 on the spring with spring constant k and the damping coefficient is
c > 0, then the position x(t) of the center of mass satisfies the differential equation (we assume that no external
force is applied to the mass)

mẍ+ cẋ+ kx = 0.

Introducing the new variable ẋ = v the second order equation can be rewritten as a system of two first order
equations

ẋ = v,

v̇ = − c

m
v − k

m
x,

with the matrix

A =

[

0 1
− k

m
− c

m

]

.

The eigenvalues are the roots of characteristic equation

λ2 +
c

m
λ+

k

m
= 0.

Assume first that c = 0, i.e., there is no damping in the system. Then the eigenvalues are

λ1,2 = ±i

√

k

m
= ±iω0,

and the origin in this case is a center. The only thing that needs to be checked is the direction of the phase
orbits. Here if we take vector e1 = (0, 1) then Ae2 = e1 = (1, 0), that is, the motion is clockwise in the plane
(x, v) (see top left phase portrait in Fig. 8). Clearly the origin is Lyapunov stable but not asymptotically stable
in this case. This is the general situation: usually the Lyapunov stable equilibria correspond to the situations
when either friction or damping are absent.

In reality we always have some kind of damping in our mechanical systems. Assume that not 0 < c is small.
Note that in this situation trA < 0 and detA > 0 for any parameter values, as expected. The eigenvalues are
given by

λ1,2 =
1

2

(

−c±
√

c2 − 4km
)

.

First, if c2 − 4km < 0 (which is true for small c), then we have two complex conjugate eigenvalues with
negative real parts, hence the origin is stable focus (the direction of motion also can be determined by taking
a specific point and finding the direction at this point, or by continuity from the case c = 0), which correspond
to the oscillations which eventually subside and the mass reaches the equilibrium (see Fig. 8, top right.)

If we keep increasing c then at some point c2 = 4km and we have one real negative eigenvalue λ = −c(2m)−1

of multiplicity two. The corresponding eigenvector can be chosen as (check it)

u =

[

1
− c

2m

]

,

which also described the direction along which the orbits approach the origin (critically damped motion, Fig.
8, bottom left panel).
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Figure 8: Various phase portraits of the mechanical system “mass on a spring.” Top left: harmonic oscillations,
no friction; top right: underdamped motion; bottom left: critically damped motion; bottom right: overdamped
motion.

If we keep increasing c, we get two real negative eigenvalues with eigenvectors u1 and u2, which corresponds
to overdamped motion (Fig. 8, bottom right panel). It is a good exercise to allow the parameters c and k to be
negative and see what other kinds of phase portraits this system can produce.

23.5.2 Lanchester’s law of combat

Consider a battle between two armies. Let R(t) and B(t) be the number of soldiers of these armies at time t
respectively (so we have a “red” army and a “blue” army). Assume also that relative efficiencies of the armies
(whatever it means) are given by constants b for blue and r for red. It is reasonable to assume that the rate of
change (number of casualties per time unit) of each army if proportional to the product of the weapon efficiency
and the army population. That is, the battle can be described by the system of ODE:

Ṙ = −bB,

Ṙ = −rR,
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which is exactly in the form that we studied in this part of the course. The matrix of the system is given by

A =

[

0 −b
−r 0

]

,

and hence the eigenvalues are λ1,2 = ±
√
rb, which corresponds to the saddle at the origin. Let us try to be

more specific about the structure of phase orbits.

Figure 9: The phase portrait of the system Ṙ = −bB, Ḃ = −rB. The direction along the eigenvector v

corresponds to the stalemate situation: both armies fight to the last soldier. This direction separates the set of
initial conditions for which “blue” win from the set of initial conditions for which “red” win.

The interpretation of the model implies that we are only interested in the quadrant when R(t), B(t) ≥ 0.
Therefore we will consider only the eigenvalue λ1 = −

√
rb, which corresponds to the saddle direction, along

which the orbit approaches the origin. The corresponding eigenvector can be taken as v = (1,
√

r/b) (see Fig.
9). Note that if the initial conditions are chosen such that we start exactly on the line with the direction v, we
call this situation “stalemate” since both armies loose all the soldiers. The same line divides the set of all the
initial conditions into the set for which B win and R win. Specifically, if B0 >

√

r
b
R0 then “blue” win, in the

opposite case “red” win (see the figure).
An interesting property of this (very oversimplified) model is that at the stalemate one has

bB2
0 = rR2

0,

which is often called Lanchester’s square law of combat, and which implies a quite nontrivial conclusion: To
defeat the opponent that is twice as numerous, the other side must be at least four time more efficient.
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