
5 Exact equations

In Lecture 3, where I discussed the geometric interpretation of the first order ODE, an attentive
reader should have noted that the relation between the integral curves as the curves tangent to the
given direction field and the graphs of the solutions to the equation y′ = f(x, y) is not as simple
as it was stated. For instance, assuming that the solution has to be the function y = y(x) we
exclude all the directions parallel to the y-axis, even more, we also exclude all the integral curves
that cross the lines parallel to the y-axis at more than one point. To overcome this difficulty, we can
use the approach discussed in the previous lecture, when we switched the role of the dependent and
independent variables, and instead of y′ = f(x, y) consider x′ = f1(x, y), where f1(x, y) = 1/f(x, y),
wherever f(x, y) is undefined, but now the situation when f(x, y) = 0 becomes undefined. Therefore,
it would be beneficial to have a more general form to write ODE.

The most general form of the first order ODE, for which the relation between the integral curves
and the graphs of the solutions is most direct, is as follows:

M(x, y) dx+N(x, y) dy = 0, (1)

where M(x, y) and N(x, y) are given functions. In this form the role of x and y is symmetric, and
the direction field is defined everywhere, where M(x, y) and N(x, y) are defined and at least one of
them is different from zero. Note that to go from (1) to the usual form y′ = f(x, y) one needs to set

f(x, y) = −
M(x,y)
N(x,y) .

Definition 1. Equation (1) is called exact in the domain D ⊆ R2 if there exists a function F (x, y) ∈
C(1)(D;R) such that

dF (x, y) = M(x, y) dx+N(x, y) dy =
∂F

∂x
dx+

∂F

∂y
dy, (x, y) ∈ D ⊆ R2.

In other words, the expression M(x, y) dx+N(x, y) dy is a total differential if (1) is exact. Function
F is often called a potential.

If an ODE is exact and we know the function F (x, y) then its solution is immediate and given by

F (x, y) = C.

If, additionally to (1), we are also given the initial condition

y(x0) = y0, (2)

then the solution to the IVP (1)–(2) is

F (x, y) = F (x0, y0).

When it is possible to express y as a function of x, it should be done, however, as even the simplest
examples show, it is usually not possible to express one variable as a function of another, in this case
the solution is kept as an implicit function.
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Figure 1: The direction field of the equation y dx+ xdy = 0.

Example 2. Consider the equation
y dx+ xdy = 0.

Since we must have that ∂F
∂x = y, ∂F

∂y = x, we can guess that in this case F (x, y) = xy. Hence the
general solution to this equation is given by xy = C, which are the families of hyperbolas. The
direction field is shown in the figure above. Note that the only point at which the direction field is
not determined is the origin (0, 0).

There are two main questions, which have to be answered, if a student encounters an ODE in the
form (1). First, is this equation exact? Second, if the answer to the first question is “yes,” how to
find F (x, y)?

To answer question 1, you need to recall from your Calculus course that

Theorem 3. The expression of the form M(x, y) dx +N(x, y) dy with M,N ∈ C(1)(D;R) is a total

differential in an open simply connected set D if and only if

∂M

∂y
(x, y) ≡

∂N

∂x
(x, y), (x, y) ∈ D.

The set D ⊆ R2 is open if any point of the set is interior, and simply connected if it does not have
holes. Once we know that our equation is exact, we can use this fact to figure out what F (x, y) is. It
is easier to show the procedure by an example.

Example 4. Solve the equation

(3x2 + 6xy2) dx+ (6x2y + 4y3) dy = 0.

Here we have
M(x, y) = 3x2 + 6xy2, N(x, y) = 6x2y + 4y3.
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The theorem above works since

∂M

∂y
(x, y) = 12xy ≡ 12xy =

∂N

∂x
(x, y)

for any D ⊆ R2. Hence our equation is exact. This fact implies that there exists function F (x, y)
such that

∂F

∂x
(x, y) = 3x2 + 6xy2,

∂F

∂y
(x, y) = 6x2y + 4y3.

Let us use the first of these equalities and integrate with respect to x:

∫

∂F

∂x
(x, y) dx =

∫

(3x2 + 6xy2) dx = x3 + 3x2y2 + C(y).

Note that since I integrated with respect to x, the arbitrary constant in general depends on y. Now
we take the derivative with respect to y from the obtained expression:

∂

∂y

(

x3 + 3x2y2 + C(y)
)

= 6x2y + C ′(y),

and this has to be equal to N(x, y):

6x2y +C ′(y) = 6x2y + 4y3 =⇒ C ′(y) = 4y3 =⇒ C(y) = y4 + C1.

Hence the final answer for our problem is (switching back to the usual notation C for the arbitrary
constant)

x3 + 3x2y2 + y4 = C,

and the potential function (which is determined up to an additive constant) is

F (x, y) = x3 + 3x2y2 + y4.

Here we can express neither y nor x in the general solution. This example shows that sometimes it is
easier to solve the problem than figure out the behavior of the integral curves.

Here are a few more exact equations with the corresponding solutions:

1. (ex sin y + e−y) dx− (xe−y − ex cos y) dy = 0 with the general solution

ex sin y + e−yx = C.

2. sin y dx+ x cos y dy = 0 with the general solution

x sin y = C.

3. (3x2 − 2x− y) dx+ (2y − x+ 3y2) dy = 0 with the general solution

x3 − x2 − xy + y2 + y3 = C.

You should practice your skills in solving these equations by the methods described above.
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5.1 ∗Integrating factor

Sometimes we are given an ODE in the form (1) but

∂M

∂y
(x, y) 6=

∂N

∂x
(x, y).

In this case the equation is not exact. However, we can always try to find (or guess) a function µ(x, y),
which is called an integrating factor, such that after multiplication of the equation by this function
we end up with an exact equation

µ(x, y)M(x, y) dx+ µ(x, y)N(x, y) dy = 0.

For the last equation to be exact we need to assume that

∂

∂y
(µM) ≡

∂

∂x
(µN).

Here I suppress the dependence on x, y to simplify the expressions. I will also denote the derivatives
as µ′

x := ∂µ
∂x and so on. Rearranging the last equality and evaluating the derivatives yield

µ′

yM +M ′

yµ = µ′

xN +N ′

xµ =⇒ µ(M ′

y −N ′

x) +Mµ′

y −Nµ′

x = 0.

In the last equation the unknown function is µ = µ(x, y), which depends on two independent variables.
Hence this is a differential equation, albeit not ordinary. This is an example of a partial differential

equation, which, generally speaking, is a more complex object than the original ODE. So, did we learn
something by these manipulations? Actually, yes, if we make some additional assumptions.

First, assume that an integrating factor is a function of x only. In this case the last equation can
be rewritten as

µ′

x

µ
=

M ′

y −N ′

x

N
.

For µ to be a function of x only, the right hand side has to depend only on x. Therefore, we obtain
that if the expression

M ′

y −N ′

x

N

is a function of x only, then there exists an integrating factor µ = µ(x), which can be found as a
solution to the ordinary differential equation

µ′

x

µ
=

M ′

y −N ′

x

N
.

In a similar vein (you should fill in the missing details), if the expression

N ′

x −M ′

y

M

is a function of only y, then there exists an integrating factor µ = µ(y), which can be found as a
solution to the ODE

µ′

y

µ
=

N ′

x −M ′

y

M
.
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Example 5. Consider the equation
x2y dx+ x3 dy = 0,

which, since ∂
∂y (x

2y) 6= ∂
∂x(x

3), is not exact. Consider the expression

M ′

y −N ′

x

N
=

x2 − 3x2

x3
= −

2

x
,

which depends only on x. Hence we can find µ = µ(x) as a solution to

1

µ
µ′ = −

2

x
=⇒ µ(x) =

1

x2
.

Note that because I need only one integrating factor, I do not include the arbitrary constant in my
calculations. After multiplication of the original equation by 1/x2, we have

y dx+ xdy = 0,

which we already solved at the beginning of the lecture:

xy = C.

Example 6. Consider the linear equation

y′ + p(x)y = q(x).

We can rewrite it as
(p(x)y − q(x)) dx+ dy = 0,

with M(x, y) = p(x)y − q(x) and N(x, y) = 1. This equation is not exact, however, the expression

M ′

y −N ′

x

N
= p(x)

depends only on x. Therefore there is an integrating factor µ = µ(x), which is a solution to

µ′

µ
= p(x) =⇒ µ(x) = exp

∫

p(x) dx,

exactly how we obtained earlier using completely different reasoning!

Example 7. Solve
2xy log y dx+

(

x2 + y2
√

y2 + 1
)

dy = 0.

This equation is not exact (check!). However, using our notations, we find that

N ′

x −M ′

y

M
= −

1

y
,

which means that there exists an integrating factor depending on the variable y only:

µ′ = −
µ

y
=⇒ µ(y) =

1

y
.
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Therefore, we have

2x log y dx+
x2

y
dy + y

√

y2 + 1dy = 0.

Now note that the first two terms, as well as the third one, can be readily simplified as

d
(

x2 log y
)

+
1

3
d
(

y2 + 1
)3/2

= 0,

therefore, the answer is

x2 log y +
1

3

(

y2 + 1
)3/2

= C.

5.2 ∗For a mathematically inclined student: Orthogonal trajectories

I already discussed the fact that in general a first order ODE defines geometrically a one-parameter
family of curves. For example, the ODE xdx+ y dy = 0 defines the family of circles with the center
at the origin x2 + y2 = C. The converse is also true: for a given one-parameter family of curves on
the plane it is possible to find an ODE whose general solution coincides with this family.

Example 8. Find the ODE of the family of hyperbolas

x2

C2
− y2 = 1.

Here C is our parameter, for different C we have different hyperbolas (sketch them). Differentiate this
expression with respect to x and obtain

2x

C2
− 2yy′ = 0,

or, after multiplying by x,
x2

C2
= xyy′.

Now eliminate the parameter using the original equation for the family of curves and finally obtain
the sought ODE

1− y2 = xyy′.

In general, if one is given a one-parameter family of curves on the plane Φ(x, y, C) = 0, then, after
differentiating with respect to x, we find the system

Φ(x, y, C) = 0,

∂Φ

∂x
+

∂Φ

∂y
y′ = 0,

from which we can eliminate the parameter and find the ODE of the family of curves.
Now consider the family of curves given by Φ(x, y, C) = 0 and another curve that forms a constant

angle α with the curves of the family Φ(x, y, C) = 0 at each point. Such curve is called an isogonal

trajectory. In particular, if α = π/2, then such curve is called an orthogonal trajectory.
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Consider the problem of finding the family of orthogonal trajectories for a given family of curves
Φ(x, y, C) = 0. Since the ODE for the family Φ(x, y, C) = 0 can be found by the methods described
above as y′ = f(x, y), the ODE for the orthogonal family is given by

y′ = −
1

f(x, y)
,

due to the fact that if two curves are orthogonal at some point x, then y′1(x)y
′

2(x) = −1 (Q: can you
see why it is true?).

Example 9. Find the orthogonal trajectories to the family of circles

x2 + y2 = 2Cx.

Note that the equation can be rewritten as

(x− C)2 + y2 = C2,

which means that geometrically these are the circles with the centers on the x-axis and touching the
y-axis. Differentiating with respect to x we find

2x+ 2yy′ = 2C.

Eliminating the parameter yields

x2 − y2 = 2xyy′ =⇒ y′ = −
x2 − y2

2xy
,

which means that the ODE for the orthogonal trajectories takes the form

y′ =
2xy

x2 − y2
.

Rewrite this equation as
−2xy dx+ (x2 − y2) dy = 0,

which is not exact (check it). However, as can be proved, the function µ(y) = y−2 is an integrating
factor here, and the equation

−
2x

y
dx+

x2 − y2

y2
dy = 0

is exact. Its solution is given by
x2 + y2 = 2Cy,

or
x2 + (y − C)2 = C2,

which gives the family of circles with the centers on the y-axis touching the x-axis. In the figure you
can see the original family (in red) and the orthogonal family (in blue):
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Figure 2: The orthogonal trajectories (in blue) to the original family of curves (in red).
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