
3 Echelon form of a matrix

Recall from the first section that the elementary row operations are (i) switch the order of equations,
(ii) multiply an equation by a non-zero constant, (iii) multiply an equation by a constant and add it
to another equation. I will call them usually by these numbers (type 1, type 2, and type 3). Using
these three operations I can always put any matrix into the so-called row echelon form and into the
reduced row echelon form.

One can look at the elementary row operations as actually multiplication of a matrix by the
so-called elementary matrices from the left. In particular, consider three elementary matrices:

Type (i) matrix is 
1

0 1
1

1 0
1

 .

Here I start with the identity matrix, the i-th and j-th diagonal entries are replaced by zeros, and at
the i, j-th and j, i-th entries 1’s are added.

Type (ii) matrix is 
1

1
α

1
1

 , α ̸= 0.

Here in the identity matrix the i-th diagonal entry is replaced with constant or scalar α ̸= 0.
Type (iii) matrix is 

1
1

1
α 1

1

 .

Here I start with the identity matrix and put α at the i, j-th position, i ̸= j, i > j.
I claim that multiplication by these elementary matrices from the left amounts exactly to three

elementary row operations:

• Multiplication by an elementary matrix of type (i) switches the i-th and j-th rows of the matrix;

• Multiplication by an elementary matrix of type (ii) multiplies the i-th row of the matrix by
constant α;

• Multiplication by an elementary matrix of type (iii) takes the j-th row of a matrix, multiplies
it by α, and adds the result to the i-th row.

One of course should check these rules (e.g., by looking how these matrices work on column vectors).
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Exercise 1. Check how the elementary matrices act on an arbitrary column vector.

Exercise 2. What if instead of an elementary matrix of type 3 I will take a very similar matrix, but
with i < j? Will anything change?

Lemma 3.1. Elementary matrices are invertible and their inverses are also elementary matrices.

Proof. We can always “undo” the row operations by switching equations i and j again, multiplying by
1/α, and by taking the j-th equation, multiplying by −α, and adding to the i-th row, and therefore
we have an explicit form for the inverse matrices. �

Remark 3.2. The proof I gave above is quite vague, but so are many other proofs. Importantly, it
contains the main ideas, which the student should be able to extend to a full careful proof if needed.
As an example, let me prove that Type 1 elementary matrix is invertible in a somewhat more rigorous
manner.

Let me denote this matrix E. Since multiplication of type 1 matrix corresponds to switching rows
i and j of the matrix, then, EI means that I switch the i-th and j-th rows of I. Let me consider
EEI = I because I switch rows i and j twice and hence do not change anything. Therefore, E is the
inverse to itself, and hence any elementary matrix of type 1 is invertible.

Exercise 3. Expand the proof of the lemma above for the elementary matrices of type 2 and 3; i.e.,
by writing explicitly the inverse matrix for these types.

Now it should be clear that when I talk about elementary row operations, what I am actually
doing mathematically is multiplying the original matrix M from the left by a sequence of elementary
matrices:

M ′ = Ek . . .E2E1M ,

where each Ei is an elementary matrix of one of three discussed types.
This process of simplifying the original matrix is called the row reduction and it consists of three

sub-steps:

1. Find the leftmost non-zero column of the matrix;

2. Make sure, by switching the order of equations, that the upper entry is non-zero. This entry
will be called pivot ;

3. Get rid of all the nonzero entries below the pivot by using the third type elementary operations.

I apply this main step first to the original matrix, then I leave the first row alone and apply the same
step to all the rows except the first one, after this to the rows rows one and two and so on. And since
the number of rows is finite, I will always end up with a matrix in a row echelon form.

Example 3.3. Consider, for example, the following system

x1 + x2 + 2x3 + x4 = 5,

x1 + x2 + 2x3 + 6x4 = 10,

x1 + 2x2 + 5x3 + 2x4 = 7.
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I start by writing the augmented matrix and them proceed with the row reduction1 1 2 1 5
1 1 2 6 10
1 2 5 2 7

 →

1 1 2 1 5
0 0 0 5 5
0 1 3 1 2

 →

1 1 2 1 5
0 1 3 1 2
0 0 0 5 5

 .

We have three pivots, and the solution can be read from this matrix. I notice that x4 = 1, and x1 and
x2 can be expressed through x3, which is a free variable in my case. After some simplification I get

x1
x2
x3
x4

 =


3 + t
1− 3t

t
1

 =


3
1
0
1

+ t


1
−3
1
0

 , t ∈ R,

where the notation t ∈ R means that t is an arbitrary real number.
To determine exactly when my matrix in the row echelon form, I notice that two conditions must

be satisfied:

1. All zero rows are below nonzero rows;

2. For any nonzero row its pivot is strictly to the right of the pivot from the previous row.

Instead of making the back substitution as above, I could have proceeded with further simplifica-
tions of my matrix, to put it into the reduced row echelon form. A matrix is in reduced row echelon
form if it is in the row echelon form and, additionally,

1. All the pivots are equal to 1.

2. All the entries above and below pivots are zero.

Clearly I can always achieve this by the second and third type elementary row operations.
Continuing my example, I get1 0 −1 0 3

0 1 3 1 2
0 0 0 1 1

 →

1 0 −1 0 3
0 1 3 0 1
0 0 0 1 1

 .

Here you can see that the only column that has no pivot is column 3, and hence I have only one free
variable, x3.

I proved in the first section that elementary row operations do not produce new solutions. The
proof there was somewhat lame, mainly due to the lack of convenient definitions and notations. Let
me prove this fact again, using the introduced notations for the elementary matrices.

Proposition 3.4. Consider two linear systems Ax = b and A′x = b′, such that the second one is
obtained from the first by elementary row operations. Then they have the same solutions.

Proof. Let me denote the augmented matrices as M = [A|b] and M ′ = [A′|b′] of the first and second
systems respectively. I know that

M ′ = Ek . . .E1M = PM .
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Matrix P is invertible as a product of invertible matrices, with the inverse P−1. Now, if x̂ solves the
first system, i.e., Ax̂ = b, then it also solves the second one, since it is given by PAx̂ = Pb. In the
opposite direction, if x̃ solves the second system then it also solves the first one, since it is obtained
as P−1A′x̃ = P−1b′. �

To conclude, if one needs to solve a system of linear equations, then first an augmented matrix
must be written, this matrix must be put into the reduced row echelon form, the columns without
pivots correspond to the free variables that must be moved to the right hand sides. All other variables
are expressed uniquely through the free variables. After assigning arbitrary values to the free variables
we obtain all possible solutions to the original system. In short, the augmented matrix of the system
of linear equations in the reduced row echelon form tells me everything about possible solutions.

Proposition 3.5. Let M ′ = [A′|b′] be an augmented matrix in the reduced row echelon form. Then
the system A′x = b′ has a solution if and only if there are no pivots in the last column of M ′. If the
system has a solution (it is consistent), then this solution is unique if there are no free variables; and
there are infinitely many solutions if free variables are present.

Proof. I will prove only the first claim leaving the rest to the reader. Recall that if you are required
to prove something with the wording “if and only if” this means that you need to consider two cases
or two directions. Assume first that we have a pivot in the last column. This gives me an equation,
e.g., 0x1 + . . . + 0xn = 1, which cannot hold for any x = [x1 . . . xn], hence no solution. If there is
no pivot in the last column then I can always take some arbitrary values for my free variables, and all
other variables are determined uniquely, and hence I have a solution. �

Exercise 4. Prove the remaining statements in the proposition above.

A little more terminology. A system of linear algebraic equationsAx = b is called nonhomogeneous
if b ̸= 0 and homogeneous if b = 0. Note that a homogeneous system always has a (trivial) solution
x = 0.

Proposition 3.6. Every system Ax = 0 with m equations and n unknowns has a non trivial solution
if m < n.

Proof. Since m < n the number of pivots is less than the number of variables n, and hence I have
some free variables, which can be assigned arbitrary values. �

Lemma 3.7. A square matrix M in the reduced row echelon form is either the identity matrix I or
has a bottom row of zeros.

Proof. Since I have n columns and n rows then I have at most n pivots. If there are n of them then
the reduced row echelon form is I, if there are fewer then n pivots then some rows are zero, including
the bottom row. �

Theorem 3.8. The following conditions are equivalent for a square matrix A

(A) The reduced row echelon form for A is the identity matrix;

(B) A is a product of elementary matrices;

(C) A is invertible.

4



Proof. (A) =⇒ (B). I assume that there are elementary matrices such that

Ek . . .E1A = I.

Now I can multiply both sides by E−1
1 . . .E−1

k to get

A = E−1
1 . . .E−1

k .

(B) =⇒ (C) This is true since the product of invertible matrices is invertible.
(C) =⇒ (A) First I note that an invertible matrix cannot have a whole row of zeros. If A is

invertible, so is its reduced row echelon form A′, which also cannot have a row of all zeros, and hence,
by Lemma 3.7, is the identity matrix. �

Theorem 3.8, among other things, provides an algorithm to compute the inverse matrix. I have
that for an invertible matrix I must have

Ek . . .E1A = I,

or
Ek . . .E1I = A−1.

Hence to compute the inverse matrix one must apply the elementary row operations, reducing the
original matrix to the identity matrix, to I. As shown above, the same sequence of operations, which
applied to the identity matrix I, yields A−1.

Example 3.9. To find the inverse matrix for [
1 5
2 6

]
I write first [

1 5 1 0
2 6 0 1

]
and perform the elementary operations[

1 5 1 0
2 6 0 1

]
→

[
1 5 1 0
0 −4 −2 1

]
→

[
1 5 1 0
0 1 1/2 −1/4

]
→

[
1 0 −3/2 5/4
0 1 1/2 −1/4

]
.

Exercise 5. Check that the found matrix is indeed the inverse.

Finally I can state and prove the main theorem about the system of linear equations with a square
matrix.

Theorem 3.10. The following are equivalent for a square matrix A:

(A) A is invertible;

(B) The system Ax = b has a unique solution for any b;

(C) The system of homogeneous equations Ax = 0 has only the trivial solution x = 0.
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Proof. (A) =⇒ (B). If A is invertible then its reduced row echelon form A′ is the identity matrix,
and hence the equivalent system A′x = b′ has the unique solution b′.

It should be clear that (B) =⇒ (C).
To show that (C) =⇒ (A) I will consider logically equivalent not (A) implies not (C). Much

more on logic will be discussed later.
If A is not invertible then its row reduced echelon form will have a row of zeros and hence there are

fewer than n pivots, and hence there are some free variables and therefore the homogeneous system
has a non-trivial solution. �

Remark 3.11. Note that I also proved that if a homogeneous system has only the trivial solution
then the corresponding non-homogenous system has a unique solution for any b.

Finally, let me mention that all the same elementary operations can be performed on columns.
The easy way to see it is to introduce the operation of taking the transpose of a matrix.

Definition 3.12. Let A be an m× n matrix. Its transpose, denoted A⊤, is defined as

[a⊤ij ] = [aji],

and hence an n×m matrix.

The role of rows and columns is interchanged by the transpose operation on matrices, as the
following lemma shows.

Lemma 3.13. Let A,B be two matrices such that the product AB is defined. Then

(AB)⊤ = B⊤A⊤.

Exercise 6. Prove this lemma.

Exercise 7. Prove that

(A⊤)⊤ = A,

(αA)⊤ = αA⊤,

(A+B)⊤ = A⊤ +B⊤,

and finally if A is invertible, so is A⊤ and (A⊤)−1 = (A−1)⊤.

Now we can deduce the facts about right multiplication from the corresponding facts about left
multiplication. In particular, the right multiplications by the elementary matrices corresponds to three
elementary column operations.

Exercise 8. Think the last statement out carefully.

For future reference I finish this section with two more results, which I will use (directly or indi-
rectly) later. The proof of the first result is assigned as a homework exercise.

First, for an arbitrary matrix A (note, I do not assume that A is square) I define the left inverse
L as a matrix for which LA = I, and the right inverse R as a matrix for which AR = I.

6



Theorem 3.14. Let A be a square matrix that has either a left inverse or a right inverse, a matrix
B such that either BA = I or AB = I. Then A is invertible and B its inverse.

And the second result I mentioned is (intuitively obvious)

Theorem 3.15. The row reduced echelon form of matrix A is unique.
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