
11 The field C of complex numbers

Before continuing with linear algebra, I must spend some time talking about another important field,
namely field of the complex numbers C. The motivation for this is the necessity to find roots of a given
polynomial. We all well aware that not every polynomial has real roots (think about f(x) = x2+1 for
instance). On the other hand, the fundamental theorem of algebra says that any polynomial of degree
at least one has at least one complex root, which will be most important for us.

11.1 Naive introduction to complex numbers

The usual way to quickly start with complex numbers is to say that we introduce a new object, which
I will call i (engineers very often use j), such that the following characteristic property holds:

i2 = −1.

Now, having this new object at my disposal, I can easily define the set of complex numbers as the set
with elements of the form x+ iy, where x, y are our familiar real numbers:

C := {x+ iy : x, y ∈ R, i2 = −1}.

After this, using the usual rules of the arithmetic operations as applied to the real numbers, I have

z1 ± z2 = (x1 + ix2)± (y1 + iy2) = (x1 ± y1) + i(x2 ± y2),

z1z2 = (x1 + ix2)(y1 + iy2) = (x1y1 − x2y2) + i(x1y2 + x2y1),

z1
z2

=
x1 + ix2
y1 + iy2

=
(x1 + ix2)(y1 − iy2)

(y1 + iy2)(y1 − iy2)
=

x1y1 + x2y2
y21 + y22

+ i
x2y1 − x1y2
y21 + y22

,

and therefore I have arithmetics in the set of complex numbers.
The used here definition is, however, not really satisfactory, because it does not explain what i

is, and hence we get a sense of mystery here (and hence the name “imaginary” numbers). But there
is actually nothing imaginary about complex numbers, as was realized by Gauss and others, if we
identify them with the elements of our familiar R2 and add a little more. Therefore, let me introduce
the set of complex numbers in a different and rigorous way (as a side remark I note that there are
other ways to define complex numbers, but the one I am using is arguably the most natural).

11.2 Definition and basic properties

Definition 11.1. The set of complex numbers, which is denotes C, is, by definition, R2, that is, the
set of all the vectors with two real coordinates, on which the operations of addition and multiplication
are defined as follows (to save my space I write my vectors as row-vectors):

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2),

(x1, x2) · (y1, y2) = (x1y1 − x2y2, x1y2 + x2y1).
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Definitely, the multiplication rule should look a little strange at the beginning, but of course the
motivation comes from the previous subsection. Before getting any intuition, let me prove

Proposition 11.2. The set C with defined in this way addition and multiplication is a field. That is,
for any z1, z2, z3 ∈ C we have

z1 + z2 = z2 + z1,

(z1 + z2) + z3 = z1 + (z2 + z3),

z1z2 = z2z1,

(z1z2)z3 = z1(z2z3),

there is a unique element 0 ∈ C for which

z1 + 0 = z1,

for any z1 ∈ C there is −z1 ∈ C for which

z1 + (−z1) = 0,

there is 1 ∈ C, for which
1z1 = z1,

and finally for any nonzero z ∈ C there is z−1 ∈ C for which

zz−1 = 1.

Remark 11.3. It should be clear that above 0 = (0, 0), where 0 on the left is the zero of C and zero
on the right is our familiar real zero; also, 1 ∈ C means that 1 = (1, 0). Probably the only non-trivial
fact to prove is to show the existence of the multiplicative inverse. I again use the informal calculations
from the introductory subsection, and hence here is an explicit formula for it: If z = (x, y) ∈ C then

z−1 =

(
x

x2 + y2
,

−y

x2 + y2

)
.

Exercise 1. Prove all the points of the proposition above.

Now, consider the following equation

z2 + 1 = 0.

Here 1 and 0 are complex unit and zero. We all know that this equation has no real roots. But I
claim that it has two complex roots (0, 1) and −(0, 1) (check this!). To make my life much easier I
will define now one of the roots of my equation to be the imaginary unit i = (1, 0), and my equation
actually shows that i2 = −1. Now any complex number can be represented as z = x + iy = 1x + iy,
where 1 = (1, 0) (of course you should recognize that complex 1 and i form the standard basis of R2),
and I will tacitly assume the R ⊆ C (formally, of course, it is not true, but I can always show that R
is isomorphic to a subset of C, think this out).
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Now, having at my disposal a rigorous definition of the field of complex numbers, I actually justified
the calculations like the following one:

z1 · z2 = (x1 + ix2)(y1 + iy2) = x1y1 + i2x2y2 + i(x2y1 + x1y2) = x1y1 − x2y2 + i(x2y1 + x1y2).

A little more definitions: For any complex z = x+iy ∈ C x is called the real part of z and denoted
Re z, and y is called the imaginary part of z and denoted Im z. Thus z = Re z + i Im z. The modulus
or an absolute value of z is (x2+ y2)1/2 and denoted |z|. Finally, complex conjugate of z is z̄ = x− iy.

Exercise 2. Prove that
z1 + z2 = z̄1 + z̄2, z1z2 = z̄1z̄2.

Note that according to the introduced definitions |z|2 = zz̄.

Exercise 3. Show that |z1z2| = |z1||z2|.

Using the complex conjugate we can easily find a multiplicative inverse:

z−1 =
1

z
=

1

x+ iy
=

x− iy

(x+ iy)(x− iy)
=

Re z

|z|2
+ i

− Im z

|z|2
,

which gives a clue how the formula for the inverse was actually found.
Using the geometry of R2 I can represent complex numbers using the polar coordinates, see the

figure below.

0
x

y

Re z

Im z z

θ

r

Figure 1: Geometric interpretation of complex numbers. θ is the angle between vector z and x-axis;
r is the length of the same vector: r = |z|

Since (x, y) = (r cos θ, r sin θ), where r = |z| and tan θ = y/x (for x ̸= 0), then

z = x+ iy = r(cos θ + i sin θ),

which is called trigonometric form of complex number. The angle θ is called an argument of z and
denoted arg z, note that the argument is defined only modulo 2π and is not unique. It is convenient
also to have the principal value of the polar angle, which is denoted Arg z and satisfies 0 ≤ Arg z < 2π
(or, sometimes, −π < Arg z ≤ π).
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Convince yourself that

|i| = 1, Arg i =
π

2
, |1 + i| =

√
2, Arg(1 + i) =

π

2
.

Using trigonometric form it is possible (do it!) to show that if we are given two complex numbers
z1 and z2 then their product has the modulus equal to |z1||z2| and argument θ1 + θ2.

Exercise 4. Since the principle argument of i is π/2 and modulus is 1, then, from the above, the
multiplication by i amounts to rotating the given vector by the angle π/2. Since we know that it is a
linear operator acting on R2 it has a matrix. Find it.

11.3 Euler’s formula

For any complex z it is true that
eiz = cos z + i sin z.

This equality is called Euler’s formula, but to fully appreciate it I would need to discuss what the
function of the complex argument is, and this is beyond the scope of this course. Instead, I will talk
about a particular case, which is true for any x ∈ R:

eix = cosx+ i sinx.

To get an idea where this remarkable identity coming from, recall that functions ex, cosx, sinx have
Taylor’s series absolutely convergent for any x ∈ R:

ex = 1 + x+
x2

2!
+

x3

3!
+ . . . =

∞∑
k=0

xk

k!
,

cosx = 1− x2

2!
+

x4

4!
− . . . =

∞∑
k=0

(−1)k
x2k

(2k)!
,

sinx = x− x3

3!
+

x5

5!
− . . . =

∞∑
k=1

(−1)k−1 x2k−1

(2k − 1)!
.

Now plug ix instead of x into the series for the exponent function, use the property that i2 = −1, i3 =
−i, i4 = 1, . . ., rearrange the series and obtain Euler’s formula.

Using Euler’s formula we can write any complex number in the exponential form as

z = x+ iy = r(cos θ + i sin θ) = reiθ.

Using Euler’s formula we also can express usual cos and sin functions through the exponent:

cosx =
eix + e−ix

2
, sinx =

eix − e−ix

2i
.

The exponential form of the complex number lets us obtain a number of results. The one is that

zn = (reiθ)n = rneinθ = rn(cosnθ + i sinnθ),

which is called De Moivre’s formula if r = 1:

(cos θ + i sin θ)n = (cosnθ + i sinnθ).
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Example 11.4. What is (1 + i)6? I can, of course, multiply the factor (1 + i) six times (or use the
binomial theorem). However, a better approach would be to consider

1 + i =
√
2ei

π
4 =⇒ (1 + i)6 = (

√
2)6ei

3π
2 = 8i.

For an arbitrary z = x+ iy I have

ex+iy = exeiy = ex(cos y + i sin y).

Hence
Re ez = ex cos y, Im ez = ex sin y.

Example 11.5. Find the formula for cos3 x. I can use

cosx =
eix + e−ix

2
,

therefore

cos3 x =
1

8
(eix + e−ix)3 =

1

8
(e3ix + 3eix + 3e−ix + e−3ix),

which can be rewritten as

cos3 x =
1

4
cos 3x+

3

4
cosx.

You should do the same calculations for sin3 x.

11.4 The fundamental theorem of algebra

The complex numbers appeared while solving polynomial equations. Consider a polynomial Pn of
complex variable z with complex coefficients:

Pn(z) = zn + c1z
n−1 + c2z

n−2 + . . .+ cn−1z + cn,

where cj ∈ C. Any number ẑ ∈ C such that Pn(ẑ) = 0 is called a root of Pn(z). The most important
fact here is called the fundamental theorem of algebra:

Theorem 11.6. Any complex polynomial of degree at least one has at least one complex root.

If you are interested in seing a proof of this remarkable theorem, you should consider taking MATH
452.

Using the fundamental theorem of algebra it is quite straightforward to prove that any complex
polynomial of degree n can be factored into the following form:

Pn(z) = (z − ẑ1)
a1(z − ẑ2)

a2 . . . (z − ẑk)
ak , a1 + a2 + . . .+ ak = n, aj ∈ N,

where ẑj are the roots of Pn. The integers aj are called (algebraic) multiplicities of the roots, and
therefore this result can be rephrased as “any complex polynomial of degree n has exactly n complex
roots counting their multiplicities.” In a more algebraic language, one say that “the field of complex
numbers is algebraically closed.”
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Example 11.7. Factor z2 + 1. Since the roots of this polynomial are ẑ1,2 = ±i then

z2 + 1 = (z − i)(z + i).

Example 11.8. Solve z10+1 = 0. This basically means that I am asked to find 10 roots of the 10-th
degree from −1. To do this I will use the exponential form of the complex numbers. I obviously have
−1 = 1ei

3π
2 . If my unknown root has the form ẑ = reiθ then my equation reads

r10ei(10θ) = 1ei
3π
2 ,

or

r = 1, 10θ =
3π

2
+ 2πk, k ∈ Z.

Hence I can conclude that my ten roots have the arguments

θk =
3π

20
+

2πk

10
, k = 0, . . . , 9,

since for k = 10 I will get exactly the same θ as for k = 0.
Note that geometrically the solutions to this problem are the vertices of a right polygon with 10

vertices, which is sometimes very convenient for quick geometric calculations.

Exercise 5. Consider a polynomial with real coefficients:

Pn(x) = xn + an−1x
n−1 + . . .+ a1x+ a0, aj ∈ R.

Show that if z ∈ C is a root of Pn then z̄ ∈ C is also its root.
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