
12 Liouville’s theorem. Fundamental theorem of algebra

One of the immediate consequences of Cauchy’s integral formula is Liouville’s theorem, which states
that an entire (that is, holomorphic in the whole complex plane C) function cannot be bounded if it is
not constant. This profound result leads to arguably the most natural proof of Fundamental theorem
of algebra. Here are the details.

12.1 Liouville’s theorem

Theorem 12.1. Let f be entire and bounded. Then f is constant.

Proof. Take two arbitrary points a, b ∈ C and let γR be the circle ∂B(0, R), where R is chosen so big
that |z − a| ≥ R/2 and |z − b| ≥ R/2 for all points z ∈ γR. For both points Cauchy’s integral formula
holds:

f(a) =
1

2πi

∫
γR

f(z)

z − a
dz, f(b) =

1

2πi

∫
γR

f(z)

z − b
dz.

Therefore,

|f(a)− f(b)| = |a− b|
2π

∣∣∣∣∫
γR

f(z)

(z − a)(z − b)
dz

∣∣∣∣ .
By the assumption |f(z)| ≤ M for some constant M and hence on γR∣∣∣∣ f(z)

(z − a)(z − b)

∣∣∣∣ ≤ 4M

R2
.

This implies, by the ML–inequality,

|f(a)− f(b)| ≤ 4M

R2

|a− b|
2π

length γR = |a− b|4M
R

→ 0, R → ∞.

Therefore f(a) = f(b), and since a, b were arbitrary, f must be constant. �

12.2 Fundamental theorem of algebra

Recall that a polynomial p : C → C is a function of the form

p(z) = cnz
n + cn−1z

n−1 + . . .+ c1z + c0,

where c0, . . . , cn are some given complex constant. I assume that cn ̸= 0. If n ≥ 1 then the polynomial
is non-constant. Any polynomial is an entire function, and therefore continuous. Complex number ẑ
is called a root of polynomial p if p(ẑ) = 0. Now I am ready to state and, more importantly, prove
the following theorem.

Theorem 12.2. Every non-constant polynomial p has at least one root ẑ ∈ C.
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Proof. I will prove this theorem by contradiction assuming that there is a nonconstant polynomial p
with no root. First I note that for any non-constant polynomial p(z) → ∞ as z → ∞ (recall that
complex plane has only one infinity). Indeed,

p(z) = zn
(
cn +

cn−1

z
+ . . .+

c0
zn

)
,

and since zn → ∞ as z → ∞ I obtain the required conclusion. Now take sufficiently large ball B(0, R).
By the proven |p(z)| > M outside this ball for some constant M , and I can always choose R big enough
to guarantee that

1

|p(z)|
< 1,

for all z /∈ B(0, R). Since I assumed that p has no roots, function

z 7→ 1

p(z)

is entire, and in particular it is holomorphic inside B(0, R), and hence continuous on B(0, R). Contin-
uous functions on compact sets attain their maximum and minimum values and in particular bounded,
hence

1

|p(z)|
≤ B,

for some constant B and z ∈ B(0, R). This implies that the entire function 1/p is bounded in C and
hence, by Liouville’s theorem, constant, which contradicts the assumption that p is non-constant. �

Remark 12.3. In a more algebraic fashion the previous theorem sometimes is stated as “The filed of
complex numbers C is algebraically closed.”

Here is an important consequence of this theorem, which sometimes also called the fundamental
theorem of algebra.

Theorem 12.4. Any complex polynomial p : C → C can be uniquely factored (up to the permutation
of the factors) as

p(z) = cn(z − ẑ1)
α1(z − ẑ2)

α2 . . . (z − ẑk)
αk ,

where ẑ1, . . . , ẑk are the roots of p, and α1, . . . , αk are the corresponding multiplicities, that satisfy
α1 + . . .+ αn = n.

In other words, every complex polynomial of degree n has exactly n complex roots counting each
root according to its multiplicity.

Proof. Let p be a polynomial of degree n. If n = 0 we are done. If n ≥ 1 by the fundamental theorem
of algebra there must be ẑ ∈ C such that

p(ẑ) = 0.

I claim that this is equivalent to the fact that polynomial p can be written as the product of (z − ẑ)
and another polynomial q of degree n− 1:

p(z) = (z − ẑ)q(z).
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Indeed, one direction is obvious (let ẑ be such that p(ẑ) = 0 then (z− ẑ)q(z) = 0 as well). In the other
direction, I will show even more. Specifically, no matter what the number ẑ ∈ C is (non necessarily a
root), there exist complex constant a1, . . . , an such that polynomial can be written as

p(z) = a0 + a1(z − ẑ) + . . .+ an(z − ẑ)n.

The proof is direct, by construction. Take w = z − ẑ, therefore z = w + ẑ, and p(z) = p(w + ẑ) =
p̃(w) = c0 + . . . + cn(w + ẑ)n. Raise all the terms to the corresponding power, simplify, and end up
with p̃(w) = a0 + a1w + . . .+ anw

n, hence p(z) = p̃(z − ẑ) has the required form. Note that cn = an
and a0 = p(ẑ).

Now I can rearrange my polynomial as follows

p(z) = a0 + (z − ẑ)(a1 + a2(z − ẑ) + . . .+ an(z − ẑ)n−1) = a0 + (z − ẑ)q(z),

where q has degree n − 1. From the last expression I obtain the required conclusion that if p(z) =
(z − ẑ)q(z) then ẑ must be a root (since a0 = 0 = p(ẑ)).

We are basically done, since, due to fact that q is a complex polynomial of degree n−1, it is either
constant (n = 1) or, by fundamental theorem of algebra, has a complex root ŵ, therefore,

q(z) = (z − ŵ)h(z),

where h has degree n− 2, and so on.
I will leave to prove the uniqueness of such factorization to the reader. �

Remark 12.5. In complex analysis very often the term “root” is replaced with the term “zero.” And
in general zeros of functions and their corresponding multiplicities are studied. In the following I will
stick to this terminology.

Example 12.6. Consider

p(z) = z4 + (2 + i)z3 − (2− 5i)z2 − (4 + 5i)z + (3− i),

which is a polynomial of degree 4. Therefore there must be 4 (counting multiplicities) complex roots.
Indeed, one can check that i is a root of multiplicity 2 and 1,−3 + i are the roots multiplicity 1, that
is,

p(z) = (z + i)2(z − 1)(z + 3− i).
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