
13 Lyapunov functions

13.1 Definition and main theorem

Up till now, for a general system
ẋ = f(x), x(t) ∈ R2 (1)

we have two methods to get insight about the structure of the phase portrait. First, we can study
stability of an equilibrium using linearization of (1) around this equilibrium. Second, we can draw
the nullclines to infer some global behavior. There methods, as should be clear from some of the
examples in class and homework, have a lot of limitations. Nullclines, for instance, often do not lead
to precise conclusions; linearization can be used only if the equilibrium is hyperbolic, that is, if all
the eigenvalues of the Jacobi matrix evaluated at the studied equilibrium have no zero real parts.
Moreover, linearization is an essentially local method and does not say anything about, e.g., the basin
of attraction of an asymptotically stable equilibrium.

In this section I introduce yet another powerful device to study autonomous systems of ODE
— the so-called Lyapunov functions. Let me first introduce a positive definite function. Function
V : U ⊆ R2 −→ R is said to be positive definite in U if (i) V (0) = 0 and (ii) V (x) > 0 for all x ∈ U
such that x ̸= 0. Similarly I can define a negative definite function.

Example 1. Clearly,
V (x, y) = x2 + y2

is positive definite on all R2.
Function

V (x, y) = x2 + y2 − y3

is positive definite only in a small strip along the x-axis.
Function

V (x, y) = x+ y2

is no positive definite in any open U containing the origin.

Example 2. A flexible family of positive definite functions is given by

V (x, y) = ax2 + 2bxy + cy2,

where the parameters must satisfy the conditions a > 0 and ac− b2 > 0 (prove it).

To get a general idea what is the geometry of a positive definite function, note that positive definite
V has a strict isolated minimum at x = 0. Therefore, intuitively I can conclude that the level sets of
my function, i.e., the sets of the form

{x ∈ R2 : V (x) = k}

are closed curves at least for some small k (see Fig. 1).
Now geometrically it should be clear that if the vector field of system (1) points inside the level

sets of a positive definite function at each point than there is no way the orbits can leave a small
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Figure 1: Graph of a positive definite function V and its level sets.

neighborhood of the origin. Algebraically, I can express this condition as the derivative of V along
the vector field defined by (1). Namely,

V̇ (x(t), y(t)) =
∂V

∂x
(x(t), y(t))ẋ(t) +

∂V

∂y
(x(t), y(t))ẏ(t)

=
∂V

∂x
(x(t), y(t))f(x(t), y(t)) +

∂V

∂y
(x(t), y(t))g(x(t), y(t))

= ∇V (x, y) · f(x, y),

where I used the notations for the gradient ∇V = (∂xV, ∂yV ) and the usual dot product x · y of two
vectors x,y ∈ R2.

Recall that
x · y = x1y1 + x2y2 = |x||y| cos θ,

and since the vector gradient points in the same direction as the normal to the level set, then it is
(again, intuitively, there are a lot of subtle details here) expected if ∇V · f ≤ 0 then we can say
samething about the stability of our equilibrium point. Indeed,

Theorem 3. Let x̂ = 0 be an equilibrium of (1) and V be a positive definite function on some
neighborhood of 0. Then

1. If V̇ ≤ 0 for all x ∈ U, x ̸= 0 then x̂ is Lyapunov stable;

2. If V̇ < 0 for all x ∈ U, x ̸= 0 then x̂ is asymptotically stable;

3. If V̇ > 0 for all x ∈ U, x ̸= 0 then x̂ is unstable.

Proof. I will give a proof of the first claim leaving the rest as (similar) exercises.
Pick an ϵ > 0 such that the ball Bϵ : |x| ≤ ϵ ⊆ U . Let Sϵ be the boundary of Bϵ. Since V

is continuous there must be a point on Sϵ where V attains its minimum, denote this minimum as
β = minx∈Sϵ V (x), and note that β > 0. Consider yet another ball Bδ : |x| ≤ δ ⊆ U . Since V (0) = 0
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and V continuous I can always choose δ > 0 such that V (x) < β for all x ∈ Bδ. My goal is to
show that if x0 ∈ Bδ then x(t,x0) ∈ Bϵ for all t > 0. Since V̇ (x) ≤ 0 then V (x0) < β implies that
V (x(t,x0)) < β for all t > 0 because non-positive derivative implies that V does not increase along
the orbit with the initial condition x0. This, in its turn, implies that x(t,x0) cannot cross Sϵ since
V (x) ≥ β for all x ∈ Sϵ. �

Remark 4. To distinguish between the first and second cases, the Lyapunov function that satisfies
(ii) is usually called strict Lyapunov function.

Remark 5. Note that the third condition of the theorem above is quite strong, since for the instability
it is enough just one orbit to leave a neighborhood of the origin, whereas I ask that all the orbits will
leave this neighborhood. There exists a nice development along these lines, which allows to prove the
instability for more general cases. Please google Chetaev’s theorem for more information.

Lyapunov function actually allows to gain some information about the global behavior of orbits.
First, let me define the basin of attraction of an asymptotically stable equilibrium at the set of all
initial conditions leading to the long term behavior that approach this equilibrium. More technically,
the basin of attraction B(x̂) of the equilibrium x is

B(x̂) = {x0 ∈ R2 : x(t,x0) → x̂ as t → ∞}.

Now the idea is to look at the sets of the form Uα = {x : V (x) ≤ α}. Again, geometrically
intuitively correct (but requires proof!), is to expect that if V is strict in U and Uα ⊆ U for some α
then Uα ⊆ B(x̂). Even more impressive, in some cases I can prove that x̂ is globally asymptotically
stable, which means that no matter what my initial conditions are, the solution eventually will approach
x̂. Specifically, if I assume that V is a strict Lyapunov function for R2, and V (x) → ∞ for |x| → ∞
then x̂ is globally asymptotically stable.

13.2 Examples

Example 6. I start with the simplest possible example

ẋ = −x,

ẏ = −y.

Of course, I can simply solve this system, but let me look instead at

V (x, y) =
x2 + y2

2
,

which is a positive definite function on all R2.
I calculate

V̇ (x, y) = −(x2 + y2),

which is negative for all (x, y) ̸= 0. Therefore, according to my theorem, I can conclude that the
equilibrium (x̂, ŷ) = (0, 0) is asymptotically stable. Moreover, since V̇ < 0 for all R2 and clearly
V (x, y) → ∞ if

√
x2 + y2 → ∞, I can say that my equilibrium is globally asymptotically stable.
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Example 7. Consider the system

ẋ = −x+ y2,

ẏ = −2y + 3x2.

This system has two equilibria, one at the origin, which is locally asymptotically stable (by lineariza-
tion), and hence another one unstable (why?). Can we somehow estimate the basin of attraction of
(0, 0)? Consider the Lyapunov function

V (x, y) =
x2

2
+

y2

4
,

which is positive definite. Now calculate

V̇ (x, y) = −x2 + xy2 − y2 +
3

2
yx2 = −x2(1− 3

2
y)− y2(1− x),

which is negative for all (x, y) that satisfy x < 1 and y < 2/3. This clearly indicates, as we know,
that the origin is asymptotically stable. To gain an idea of the basin of attraction, we must find the
largest region around (0, 0) where V (x, y) ≤ α and still be negative definite. Since the level sets of V
are the ellipses with the axes

√
2α and 2

√
α hence we must have that

√
2α < 1 and 2

√
α < 2/3, which

implies that α < 1/9, which means that the largest region that we can be sure lays inside the basin of
attraction is the ellipse

x2

2
+

y2

4
=

1

9
.

However, as numerical illustration shows, the actual basin of attraction is way bigger, but still smaller
than the whole plane (see Fig. 2).

Example 8. Now let us consider again our familiar model of the pendulum

ẍ+ sinx = 0,

which can be written as the system of two first order equations

ẋ = y,

ẏ = − sinx.

We already know the phase portrait of this system (see Lecture 9), but here let me use the knew
machinery of Lyapunov functions to establish that the origin is Lyapunov stable.

As a candidate of Lyapunov function let me take

V (x, y) =
y2

2
+ 1− cosx.

Note that in a small neighborhood of (0, 0) my V is positive definite. Now

V̇ (x, y) = y sinx+ y(− sinx) = 0,

and hence my V is an example of a Lyapunov function, but not strict Lyapunov function. Therefore,
I can conclude, as I already know, that the origin is Lyapunov stable.

4



-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

x

y

Figure 2: Phase portrait of the system from Example 2. The shaded area is the identified subset of
the basin of attraction of the origin. The thick circles are two equilibria.

This example is quite special because V̇ = 0 for all (x, y). Such functions, for which V̇ = 0 with
respect to the orbits of some system of differential equations, are called first integrals. Note that as
a first integral I picked the total energy of the system. It can be proved that if V is a first integral
then the orbits are laying in the level sets of V : Indeed, the gradient ∇V is directed along the normal
to the level sets, whereas the dot product equals to zero means that two vectors are orthogonal, and
hence the vector field is orthogonal to the normal, and therefore belongs to the level set.

Now I will include friction in my problem:

ẍ+ sẋ+ sinx = 0, s > 0.

I can rewrite my equation as the system

ẋ = y,

ẏ = −sy + sinx,

which has the same equilibria as the conservative pendulum equation. Here, however, I can use the
standard linearization approach to conclude that the origin is locally asymptotically stable (do this).

Let me try the same Lyapunov function

V (x, y) =
y2

2
+ 1− cosx.

Now I calculate
V̇ (x, y) = −sy2,
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which is unfortunately not strict. Hence the only thing I can conclude by Lyapunov function approach
is that the origin is Lyapunov stable. There is a very efficient way to deal with this case, please google
LaSalle invariance principle if you are interested.

Example 9. Finally, we will be able to fill one of the gaps in our previous analysis. Recall that
Lotka–Volterra predator-prey model takes the form

ẋ = x(1− y),

ẏ = y(−γ + x),

if I do not include the intraspecific competition. We already know that there is an internal equilibrium,
which is Lyapunov stable but not asymptotically stable (and of course the linearization cannot detect
it).

Let me take the following function

H(x, y) = x̂ log x− x+ ŷ log y − y,

where (x̂, ŷ) = (γ, 1) are the coordinates of the internal equilibrium.
This function is not positive definite, but if I use it to build

V (x, y) = H(x̂, ŷ)−H(x, y),

then one can check that V is positive definite everywhere in the inside of R2
+ and V (x̂, ŷ) = 0, so I

can try it as a candidate for a Lyapunov function. Indeed,

V̇ = −x̂(1−y)+x(1−y)−ŷ(−γ+x)+y(−γ+x) = (1−y)(x−x̂)+(x−γ)(y−ŷ) = (ŷ−y)(x−x̂)+(x−x̂)(y−ŷ) = 0,

where I used the fact x̂ = γ, ŷ = 1.
Hence my V is a Lyapunov function, and I can conclude that the internal equilibrium is Lyapunov

stable. Moreover, H and V are both first integrals, and hence my orbits are laying on their level sets.
Now I add the intraspecific competition and must deal with

ẋ = x(1− αx− y),

ẏ = y(−γ + x− βy).

Recall that αγ < 1 then there is the internal equilibrium (x̂, ŷ), that solves the system

1 = αx̂+ ŷ,

γ = x̂− βŷ.

We found, by linearization, that this equilibrium is locally asymptotically stable, but the nullcline
analysis did not allow us to conclude that all the orbits are attracted to this equilibrium.

Let me take again the same V , note that x̂, ŷ are different. Then,

V̇ (x, y) = (x− x̂)(1− αx− y) + (y − ŷ)(−γ + x+ βy) = −α(x− x̂)2 − β(x− ŷ)2,

which satisfies V̇ (x, y) < 0 for all (x, y) ∈ R2
+, x ̸= 0, y ̸= 0 and x ̸= x̂, y ̸= ŷ. This implies that

no possible closed orbit can exist because it would contradict the strictness of the Lyapunov function
(can you supply more detailed arguments?) and moreover, since the level sets of V actually fill the
whole interior of R2

+ hence the equilibrium (x̂, ŷ) attracts all the orbits from the interior of R2
+.
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13.3 Linearization theorem

I introduced the linearization technique by alluding to the Taylor series and dropping some terms.
This is by no means a proof. Here, however, I am able to prove at least some part of the linearization
theorem using a carefully chosen Lyapunov function.

First I will need some auxiliary linear algebra facts. Recall that matrix B is called positive definite
if x⊤Bx =

∑2
i,j=1 bijxixj > 0 for all x ̸= 0. The expressions of the form x⊤Bx with positive definite

B are natural candidates for Lyapunov functions.

Proposition 10. Let A be a 2× 2 real matrix with eigenvalues with negative real parts. Then there
exists a positive definite matrix B such that A⊤B +BA = −I.

Proof. Recall that no matter what matrix A is, if it has eigenvalues with negative real parts, there
exists an invertible linear transformation P such that P−1AP = J , where J in one of the three
matrices

J1 =

[
−λ1 0
0 −λ2

]
, J2 =

[
−λ 1
0 −λ

]
, J3 =

[
−α β
−β −α

]
,

where all the parameters are positive.
Without loss of generality I can assume that my A is in one of the three forms. Now take for cases

1 and 3

B1 =

[
1/(2λ1) 0

0 −1/(2λ2)

]
, B3 =

[
1/(2α) 0

0 1/(2α)

]
,

and get the desired result. For matrix J2 I first need to note that I can transform A into[
−λ ϵ
0 −λ

]
by the invertible transformation [

1 0
0 ϵ

]
.

Now, taking D = 1/(2λ)I, I note that[
−λ ϵ
0 −λ

]⊤
D +D

[
−λ ϵ
0 −λ

]
=

[
−1 ϵ/(2λ)

ϵ/(2λ) −1

]
.

Noticing that the result is similar to the identity matrix, I conclude that in this case I also can find
such matrix B that satisfies the conditions. �

Now I am ready to prove the main result.

Theorem 11. Assume that the matrix of Jacobi evaluated at the equilibrium x̂ of the system ẋ = f(x)
has all the eigenvalues satisfy Reλ1,2 < 0. Then this equilibrium is locally asymptotically stable.

Proof. Consider the system
ẋ = f(x), x(t) ∈ R2

that has an equilibrium x̂ = 0 (if the equilibrium is not zero we simply introduce new variable y + x
and for variable y we’ll have zero equilibrium).
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Using the Taylor’s formula I can write that

f(x) = f(x̂) + f ′(x̂)(x− x̂) + g(x) = f ′(x)x+ g(x),

where f ′(x̂) is the jacobi matrix evaluated at x̂ and g(0) = 0, g′(0) = 0. So in general I can transform
my system into

ẋ = Ax+ g(x), A = f ′(x̂).

Now let me take V (x) = x⊤Bx, where B is the symmetric positive definite matrix that satisfies
A⊤B+BA = −I, which always exists by the previous proposition. Calculating the derivative I have

V̇ (x) = −x⊤x+ 2x⊤Bg(x).

From the conditions on g, I have that there is m > 0 such that |g(x)| ≤ m|x| for all |x| < δ. Let β be
the largest eigenvalue of B, then

V̇ (x) ≤ −(1− 2βm)x⊤x

and therefore negative if m < 1/(2β). This means that I constructed a strict Lyapunov function and
therefore my equilibrium is asymptotically stable. �
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