
7 Solving the wave equation. Some extensions

7.1 Linear versus nonlinear equations

I would like to start this lecture with a discussion what is called linear in mathematics. Recall that
in the previous lecture I used the presentation(

∂2

∂t2
− c2

∂2

∂x2

)
u = 0

to write the wave equation in a form that hints to the possible ways to solve it. The expression inside
the parenthesis is called a differential operator. If I denote this differential operator as L then I can
use the notation

Lu = 0

to write my wave equation in a concise way.
In general, any differential equation, either ordinary of partial, can be written in the form Lu = f ,

where L is some differential operator applied to function u and f is a given function that does not
depend on u. For example, for the simple harmonic oscillator u′′ + u = 0 I have that L = d2

dt2
+1. For

the linear transport equation with variable speed ut+c(x)ux = 0 my operator is ∂t+c(x)∂x and so on.
(Jumping ahead, if I cannot separate my L from u completely, it hints that the equation is nonlinear,
for instance, in Hopf’s equation ut + uux = 0 the differential operator involves multiplication by u
itself, and hence I cannot provide a stand alone expression for L, in such cases I write L : u 7→ ut+uux
indicating that my operator L maps function u that must belong to the domain of L to the expression
ut + uux.)

Definition 7.1. A (differential) operator L is called linear if for any u1 and u2 from its domain and
any constants α1 and α2 I have

L(α1u1 + α2u2) = α1Lu1 + α2Lu2.

For example, the wave operator L = ∂tt−c2∂xx, the simple harmonic oscillator operator L = ∂tt+1,
and the operator from linear transport equation L = ∂t + c(x)∂x are linear (check this!). However,
the differential operator of the Hopf equation ut + uux = 0 is not linear. Indeed, let me apply this
operator to αu for some constant α. The expression αu will be mapped to αut + α2uux, which is not
equal to α(ut + uux) as necessary for the operator to be linear. Hence now I have a precise way to
show that Hopf’s equation is nonlinear.

Now I can give a rigorous definition of a linear differential equation.

Definition 7.2. Let L be a differential operator. Then the differential equation

Lu = f, (7.1)

where f does not depend on u, is called linear if L is a linear operator. It is called linear homogeneous
if f = 0 and inhomogeneous (or nonhomogeneous) otherwise. If L is not linear then equation (7.1) is
called nonlinear.
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The linearity of the equation is very important, since for the linear equations holds the so-called
superposition principle, which is a consequence of the following simple and yet very important propo-
sition.

Proposition 7.3. Consider a linear inhomogeneous equation

Lu = f, (7.2)

and its homogeneous counterpart
Lu = 0. (7.3)

(i) If u1, u2 solve (7.3) then α1u1 + α2u2 also solves (7.3).
(ii) If u1, u2 solve (7.2) then u1 − u2 solves (7.3).
(iii) If u1 solves Lu = f1 and u2 solves Lu = f2 then α1u1 + α2u2 solves Lu = α1f1 + α2f2.
(iv) A general solution to (7.2) is given as a sum of general solution to (7.3) and a particular

solution to (7.2).

Proof. Since most of the stated facts follow directly from the definition, I will only prove (iv).
It is important to understand what exactly is stated in the theorem above. It is actually an if and

only if statement, and requires proving two (simple) directions. Elaborating, the statement says that
(a) if uh is any solution to (7.3) and up is a (given) particular solution to (7.2), then their sum uh+up
will solve (7.2). This clearly follows from linearity. In other direction, (b) if u is any solution to (7.2)
then it can be written as uh+up, where now uh is picked from the set of all the solutions to (7.3) (and
which is clearly not empty) and up solves (7.2) and, again, is given. This is also true since u − up,
due to (ii), must solve (7.3), and hence for some solution uh = u− up or, equivalently, u = uh + up as
required. �

Exercise 1. Prove the remaining parts of Proposition 7.3.

7.2 Solving an inhomogeneous wave equation. Duhamel’s principle

Consider an inhomogeneous wave equation on the infinite string:

utt = c2uxx + F (t, x),

u(0, x) = f(x),

ut(0, x) = g(x),

(7.4)

where F, f, g are given sufficiently smooth functions. First I will use the linearity of this equation to
divide it into simpler problems. To wit, consider

vtt = c2vxx,

v(0, x) = f(x),

vt(0, x) = g(x),

(7.5)

and

wtt = c2wxx + F (t, x),

w(0, x) = 0,

wt(0, x) = 0.

(7.6)
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That is, I divided my original problem into the initial value problem for the homogeneous wave
equation and inhomogeneous problem with zero initial conditions.

Lemma 7.4. Let v solve (7.5) and w solve (7.6). Then u = v + w solves (7.4).

Proof. Exercise. �

I know how to solve problem (7.5), for this I can simply use d’Alembert’s formula. Hence I
only need to figure out how to solve inhomogeneous problem (7.6). For this I will use the so-called
Duhamel’s principle, which generally works for linear differential equations. The idea is to reduce the
inhomogeneous problem to a series of homogeneous ones with specific initial conditions and after it
sum (integrate) everything together by using the linearity of the equation. To perform this program
I should be able to solve, along with (7.5), the following problem

vtt = c2vxx, t > τ,

v(τ, x) = f(x),

vt(τ, x) = g(x),

(7.7)

which differs from what I studied before only by the initial time moment: the moment zero is replaced
with moment τ .

Lemma 7.5. Problem (7.7) has the solution (note that I include the parameter τ also in my formula
and in the variables of function v)

v(t, x; τ) =
f
(
x− c(t− τ)

)
+ f

(
x+ c(t− τ)

)
2

+
1

2c

∫ x+c(t−τ)

x−c(t−τ)
g(s)ds.

Proof. To prove the result one can use new variable η = t−τ , for which the initial condition is given at
zero but the equation does not change, use d’Alembert’s formula and return to the original variables.
The details are left as an exercise. �

Exercise 2. Prove Lemmas 7.4 and 7.5.

All the main auxiliary work is done and I am ready to prove

Lemma 7.6. Consider yet another initial value problem for a family of wave equations depending on
the parameter τ :

rtt = c2rxx, t > τ

r(τ, x; τ) = 0,

rt(τ, x; τ) = F (τ, x),

(7.8)

and let r(t, x; τ) be its solution for each fixed τ . Then

w(t, x) =

∫ t

0
r(t, x; τ)dτ

solves problem (7.6).
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Proof. To prove the lemma I will use the Leibnitz integral rule, which says that

d

dx

(∫ b(x)

a(x)
g(s, x)ds

)
=

∫ b(x)

a(x)

dg

dx
(s, x)ds+ g(b(x), x)b′(x)− g(a(x), x)a′(x).

I have

wt = r(t, x; t) +

∫ t

0
rt(t, x; τ)dτ =

∫ t

0
rt(t, x; τ)dτ.

Next

wtt = rt(t, x; t) +

∫ t

0
rtt(t, x; τ)dτ = F (t, x) +

∫ t

0
rtt(t, x; τ)dτ.

I also have

wxx =

∫ t

0
rxx(t, x; τ)dτ =

1

c2

∫ t

0
rtt(t, x; τ)dτ.

Hence I get wtt − c2wxx = F (t, x) and w(0, x) = wt(0, x) = 0, which concludes the proof. �

Now I can put everything together. According to Lemma (7.5) solution to (7.8) is given by

r(t, x; τ) =
1

2c

∫ x+c(t−τ)

x−c(t−τ)
F (τ, η)dη.

Using d’Alembert’s formula, Lemma 7.4, and Lemma 7.6 I have that the solution to (7.4) is given by

u(t, x) =
f(x− ct) + f(x+ ct)

2
+

1

2c

∫ x+ct

x−ct
g(s)ds+

1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
F (τ, η)dηdτ,

which is the sought solution to the inhomogeneous wave equation with given initial conditions.

Remark 7.7. The same solution can be obtained by switching to the characteristic coordinates
ξ = x− ct, η = x+ ct. I invite the reader to try this rout.

Remark 7.8. I will use Duhamel’s principle again later in the course, so I summarize here the main
idea of this principle. It proceeds in two steps:

Step 1. Construct a family of solutions of the homogeneous initial value problem with variable initial
moment τ > 0 and the initial data F (τ, x).

Step 2. Integrate the above family with respect to the parameter τ .

In simple words, Duhamel’s principle can be stated (somewhat vaguely) as follows: “If one can
solve an initial value problem for a homogeneous linear differential equation then an inhomogeneous
linear differential equation can be solved as well.”

Remark 7.9. The double integral in the final solution shows that the disturbance at the point (t, x)
is obtained through the disturbances from every point of the characteristic triangle (that is, of the
triangle with the vertex (t, x) and two sides given by the corresponding characteristics x − ct and
x + ct). Hence if I have a homogeneous equation with only the initial displacement nonzero, the
signal comes from just two initial points; if I, again for the homogeneous equations, have the initial
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velocity nonzero then the signal comes from the interval (domain of dependence) of the initial values;
if, finally, I have an inhomogeneous equation, the signal is summed (integrated) throughout the whole
characteristic triangle with the vertices (0, ξ), (0, η), (t, x) (and it could be helpful to go back to the
previous section and glance at the last figure in it).

Exercise 3. Apply Duhamel’s principle to the first order linear ODE u′ + p(t)u = q(t), u(0) = u0.

7.3 Classification of PDE

There exist various classifications of PDE, here is our first one. I already used the terms linear,
semilinear, quasilinear in different contexts, but, except for the first one, never defined them exactly.
Now that I have an easy to test definition of linearity, I can provide precise definitions. I will do it
by using the first order PDE, but the same classification holds for any order PDE if the definitions
below applied to the terms with the highest derivatives. Again, for simplicity, I will use only two
independent variables, but I hope that the generalization to any number of independent variables is
straightforward.

So, let me start. The general form of the first order PDE is

F (x, y, u, ux, uy) = 0.

A first order PDE is called linear if it has the form

a(x, y)ux + b(x, y)uy + f(x, y)u = f(x, y)

for some given functions a, b, c, f . An example is the linear transport equation

ut + cux = 0.

(The student should check that linearity defined in this way coincides with the definition of being
linear given at the beginning of this section.)

A first order PDE is called semilinear if it is not linear and has the form

a(x, y)ux + b(x, y)uy = f(x, y, u),

for some given functions a, b, f . In other words (which should be easily transferred to higher order
equations), a semilinear PDE is such that the coefficients at the highest derivatives are functions of
independent variables only. An example is, for instance,

ux + uy = u(1− u).

Next, a first order PDE is called quasilinear, if it is not linear or semilinear, and has the form

a(x, y, u)ux + b(x, y, u)uy = f(x, y, u),

for some given functions a, b, f . Rephrasing, for the quasilinear equations the highest derivatives,
taking separately from everything else, are included in a “linear way.” An example is Hopf’s equation

ut + uux = 0.

Finally, if a first order PDE is not linear, semilinear, or quasilinear, it is called fully nonlinear, and
example is the eikonal equation

(ux)
2 + (uy)

2 = 1.

Note that semilinear, quasilinear, and fully nonlinear equations are nonlinear.

Exercise 4. Give a similar classification of second order PDE.
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7.4 Test yourself

7.1. Is the equation ut = αuxx + f(t, x) linear? Can you prove it?

7.2. If the equation ut = αuxx + u(1− u) linear? Can you prove it?

7.3. Solve the problem for t > 0, x ∈ R

utt = c2uxx + t sinx, u(0, x) = (1 + x2)−1, ut(0, x) = 0.

7.5 Solutions to the exercises

Exercise 1. These are direct consequences of the definition of linearity. Assume, say, that u1, u2 solve
Lu = 0, then u = α1u1 + α2u2 satisfies Lu = L(α1u1 + α2u2) = (by lineariry) = α1Lu1 + α2Lu2 = 0
(by the assumption), and (i) has been proved. To prove (ii) start again with the basic assumption
that Lu1 = f and Lu2 = f . Hence for u = u1 − u2 I have Lu = L(u1 − u2) = Lu1 −Lu2 = f − f = 0,
as required, and a similar line of reasonings proves (iii). �

Exercise 2. To prove Lemma 7.4 just plug u = v + w into (7.4) and use (7.5) and (7.6) to reach the
required conclusion.

Instead of proving Lemma 7.5 directly, let me consider instead (to type a little less) the initial
value problem for ODE u′ = au, u(τ) = u0. Of course I can solve it directly, but let me make a change
of the independent variable t = τ + η. By the change rule for u(t) = u(τ + η) = v(η) = v(t − τ)
I have du

dt = dv
dη and the initial condition becomes v(0) = u0 for v. Now, v′ = av, v(0) = u0 yields

v(η) = u0e
aη, and hence u(t) = u0e

a(t−τ). Exactly the same argument and the use of d’Alembert’s
formula prove Lemma 7.5. �

Exercise 3. This equation in an introductory ODE course is usually solved by either using variation
of the constant method or integrating factor method. Let me show how the same result is obtained
by using Duhamel’s method.

First, of course, I note that problem v′+p(t)v = 0, v(0) = u0 has the solution v(t) = u0e
−

∫ t
t0

p(s)ds
.

Hence I am left with the problem w′ + p(t)w = q(t), w(0) = 0. Instead of the last problem I consider
a series of problems

r′ + p(t)r = 0, t > τ, r(τ ; τ) = q(τ).

By direct integrating I have

r(t; τ) = q(τ)e−
∫ t
τ p(s)ds.

As before, I claim that w(t) =
∫ t
0 r(t; τ)dτ solves w′+p(t)w = q(t), w(0) = 0. This is checked directly.

Hence I got the final answer

u(t) = v(t) + w(t) = u0e
−

∫ t
0 p(s)ds +

∫ t

0
q(τ)e−

∫ t
τ p(s)ds.

To check this answer let me use the variation of the constant method. First I solve the homogeneous
equation u′ + p(t)u = 0 getting

u(t) = Ce−
∫ t
0 p(s)ds.
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Now I assume that C is actually a function of t and plug it back in the original equation to find

C ′(t)e−
∫ t
0 p(s)ds = q(t) =⇒ C(t) =

∫ t

0
q(τ)e

∫ τ
0 p(s)dsdτ +A,

and hence (after using the initial condition)

u(t) = e−
∫ t
0 p(s)ds

(
u0 +

∫ t

0
q(τ)e

∫ τ
0 p(s)dsdτ

)
,

which, after some simplification, reduces to what I obtained using Duhamel’s method. �

Exercise 4. The general form of a second order PDE with two independent variables is

F (x, y, u, ux, uy, uxy, uxx, uyy) = 0.

It is linear if it has the form

a(x, y)uxx + b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy + f(x, y)u = g(x, y).

It is semilinear if it has the form

a(x, y)uxx + b(x, y)uxy + c(x, y)uyy = f(x, y, u, ux, uy).

It is quasilinear if it has the form

a(x, y, u, ux, uy)uxx + b(x, y, u, ux, uy)uxy + c(x, y, u, ux, uy)uyy = f(x, y, u, ux, uy).

The rest of the equations are fully nonlinear. �
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