
10 Motivation for Fourier series

Donkeys and scholars in the middle!

French soldiers,
forming defensive squares in Egypt,

during Napoleon’s campaign

The central topic of our course is the so-called Fourier method or method of separation of variables to
solve linear PDE with constant coefficients. This method historically required a detailed analysis of the
question when a given arbitrary function can be represented as a linear combination of trigonometric
functions, and partial answers to this question eventually turned into a wide mathematical field that
is called nowadays Fourier Analysis. To motivate the appearance of Fourier series, i.e., infinite linear
combination of trigonometric functions, I will use the problem of deriving the temperature inside
an insulated ring. I will look at this problem in the most general settings that involve the notion
of functions of complex variable, probably unfamiliar to most of the students. Many of the steps I
present here will be repeated again later in a somewhat more “real” examples.

10.1 Fourier series appear for the first time

Consider an insulated circular rod with some initial temperature distribution along it. I am interested
in answering the question how the temperature changes with time at each point of the rod. Using the
experience from the previous lecture I can write that my temperature at the point x at the time t,
which as before I denote u(t, x), must satisfy the heat equation

ut = α2uxx, t > 0, −π < x ≤ π, (10.1)

note that I assumed that my spatial variable changes from −π to π, using the geometry of my rod.
I also have the initial condition

u(0, x) = g(x), −π < x ≤ π. (10.2)

Clearly, none of the considered in the previous lecture boundary conditions would work in this
particular case. A little thought, however, shows that it is natural to set here periodic boundary
conditions

u(t,−π) = u(t, π), t > 0,

ux(t,−π) = ux(t, π), t > 0,
(10.3)

such that the profile of the temperature in my rod is continuously differentiable at every point.
To solve problem (10.1)–(10.3) I make, following the giants of the 18th century, an ingenious

assumption that I can look for the solution in the form

u(t, x) = T (t)X(x),
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i.e., as the product of two functions, the first one depends only on t and the second one depends only
on x (I will say more about this assumption later on in the course). Using this ansatz (“ansatz” in
mathematics is an educated guess) yields

T ′(t)X(x) = α2T (t)X ′′(x),

where the prime denotes the derivatives with respect to the corresponding variables. Rearranging
implies

T ′(t)

α2T (t)
=

X ′′(x)

X(x)
,

i.e., the right hand side of this equality depends only on t, and the right hand side depends only on
x. What is an immediate consequence of this fact? Both sides must be equal to the same constant!
Indeed, fix some t and hence the left hand side is constant, which implies that the right hand side is
constant for any x, now go in the opposite direction. Hence, I can write

T ′(t)

α2T (t)
=

X ′′(x)

X(x)
= µ,

where µ is some in general complex constant, µ ∈ C. The consequence of the last two equalities is the
following two differential equations

T ′ = α2µT (10.4)

and
X ′′ = µX. (10.5)

Before proceeding further, let me check what my assumption on the structure of solutions of the
heat equation implies for the initial and boundary conditions. The initial condition does not give me
much insight at this point, but the boundary conditions now read

T (t)X(−π) = T (t)X(π), T (t)X ′(−π) = T (t)X ′(π),

which implies, naturally assuming that T (t) ̸= 0, that

X(−π) = X(π), X ′(−π) = X ′(π). (10.6)

Problem (10.5), (10.6) is an ODE boundary value problem, and my task is to determine for which
complex constants µ this problem has a non-zero solution (zero solution exists for any µ but it is of
no interest to me assuming that g(x) ̸= 0), and how exactly this solution looks for the given µ.

I start with equation (10.5) and use a few facts from the theory of linear ODE. I do hope that the
students can solve this problem for real values of µ.

Exercise 1. Solve problem (10.5), assuming that µ ∈ R. Assume first that µ > 0, then µ < 0, µ = 0.

Technically the case when µ ∈ C was not covered in the introductory ODE course. Actually, the
difference with the real case is minuscule, but let me proceed carefully in this case (still omitting
some technical steps). I will look for the solution in the form of a power series with undetermined
coefficients:

X(x) = c0 + c1x+ c2x
2 + . . . =

∞∑
k=0

ckx
k.
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Differentiating yields

X ′(x) = c1 + 2c2x+ 3c3x
2 + . . .

X ′′(x) = 2c2 + 3 · 2c3x+ 4 · 3c4x2 + . . . .

Hence I must have

2c2 + 3 · 2c3x+ 4 · 3c4x2 + . . . = µc0 + µc1x+ µc2x
2 + . . . .

Two power series equal if and only if the coefficients at the same powers are equal, that is I have

2c2 = µc0,

3 · 2c3 = µc1,

4 · 3c4 = µc2,

5 · 4c5 = µc3,

. . .

It is very easy to see the pattern, which I can succinctly put as

c2m =
µmc0
(2m)!

, c2m+1 =
µmc1

(2m+ 1)!
,

where
m! = 1 · 2 · . . . · (m− 1) ·m.

Therefore, if I know c0 and c1 my problem is solved. Recall that the space of solutions of equation
(10.5) is two dimensional, which also holds for the ODE with complex-valued coefficients, and also
note that X(0) = c0, X

′(0) = c1, therefore I can pick any two linearly independent in C2 vectors
(c0, c1) to produce two solutions that will form a basis of my solution space. I am going to pick first
c0 = 1, c1 =

√
µ, and get that

X1(x) =
∞∑
k=0

(
√
µx)k

k!
,

and then c0 = 1, c1 = −√
µ to have the second solution

X2(x) =

∞∑
k=0

(−√
µx)k

k!
.

(Here I use the notation
√
µ and −√

µ to denote two complex square roots of µ, which always exists
unless µ = 0.)

Exercise 2. What happens if I pick c0 = 1, c1 = 0 and c0 = 0, c1 = 1, which may look like a more
natural choice? Hint: If you are completely lost at this point, it may help to read to the end of this
lecture and return to this exercise after it.

Now an attentive reader should notice that the power series look similar to the ones that were
studied in Calculus under the name of Taylor’s series. In particular, these are exactly the series for the
exponent, the only problem that the series with complex coefficients were not studied. To put aside
this problem I simply (for those who would undertake the study of functions of complex variables in
the future this word “simply” should be remembered at some point :) ) put forward the following
definition.
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Definition 10.1. The exponential function, exp z or ez, of the complex variable z ∈ C is defined as

exp z = ez := 1 + z +
z2

2!
+ . . . =

∞∑
k=0

zk

k!
.

Remark 10.2. No discussion was supplied about convergence of these power series. It can be proved
(not complicated but takes some time) that this series converges absolutely for any fixed z. For those
who want to understand the definitions literally, not defined words “converges absolutely” should be
read “makes sense.”

Remark 10.3. The definition of the exponential function together with binomial formula yield prob-
ably the most important property of ez:

ez1+z2 = ez1ez2 .

I invite the curious student to prove it.

Using my definition of the exponential function I can write my two linearly independent solutions
to (10.5) as X1(x) = e

√
µx and X2(x) = e−

√
µx, and the general solution as

X(x) = AX1(x) +BX2(x) = Ae
√
µx +Be−

√
µx,

where A and B are two (complex) arbitrary constants. To be precise this formula works only if µ ̸= 0,
but if µ = 0 then two integrations yield

X(x) = A+Bx.

Now it is time to look more closely at the boundary conditions (10.6).
First, let µ = 0, then I must have that

A+Bπ = A−Bπ,

which implies B = 0, and the second boundary condition is satisfied automatically. Therefore I found
that for µ = 0 I always have a nontrivial solution to my boundary value problem, which is

X0(x) = A,

where A is an arbitrary constant.
Now let µ ̸= 0. For the future use I will define two new function, hyperbolic sine, sinh, and

hyperbolic cosine, cosh:

Definition 10.4.

sinh z =
ez − e−z

2
, cosh z =

ez + e−z

2
.

Using the boundary conditions I find

Ae
√
µπ +Be−

√
µπ = Ae−

√
µπ +Be

√
µπ,

√
µAe

√
µπ −√

µBe−
√
µπ =

√
µAe−

√
µπ −√

µBe
√
µπ,
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or, using my definitions,

A sinh
√
µπ = B sinh

√
µπ,

A sinh
√
µπ = −B sinh

√
µπ.

These equalities can be true only if A = B = 0, which gives me a trivial zero solution, of if

sinh
√
µπ = 0.

To proceed I will define yet two more functions.

Definition 10.5.

sin z =
eiz − e−iz

2i
, cos z =

eiz + e−iz

2
,

where i is the imaginary unit, i2 = −1.

Exercise 3. Prove that defined in this way functions of the complex variable sine and cosine coincide
with our familiar trigonometric functions for the case when z is a real variable.

Exercise 4. What is cos i?

Note that the last definition implies immediately Euler’s formula

eiz = cos z + i sin z.

Now I am ready to tackle the solution of the equation sinh
√
µπ = 0. I rewrite it as

e2
√
µπ = 1

and assume that
√
µ = α+ iβ, where α, β ∈ R. Using Euler’s formula, I have

e2απ(cos 2πβ + i sin 2πβ) = 1 + i · 0.

Two complex numbers are equal if and only if the real and imaginary parts are equal, hence

e2απ cos 2πβ = 1, e2απ sin 2πβ = 0,

where now all the constants are real and I can use my knowledge about the trigonometric functions.
I immediately conclude that the last two equalities can be true if and only if

α = 0, β = k, k ∈ Z = {0,±1,±2, . . .}.

Returning to the original constant µ I get

√
µ = α+ iβ = ik, k ∈ Z =⇒ µ = −k2, k = 1, 2, . . .

In words, my boundary value problem has a nonzero solution only if the values of the constant in
(10.5) are −k2, where k = 0, 1, 2, . . . (note that I included µ = 0 in this counting). The solutions, and
I am from now on going to use the index k to emphasize the dependence on k, are

Xk(x) = Ake
ikx +Bke

−ikx, k = 0, 1, 2, . . . ,
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where still Ak, Bk are some arbitrary complex constants. Since my solution describes the temperature
I am mostly interested in a real valued solution. A complex expression M is real if and only if M = M ,
where the bar means complex conjugate. To have all Xk(x) real I must have hence that Ak = Bk.
Let Ak = ak/2 + ibk/2 for some real ak, bk. Then my real solutions are

Xk(t) = (ak/2 + ibk/2)e
ikx + (ak/2− ibk/2)e

−ikx = ak cos kx+ bk sin kx,

using Euler’s formula.
Now I finally can summarize that my boundary value problem (10.5), (10.6) with the complex

variable µ has nontrivial solutions only if µ = −k2, where k = 0, 1, 2, . . ., and these solutions are given
by

Xk(x) = ak cos kx+ bk sin kx,

where the constants are real. Note that the case µ = 0 is also included in these formulas.
At this point I finally can consider solutions to (10.4):

Tk(t) = Cke
−k2α2t,

and hence each function

uk(t, x) = Tk(t)Xk(x) = e−α2k2t(ak cos kx+ bk sin kx), k = 0, 1, 2, . . .

solves the heat equation (10.1) and satisfies the boundary conditions (10.3) (abusing the notation a
little I absorbed arbitrary constants Ck in ak, bk).

What about the initial condition? Here I will rely again, as before in Duhamel’s principle, on the
linearity on the equation, and in particular on the principle of superposition: If u1, u2 solve (10.1)
then any linear combination of these functions also solves it. Hence I can write that an infinite linear
combination

u(t, x) =
∞∑
k=0

uk(t, x) = a0 +
∞∑
k=1

e−α2k2t(ak cos kx+ bk sin kx)

solves the heat equation. I use the initial condition to find (I replace for some notational reasons a0
with a∗0/2, the reason for this will be clear in the next lecture)

g(x) =
a∗0
2

+

∞∑
k=1

(ak cos kx+ bk sin kx).

And this was Jean-Baptiste Joseph Fourier, French scholar, who was one of the scientists in the
French Army during the Egyptian expedition under Napoleon’s lead at the beginning of the 19th
century, who in 1822 declared, to a big surprise and disbelief of the mathematical community, that
any function can be represented as a linear combination of trigonometric functions. In other words,
he meant that given g, he can always find ak, bk, and the corresponding series converges (“makes
sense”). My next task is to actually figure out how to determine ak, bk and also to contemplate a
little about the question whether the found series provides us with a legitimate classical solution to
the heat equation.
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10.2 Test yourself

1. What is the general solution to ODE

X ′′ − 4X = 0?

2. What is the general solution to ODE
X ′′ = 0?

3. What is the general solution to ODE

X ′′ + 4X = 0?

10.3 Solutions to the exercises

Exercise 1. So I need to solve X ′′ = µX, X(−π) = X(π), X ′(−π) = X ′(π) for µ ∈ R. I assume that
the students know that to solve a linear ODE with constant coefficients requires looking at the so-
called characteristic equation, and the general solution depends on the particular form (real, complex,
multiple) of its roots. I will consider three cases.

Case 1: µ = 0 implies X(x) = Ax + B, or, after using boundary conditions, X(x) = B for any
constant B ∈ R. �

Case 2: µ > 0 implies the characteristic equation to be r2 = µ, or r1,2 = ±√
µ, which implies that

the general solution is X(x) = Ae
√
µx+Be−

√
µx. This general solution plus boundary conditions yield

the system

A
(
e
√
µπ − e−

√
µπ
)
+B

(
e−

√
µπ − e

√
µπ
)
= 0,

A
(
e
√
µπ − e−

√
µπ
)
+B

(
−e−

√
µπ + e

√
µπ
)
= 0,

which is a system of linear homogeneous equations with respect to unknowns A,B. From Linear
Algebra I know that this system has a nontrivial solution if and only if the determinant of its matrix
is zero. But this determinant is (after some somewhat tedious computations) simplifies to

2
(
e
√
µπ − e−

√
µπ
)2

,

which can be equal to zero only if µ = 0, the case which I treated already above (do you see why?).
So no nontrivial solutions for µ > 0.

Case 3: µ < 0 implies that the characteristic equation has two purely imaginary roots r1,2 = ±ωi,
where ω =

√
−µ. The general solution is X(x) = A cosωx + B sinωx, and the boundary conditions

yield
2B sinπω = 0, 2A sinπω = 0,

which could be true if both A = B = 0 (trivial solution), or

sinωπ = 0,

which implies that ω = k, k ∈ Z, or returning to the original variable µ = −ω2 = −k2, k = 1, 2, 3, . . .,
exactly as in the case considered in the main text, of course.
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Exercise 2. By picking c0 = 1, c1 = 1 I get

c2m =
µm

(2m)!
=

√
µ2m

(2m)!
, c2m+1 = 0,

and c0 = 0, c1 = 1 leads to

c2m = 0, c2m+1 =

√
µ2m

(2m+ 1)!
,

which both should resemble (at least on a formal level) familiar (hopefully) series

cosh
√
µx = 1 +

(
√
µx)2

2!
+

(
√
µx)4

4!
+ . . .

and

sinh
√
µx

√
µ

=
x+

(
√
µx)3

3! +
(
√
µx)5

5! + . . .
√
µ

.

�

Exercise 3. I will do it only for sine, for cosine the reasoning is exactly the same. Assume that z is
real and consider the series for

eiz = 1 + (iz) +
(iz)2

2!
+ . . . = 1 + iz − z2

2!
− i

z3

3!
+ . . .

and

e−iz = 1 + (−iz) +
(−iz)2

2!
+ . . . = 1− iz − z2

2!
− i

z3

3!
+ . . .

Now I form, using my definition, sin z = eiz−e−iz
2i and cancel what I can cancel (because the series

converge absolutely), ending up with

sin z = z − z3

3!
+

z5

5!
+ . . . ,

which is exactly Taylor’s series for sine if its argument is real. Hence my definition of the trigonometric
functions sine and cosine coincide with the familiar one. �

Exercise 4. Using not included part of the solution of the previous exercise, I know that

cos z = 1− z2

2!
+

z4

4!
− . . .

hence

cos i = 1 +
1

2!
+

1

4!
+ . . . ,

which is a real expression and obviously bigger than 1!
Moreover, using Exercise 2 I find that cos i = cosh 1. �
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