
11 Fourier series

In this lecture I will talk about the trigonometric Fourier’s series:

g(x) =
a0
2

+

∞∑
k=1

(ak cos kx+ bk sin kx), −π ≤ x ≤ π, (11.1)

where ak, bk are real constants.
My discussion will be geared towards computational aspects, theoretical discussion can be found

elsewhere (among many existing excellent sources I especially recommend the book by Brat Osgood,
Lectures on the Fourier Transform and Its Applications, AMS, 2019).

There are several relevant questions which need to be addressed:

• If (11.1) is true then how to find ak, bk?

• What if my interval is different from [−π, π]?

• In what sense the equality sign in (11.1) must be understood? Note that the right hand side is
an infinite series and hence a discussion on convergence is relevant.

• Is it possible to replace {1, cos kx, sin kx} with, say, only {cos kx}? or only {sin kx}?

• These series are important for us because they represent solutions to the second order PDE and
hence in order to be classical solutions they should be differentiable. What are the conditions
for (11.1) such that I can take a derivative of the right hand side and obtain a Fourier series
for g′?

11.1 Formulas for the coefficients of (11.1)

Since I am using sines and cosines the expression (11.1) is called a trigonometric Fourier’s se-
ries. The right hand side of (11.1) means that I represent g as an infinite linear combination of
{1, cos kx, sin kx}∞k=1, which I will call the trigonometric system of functions. This system possesses a
special property, which makes computations particularly simple. To introduce it, I first introduce an
inner product on the set of functions defined on [−π, π].

Definition 11.1. Let f, g be two real valued functions defined on [−π, π] and assume that
´ π
−π f

2(x) dx <

∞ and
´ π
−π g

2(x) dx < ∞. I will denote the set of all possible such functions as L2[−π, π] (in words,

these functions are called square integrable on [−π, π]). An inner product of f, g ∈ L2[−π, π] is defined
as

⟨f, g⟩ =
ˆ π

−π
f(x)g(x) dx.

(and this is only one of many possible inner products).
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Exercise 1. Show that for any f, g, h ∈ L2[−π, π] (and if you never dealt with subtleties of L2 space
before, assume additionally that f, g, h are continuous on [−π, π])

⟨f, f⟩ ≥ 0, ⟨f, f⟩ = 0 ⇔ f = 0,

⟨af, g⟩ = a⟨f, g⟩, a ∈ R,

⟨f, g⟩ = ⟨g, f⟩,
⟨f + g, h⟩ = ⟨f, h⟩+ ⟨g, h⟩.

The key property I talked about above is orthogonality.

Definition 11.2. Two functions f, g ∈ L2[−π, π] are called orthogonal if

⟨f, g⟩ = 0.

Lemma 11.3. The trigonometric system of functions is orthogonal, meaning that each function in
this set belongs to L2[−π, π] and any pair of them is orthogonal.

Proof. First,

ˆ π

−π
1 dx = 2π < ∞,

ˆ π

−π
cos2 kx dx = π < ∞,

ˆ π

−π
sin2 kxdx = π < ∞,

which proves that all my functions are in L2[−π, π].
Second, to show orthogonality, I need to calculate

⟨1, cos kx⟩ =
ˆ π

−π
1 · cos kx dx =

sin kx

k

∣∣∣∣x=π

x=−π

= 0,

⟨1, sin kx⟩ =
ˆ π

−π
1 · sin kxdx = − cos kx

k

∣∣∣∣x=π

x=−π

= 0,

⟨cos kx, sinmx⟩ =
ˆ π

−π
cos kx sinmxdx = 0,

⟨cos kx, cosmx⟩ =
ˆ π

−π
cos kx cosmxdx =

{
0, k ̸= m,

π, k = m,

⟨sin kx, sinmx⟩ =
ˆ π

−π
sin kx sinmxdx =

{
0, k ̸= m,

π, k = m,

where k,m = 1, 2, 3, . . .. �

Remark 11.4. To evaluate the above integrals I used

sinα sinβ =
1

2

(
cos(α− β)− cos(α+ β)

)
,

cosα cosβ =
1

2

(
cos(α− β) + cos(α+ β)

)
,

sinα cosβ =
1

2

(
sin(α+ β) + sin(α− β)

)
.
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I will use the orthogonality of the trigonometric system of functions to find ak, bk in (11.1). Let me
take the inner product of the left and right hand sides of (11.1) with 1 (just one remark: I am doing
something not exactly legitimate here, because it does not follow from the properties of the inner
product that I can distribute it in infinite series, but since I am mostly interested in computational
aspects, and get the correct results at the end, I will bravely proceed):

⟨g, 1⟩ = ⟨a0
2

+

∞∑
k=1

(ak cos kx+ bk sin kx), 1⟩ .

I use the properties of my inner product (see Exercise 1 and remark above) to have

⟨g, 1⟩ = a0
2
⟨1, 1⟩+

∞∑
k=1

ak⟨cos kx, 1⟩+ bk⟨sin kx, 1⟩ .

Now notice that due to the orthogonality all the terms except ⟨1, 1⟩ are zero:

⟨g, 1⟩ = a0
2
2π =⇒ a0 =

⟨g, 1⟩
π

=
1

π

ˆ π

−π
g(x) dx.

Similarly, taking the inner product with cosmx and sinmx respectively I find (switching again m
with k)

ak =
⟨g, cos kx⟩

π
=

1

π

ˆ π

−π
g(x) cos kxdx, k = 0, 1, 2, . . .

bk =
⟨g, sin kx⟩

π
=

1

π

ˆ π

−π
g(x) sin kx dx, k = 1, 2, . . . ,

(11.2)

note that I also included the case a0 in my formulas, and this was the reason to have a0/2 in (11.1).
Equations (11.2) give me the Fourier coefficients of the trigonometric Fourier series (11.1).
Often I will need to consider the set of functions L2[−l, l], where l is some constant, in general

different from π. I can simply introduce a new variable y in the way that

y =
πx

l
,

such that I am rescaling my variable, and when x = ±l then y = ±π. Using this change of variable,
and replacing back y with x I immediately conclude that

Lemma 11.5. The system of functions
{
1, cos πkx

l , sin πkx
l

}
is orthogonal with respect to the inner

product

⟨f, g⟩ =
ˆ l

−l
f(x)g(x) dx.

If function g ∈ L2[−l, l] can be represented by its trigonometric Fourier series

g(x) =
a0
2

+
∞∑
k=1

(
ak cos

πkx

l
+ bk sin

πkx

l

)
, −l ≤ x ≤ l,
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then the coefficients are found as

ak =
1

l

ˆ l

−l
g(x) cos

πkx

l
dx, k = 0, 1, 2, . . .

bk =
1

l

ˆ l

−l
g(x) sin

πkx

l
dx, k = 1, 2, . . . .

(11.3)

Note that Lemma 11.5 answers two first questions that I posed.

11.2 On the convergence of (11.1)

Example 11.6. To motivate the discussion of the convergence of the Fourier series and practice the
formulas (11.3) consider the following example:

g(x) =

{
0, −1 ≤ x ≤ 0,

1− x, 0 < x ≤ 1.

I find that (note that I calculate a0 and ak, k = 1, 2, . . . separately):

a0 =

ˆ 1

0
(1− x) dx =

1

2
,

ak =

ˆ 1

0
(1− x) cosπkxdx =

1

(πk)2
(1− cosπk) =

1− (−1)k

(πk)2
,

bk =

ˆ 1

0
(1− x) sinπkx dx =

1

πk
.

Now I can form the partial sums

Sk(x) =
a0
2

+
k∑

m=1

(am cosπmx+ bm sinπmx),

and compare them with the graph of the initial function. My expectation is that the bigger the value
of k I take, the closer the graph of Sk should be to the graph of g. Indeed, my expectations is correct,
see Fig. 1.

Moreover, for bigger k the approximation becomes better and better (see Fig. 2).
Before jumping to conclusions let me answer another question: What would happen if I look at

the values of x outside of the interval [−1, 1]? Both my function and the partial sums of Fourier series
are obviously defined for them. Let me take, say, x ∈ [−2, 2] (see Fig. 3, left panel).

As it should be expected, the partial sums of Fourier series are periodic function (in my case with
period 2), and the original function is not periodic. However, I can always take a periodic extension
of my function g, such that the new function becomes also periodic with period 2. Instead of writing
careful (and mostly useless) definition, just look at Fig. 3, right panel, to see what a periodic extension
is.

Finally, my function g, as well as the corresponding periodic extension, are not continuous, whereas
the partial sums as the sums of continuous functions are continuous. It actually stays true even in
the limit k → ∞, the right hand side of (11.1) is continuous, and if the original function has a jump
discontinuity then the corresponding Fourier series converges exactly to the middle of the interval of
discontinuity.
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Figure 1: Comparison the graphs of the original function g (light gray) and the partial sums Sk (dark
grey) of the corresponding Fourier series.

Let me put together all the information I gained in the previous example. I start with a definition
of a piecewise smooth function.

Definition 11.7. Function g : [a, b] −→ R is said to be piecewise smooth of the class C(k) if it belongs to
the class C(k) at any point of the interval [a, b] except, possibly, a finite number of points of discontinuity
x1 < x2 < . . . < xp. Moreover, the right and left limits at all these points exist and finite (i.e., all the

Figure 2: Comparison of the graphs of the original function g (light gray) and the partial sums Sk

(dark grey) of the corresponding Fourier series.
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Figure 3: Left: Comparison of the graphs of the original function g (light gray) and the partial sum
S10 (dark grey) on the interval [−2, 2]. Right: Comparison of the graphs of the periodic extension of
the function g (light gray) and the partial sum S10 (dark grey) on the interval [−5, 5].

discontinuities are of the jump type):

lim
x→xj+0

g(x) = g(xj + 0), lim
x→xj−0

g(x) = g(xj − 0), j = 1, . . . , p.

The value g(xj + 0)− g(xj − 0) is called the magnitude of the jump.

Now I can state the celebtated

Theorem 11.8 (Dirichlet). Let g : [−l, l] −→ R be a piecewise smooth function of the class C(1), and
let g̃ : R −→ R be its 2l-periodic extension. Then, at any point x ∈ R, its Fourier series converges
to the value g̃(x) if g̃ is continuous at x, or to (g̃(x + 0) + g̃(x − 0))/2 if x is a point of a jump
discontinuity.

This theorem (partially) answers the third question from my list.

Remark 11.9. Note that the stated theorem stops being true in general for piecewise continuous
functions (of the class C). All these subtle points are very important mathematically but fall outside
of our PDE course.

11.3 Sine and cosine series. Odd and even extensions

I had only one example of calculating Fourier coefficients so far, but it should be already clear that
this is the point that requires sometimes some tedious calculations. It is always nice when we can see
immediately answers without calculating integrals. Here is one such trick.

Recall that f is odd if f(−x) = −f(x) for all x, geometrically the graph of an odd function is
symmetric with respect to the origin; and f is even if f(−x) = f(x) for all x, the graph of the even
function is symmetric with respect to the y-axis. An example of an odd function is sine, and of an
even function is cosine.

Exercise 2. Show that the product of two even or two odd functions is even, and the product of even
and odd functions is odd.
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Now I can use this symmetry to calculate the integrals for Fourier coefficients. Note that if f is
odd then the integral with respect to a symmetric interval is zero, and if f is even, then the integral
with respect to the interval [−l, l] is double the integral from 0 to l.

Lemma 11.10. Let g be an odd function. Then

ak = 0, bk =
2

l

ˆ l

0
g(x) sin

πkx

l
dx, k = 0, 1, . . . ,

Let g be an even function. Then

ak =
2

l

ˆ l

0
g(x) cos

πkx

l
dx, bk = 0, k = 0, 1, . . . .

In other words, the trigonometric Fourier series of odd functions contain only sines, the trigono-
metric Fourier series of even functions contain only a constant and cosines. This is a great news for
many calculations, however, there is a much deeper consequence of the last lemma. Note first that all
the integrals are calculated from 0 to l.

Now assume that I need to find Fourier series of a function defined on [0, l]. I can, of course,
shift this interval by l/2 and use the formulas for the full Fourier series (which is by the way is not
necessary, see below). I also can extend my function evenly, for example (recall the discussion of the
solution of the wave equation on a half-infinite string!), and in this case my Fourier series will consists
only of cosines and a constant. Or I can use an odd extension, and in this case my Fourier series will
contain only sine terms.

Dirichlet’s theorem, together with the discussion above, thus imply that for any piecewise continu-
ous function g : [a, b] −→ R of class C(1)[a, b] I can almost equally easy find either the full trigonometric
Fourier series, or the sine Fourier series, or the cosine Fourier series, and the convergence of these series
follows from that of Dirichlet’s theorem.

Example 11.11. Find the sine and cosine Fourier series for

g(x) = x, 0 ≤ x ≤ 1.

Let me start with the sine series. The odd extension is (this is an illustration, I never use these
extensions in my calculations!)

godd(x) = x, −1 ≤ x ≤ 1.

Since this is an odd function, hence ak = 0 for any k. Using the formulas above

bk = 2

ˆ 1

0
x sinπkx dx = 2

(−1)k+1

kπ
,

the results are shown in Figs. 4 and 5.
Recall that on the whole real line my Fourier series converges to the corresponding periodic exten-

sion (see Fig. 5).
Now I consider the even extension:

geven(x) =

{
x, 0 ≤ x ≤ 1,

−x, −1 ≤ x ≤ 0.
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Figure 4: Sine Fourier series for g(x) = x on [0, 1].

Figure 5: Sine Fourier series for g(x) = x on [0, 1]. Left: Periodic extension. Right: Just the interval
[0, 1].

I find

bk = 0, a0 = 1, ak =
(−1)k − 1

π2k2
, k = 1, 2, . . .

The results are shown in Figs. 6 and 7.
There is one important thing to notice from this example. The periodic extension of the odd

function in my example is discontinuous, and my coefficients have the form C/k for some constant
C. The periodic extension of the even function is continuous (see the figures), but not continuously
differentiable (it has corners), and my coefficients are of the form C/k2 for some (different) constant
C. Clearly, the latter series converges faster, which can also be seen directly from the figures. This is
a general phenomenon, i.e., the smoother the periodic extension of my function, the faster my Fourier
series converges.

To finish this example let me find the full trigonometric Fourier series for the same g, defined on
[0, 1]. I mentioned above that I may first shift it 1/2 units to the left, to be able to use the formulas
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Figure 6: Cosine Fourier series for g(x) = x on [0, 1].

Figure 7: Cosine Fourier series for g(x) = x on [0, 1]. Left: Periodic extension. Right: Just the interval
[0, 1]. Compare this to the corresponding sine Fourier series.

for the full trigonometric series, but this is not necessary, due to the simple and yet important fact
that if f is a T -periodic function then

ˆ T/2

−T/2
f(x) dx =

ˆ a+T/2

a−T/2
f(x) dx

for any constant a. That is, I can use my formulas for Fourier coefficients integrating one period
without requiring the limits of integration be symmetric. For my example T = 1 (this is my period),
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Figure 8: Full Fourier series for g(x) = x on [0, 1]. The comparison is with 1-periodic function g and
the partial sum of the Fourier series with k = 50.

and hence l in the formulas above should be replaced with l = T/2 = 1/2 in my case. That is,

a0 = 2

ˆ 1

0
x dx = 2,

ak = 2

ˆ 1

0
x cos 2πkx dx = 0, k = 1, 2, . . . ,

bk = 2

ˆ 1

0
x sin 2πkx dx = − 1

kπ
.

Hence I end up with the partial sums

Sk(x) = 1 +
k∑

m=1

bm sin 2πmx

as approximations of my original function (see Fig. 8).

Exercise 3. Can you find a cosine Fourier series of function sin on x ∈ [0, π]?

Exercise 4. Prove that the integral of T -periodic function over one period does not depend on the
start and end points of this period.

11.4 Differentiating and integrating Fourier series

Finally, for the future use I need some information on when I can differentiate Fourier series such that
I can talk about classical solutions of PDE problems. Without going into any technical details, note
that if I differentiate the terms in Fourier series, I will get factor k in front of each term. Hence, to be
able to differentiate, I need that my Fourier coefficients would be of the form C/kα for a sufficiently
large α, and if the student read the previous material carefully they should understand that it does
put some restrictions of the form of the periodic extensions of my functions. The question is not that
simple, and instead of formulating dry theorems, let me consider a few examples.
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Example 11.12. We already know that for g(x) = x on [−1, 1] I have

x =
∞∑
k=1

2(−1)k+1

kπ
sin kπx =

2

π
sinπx− 2

2π
sin 2πx+

2

3π
sin 3πx− . . .

where the equality is understood in the sense of Dirichlet’s theorem.
Now, formally differentiating this equality, I would get

1 = 2

∞∑
k=1

(−1)k+1 cos kπx = 2 cosπx− 2 cos 2πx+ 2 cos 3πx− . . . ,

which is clearly something ridiculous (try plugging x = 0 in the right hand side), which indicates that
I must be careful with my solutions in the form of Fourier series.

On the other hand, if I integrate my Fourier series, I get

x2

2
= C +

∞∑
k=1

2(−1)k

k2π2
cos kπx,

where the constant C can be found, for instance, by using orthogonality of all the cosines and constant
1, yielding C = 1/6.

This is exactly the Fourier series for x2/2, if I were to use the formulas for ak, bk, which also indicates
that operation of integration is less dangerous than differentiation (which is of course not surprising
since integration makes functions to be smoother whereas differentiation reduces the smoothness).

Anyway, this simple example shows that anyone should be careful while writing solutions to our
mathematical problems in the form of Fourier series. On a more positive note I would like to claim an
important from computational point of view fact: If the initial and boundary conditions are “reason-
able enough,” then the resulting series make perfect sense even (sic!) if one is not capable differentiating
them. I will come to this point later in the course (still skipping most of the mathematical rigor in
my discussion).

The discussion here is over but I cannot help mentioning that plugging x = 1 in the last series
yields absolutely amazing formula

π2

6
=

∞∑
k=1

1

k2
.

Similarly, by plugging x = 0 I will find yet another remarkable result

π2

12
=

∞∑
k=1

(−1)k+1

k2
.

11.5 Final remarks and generalizations

Basically, what was shown and stated (mostly without proofs), is that any piecewise continuous
function g on [−π, π] with piecewise continuous derivative can be represented as its Fourier series,
using either

{1, cos kx, sin kx},
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or
{1, cos kx},

or
{sin kx}.

Moreover, I found the formulas that can be used to calculate the coefficients of Fourier series. The
key property that allowed me to do this is the orthogonality of the first system of functions on [−π, π]
and orthogonality of the second and third systems on [0, π].

In general, and quite abstractly, I can consider an arbitrary system of functions

{g1(x), g2(x), g2(x), . . .},

introduce an inner product ⟨gj , gk⟩ that satisfies some natural properties and define orthogonality.
Let me assume that {gj(x)} is an orthogonal system of functions. Then I can try to represent an

arbitrary function as a generalized Fourier series

g(x) = c1g1(x) + c2g2(x) + . . . .

The orthogonality will immediately let me find my coefficients:

ck =
⟨g, gk⟩
⟨gk, gk⟩

.

A very important question, of course, is when I have enough functions to represent any allowable
function as its generalized Fourier series. A quite general answer to this question (without proof) will
be given later in the course.

Exercise 5. Consider complex valued functions of the real argument and an inner product of the
form

⟨f, g⟩ =
ˆ π

−π
f(x)g(x) dx.

Show that system of functions

g0(x) = 1, gk(x) = eikx, k = ±1,±2,±3, . . .

is orthogonal on [−π, π]. Find the expression for the coefficients ck in the complex Fourier’s series

g(x) = c0 +

∞∑
k=−∞

cke
ikx .

Can you see how ck are connected with ak, bk from the trigonometric Fourier series?

11.6 Test yourself

1. What is the Fourier series of sin 2x on [−π, π]? on [0, π]?

2. Give an example of an odd function, even function.
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3. Let f(x) be defined as follows:

f(x) =

{
x+ 1, x ∈ [−1, 0),

x− 1, x ∈ [0, 1].

Sketch its 2-periodic extension and carefully state to which points the corresponding Fourier
series will converge.

11.7 Solutions to the exercises

Exercise 1. All these properties are direct consequences of the properties of Riemann integral, which
was studies in Calculus course. Some difficulty can arise in discussing the first property, which I will
deal with here. I have

⟨f, f⟩ =
ˆ π

−π
f2(x) dx,

which must be non-negative (by, say, definition of the Riemann sums), since f2(x) ≥ 0 for all x.
If f is identically zero then my integral is zero. In the opposite direction, assuming that integral is

zero, I must show that f must be zero almost everywhere. For this I will recall the fact that Riemann
integrable function on a finite interval must be continuous almost everywhere (note that I do not
distinguish the functions are are equal to each other almost everywhere). Looking for a contradiction,
I will assume that ⟨f, f⟩ = 0 but there is a point x ∈ (−π, π) such that f is continuous at x and
f(x) ̸= 0. Then, by continuity, there must be an interval (x − ε, x + ε) where f ̸= 0, and hence´ x+ε
x−ε f2(x) dx > 0, contradicting the assumption. Hence f(x) = 0 for (almost) all points x. �

Exercise 2. Let f, g be both even, then h(−x) = f(−x)g(−x) = f(x)g(x) = h(x), hence h is even.
Let f, g be both odd, then h(−x) = f(−x)g(−x) = (−1)2f(x)g(x) = h(x), hence h is even. Finally,
let f be even and g be odd, then h(−x) = f(−x)g(−x) = (−1)f(x)g(x) = −h(x), hence h is odd. �

Exercise 3. All I need is to calculate the following integrals

a0 =
2

π

ˆ π

0
sinx dx =

4

π
.

and

ak =
2

π

ˆ π

0
sinx cos kxdx =

2(1− (−1)k)

(k2 − 1)π
.

Note that the last formula is not determined for k = 1, but direct calculations show that a1 = 0 (as
well as all other odd coefficients). Partial sums for my Fourier series are shown in Fig. 9. �

Exercise 4. The goal is to show that for the function with the property

f(x) = f(x+ T )

for all x and constant T > 0, I have that

ˆ a+T

a
f(x) dx =

ˆ T

0
f(x) dx
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Figure 9: Comparison of the graphs of the original function sinx (light gray) and the partial sums Sk

(dark grey) of its Fourier cosine series for various k.

for all a.
By the properties of the integral I have

ˆ T

0
f(x) dx+

ˆ T+a

T
f(s) ds =

ˆ a

0
f(t) dt+

ˆ T+a

a
f(x) dx.

But ˆ T+a

T
f(s) ds = (substitution s = t+ T ) =

ˆ a

0
f(t) dt,

and I get what is required.
(There is much slicker proof of the same property, for an interested student: Consider

d

da

ˆ T+a

a
f(x) dx

and show that it is zero, hence the integral does not depend on a.) �

Exercise 5. I have that for gk(x) = eikx, k = 0,±1,±2, . . .

⟨gk, gk⟩ =
ˆ π

−π
1 dx = 2π

and for k ̸= m

⟨gk, gm⟩ =
ˆ π

−π
eikxe−imx dx =

ˆ π

−π
eix(k−m) =

2

i(k −m)
sinπ(k −m) = 0,

hence my system of functions is orthogonal. Using this orthogonality I find that

ck =
1

2π

ˆ π

−π
g(x)e−ikx dx, k = 0,±1,±2, . . .
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Using Euler’s formula I have

ˆ π

−π
g(x)e−ikx dx =

ˆ π

−π
g(x) cos kxdx− i

ˆ π

−π
g(x) sin kxdx,

and hence

ck =
1

2
(ak − ibk), k = 0, 1, 2, . . .

and

c−k =
1

2
(ak + ibk), k = 1, 2, , . . . ,

which also yields
ak = ck + c−k, bk = i(ck − c−k), k = 0, 1, 2, . . .

�
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