
23 Elements of analytic ODE theory. Bessel’s functions

Recall (I am changing the variables) that we need to solve the so-called Bessel’s equation

x2u′′ + xu′ + (x2 −m2)u = 0, m = 0, 1, 2, . . .

23.1 Elements of analytic ODE theory

Let
p(x)u′′ + q(x)u′ + r(x)u = 0 (23.1)

be a second order linear homogeneous ODE with non-constant coefficients. Recall that function f is
called analytic at x0 if it can be represented in some neighborhood of x0 by a convergent power series:

f(x) = u0 + u1(x− x0) + u2(x− x0)
2 + u3(x− x0)

3 + . . .

The coefficients can be found by

uk =
f (k)(x0)

k!
,

where k! = 2 · 2 · . . . · k.
From the calculus course, for example, we know that exponent, sine and cosine are analytic any-

where in R:

ex = 1 + x+
x2

2!
+

x3

3!
+ . . . ,

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ . . . ,

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ . . .

Theorem 23.1. Consider problem (23.1) and assume p, q, r are analytic at x0 and p(x0) ̸= 0. Then
problem (23.1) with the initial conditions u(x0) = u0, u

′(x0) = u1 has a unique analytic solution.

This theorem actually gives us a way to work through the problem. All we need to do is to look
for the solution in the form

u(x) = u0 + u1(x− x0) + u2(x− x0)
2 + . . .

and determine u2, u3, . . ..
Since the general solution to (23.1) is given by

u(x) = Aû(x) +Bǔ(x),

where A,B are two arbitrary constants and û and ǔ are two linearly independent solutions, we can
always use our power series method with two different (and linearly independent) initial conditions,
e.g., we can take

û(x0) = 1, û′(x0) = 0,
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and
ǔ(x0) = 0, ǔ′(x0) = 1.

In one of the previous lectures we already saw this method applied to the equation u′′ + ωu = 0.
Consider another example.

Example 23.2 (Airy equation). Consider

u′′ − xu = 0,

and take the initial conditions

u(0) = 1 = u0, u′(0) = 0 = u1.

The stated theorem obviously works in this case since p is constant and r(x) = x. I take

u(x) = u0 + u1x+ u2x
2 + u3x

3 + u4x
4 + . . .

and hence
u′′(x) = 2u2 + 3 · 2u3x+ 4 · 3u4x2 + . . . .

Plugging the obtained expressions into my equation I find

2u2 + 3 · 2u3x+ 4 · 3u4x2 + 5 · 4u3x3 . . . = u0x+ u1x
2 + u2x

3 + u3x
4 + u4x

5 + . . .

Two convergent power series equal only if the coefficients at the same powers are equal, that is

2u2 = 0,

6u3 = u0,

12u4 = u1,

20u5 = u2,

30u6 = u3,

. . .

(n+ 1)(n+ 2)un+2 = un−1,

. . .

Using the initial conditions I find

u3k =
u3k−3

3k(3k − 1)
, k = 1, 2, 3, . . .

and all other ui are zero. The last expression is enough to write that my first linearly independent
solution to the Airy equation is

û(x) =
∞∑
k=0

u3kx
3k,

which, as can be proved, converges for any x ∈ R. I will leave it as an exercise to show that for the
initial conditions u(0) = 0, u′(0) = 1 the solution is

ǔ(x) =

∞∑
k=0

u3k+1x
3k+1 , u3k+1 =

u3k−2

(3k + 1)3k
.
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23.2 Solving Bessel’s equation

Unfortunately, the same method will not work for Bessel’s equation, if I’d like to build a power series
solution around 0. The reason is that x0 = 0 is not a regular point, meaning that p(0) = 0. For Bessel’s
equation x0 = 0 is a singular point, but fortunately for as a regular singular point (a point x0 is called
a regular singular point if the equation can be written as (x− x0)

2a(x)u′′ + q(x)u′ + r(x)u = 0, which
is obviously holds for our equation with x0 = 0 and a(x) = 1). In this case it turns out the Frobenius
method will work. Frobenius method says that in this case a solution can be sought in the form

u(x) = (x− x0)
ν

∞∑
n=0

un(x− x0)
n,

where ν does not to be integer or positive.
I have, assuming that u0 = 1,

u(x) = xν + u1x
ν+1 + u2x

ν+2 + . . .

xu(x) = xν+1 + u1x
ν+2 + u2x

ν+3 + . . .

x2u(x) = xν+2 + u1x
ν+3 + u2x

ν+4 + . . .

u′(x) = νxν−1 + (ν + 1)u1x
ν + (ν + 2)u2x

ν+1 + . . .

u′′(x) = ν(ν − 1)xν−2 + (ν + 1)νu1x
ν−1 + (ν + 2)(ν + 1)u2x

ν + . . .

The coefficient at xν must be
ν(ν − 1) + ν −m2 = 0,

which is true only if ν = ±m, if m ̸= 0.
For the ν + n degree I have, replacing m2 with ν2,

xν+n :
[
(ν + n)2 − ν2

]
un + un−2 =⇒ un = − 1

n(2ν + n)
un−2, n = 2, 3, 4, . . .

Starting with u0 = 1, u1 = 1 I get that all the odd indices are zero, whereas for even n = 2k

u2k = − u2k−2

4k(k + ν)
= . . . =

(−1)k

22kk!(ν + k)(ν + k − 1) . . . (ν + 1)

and hence my solution is

u(x) =

∞∑
k=0

(−1)kxν+2k

22kk!(ν + k)(ν + k − 1) . . . (ν + 1)
.

In general this is not necessary, but in our case m is an integer, and if ν = −m then the denominator
in the series above vanishes. Hence we only found one solution to Bessel’s equation:

u(x) =

∞∑
k=0

(−1)kxm+2k

22kk!(m+ k)(m+ k − 1) . . . (m+ 1)
.
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I am allowed to multiply my solution by any constant, and I choose, by convention, to multiply the
series above by 1/(2mm!), in this case I have

Jm(x) =
∞∑
k=0

(−1)kxm+2k

22k+mk!(m+ k)!
,

Bessel’s function of the first kind of the m-th order. An application of the ratio test yields that the
series converges for any x ∈ R and hence Jm is analytic anywhere in R (or even in C).

Just to get first idea on the Bessel’s functions, note that

J0(0) = 1, Jm(0) = 0, m = 1, 2, . . .

So, I found one independent solution and in need of another one. Abel’s formula (see Math 266)
tells me that for two linearly independent solutions to u′′ + a(x)u′ + b(x)u = 0 I must have

det

[
u1 u2
u′1 u′2

]
= Ce−

´
a(x) dx.

In my case a(x) = 1/x and hence I end up with

u1u
′
2 − u′1u2 =

C

x
,

or, after some rearranging (
u2
u1

)′
=

C

xu21
.

Using u1(x) = Jm(x) I have
u2(x)

Jm(x)
=

ˆ
C

J2
m(x)

dx.

Therefore,

u2(x) = Jm(x)

ˆ
C

J2
m(x)

dx

is the second linearly independent solution, which is actually called Neumann’s function of the second
kind of the m-th order.

23.3 Some facts about solutions to Bessel’s equation

The full analysis of the solutions to Bessel’s equation is beyond the scope of this course. I, however,
would like to show how at least some of the important results can be obtained and proved.

I will start with Bessel’s function of the first kind of order zero:

J0(x) = 1− x2

22
+

x4

22 · 42
− x6

22 · 42 · 62
+

x8

22 · 42 · 62 · 82
− . . .

Since the ratio of two consecutive terms is

− x2

(2k)2
,
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which approaches zero as k → ∞ for any fixed x then this series converges absolutely and uniformly,
and hence J0 and all its derivatives are continuous.

For J1 I have

J1(x) =
x

2
− x3

22 · 4
+

x5

22 · 42 · 6
− x7

22 · 42 · 62 · 8
+ . . . ,

which immediately implies that
dJ0
dx

(x) = −J1(x)

(cf. with cos′ x = − sinx). Analogously,

d

dx
(xJ1(x)) = xJ0(x).

Let me use my formula for the second independent solution to find Neumann’s function of the second
kind of zero order.

I have

N0(x) = J0(x)

ˆ
dx

xJ2
0 (x)

.

Using the fact that (prove it)
1

xJ2
0 (x)

=
1

x
+

x

2
+

5x3

32
+ . . .

and integrating by terms I find

N0(x) = J0(x)

(
log x+

x2

4
− 3x4

128
+ . . .

)
.

The most important fact here is that N0 is not defined at zero and approaches −∞ (it behaves like
log for small x). Using Neumann’s function of the second kind I can define Bessel’s function of the
second kind of zero order as a special linear combination of J0 and N0:

Y0(x) =
2

π
(N0(x)− (log 2− γ)J0(x)) ,

where γ is the Euler constant, γ = limn→∞
(
(
∑n

i=1)
1
n − log n

)
≈ 0.5772. Hence the general solution

to Bessel’s equation of zero order can be written (this is the most standard form) as

u(x) = AJ0(x) +BY0(x).

Recall that we are mostly interested in solutions to

R′′ +
1

r
R′ +

(
λ− m2

r2

)
R = 0.

By above and generalizing I showed that the general solution to this equation is given by

R(r) = AJm(
√
λr) +BYm(

√
λr).
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Now let me denote v(x) = J0(αx) and w(x) = J0(βx), where α and β are some constants. Due to
the above I have that v and w solve

xv′′ + v′ + α2xv = 0,

xw′′ + w′ + β2xw = 0.

If I multiply the first equation by w, second by v and subtract then I get, after simplifications,(
x(v′w − vw′)

)′
= (β2 − α2)xvw.

By integrating from 0 to 1 I proved that

(β2 − α2)

ˆ 1

0
xJ0(αx)J0(βx) dx = αJ ′

0(α)J0(β)− βJ ′
0(β)J0(α).

Similarly, by multiplying the equation for v by 2xv′ I can show (exercise) that

ˆ 1

0
xJ2

0 (αx) dx =
1

2
(J2

0 (α) + J2
1 (α)).

An important corollary is as follows: if α and β are two roots of J0 then

ˆ 1

0
xJ0(αx)J0(βx) dx = 0

and ˆ 1

0
xJ2

0 (αx) dx =
1

2
J2
1 (α).

The question is, of course, do we have any roots at all? To see that there are always infinitely
many roots, let me make the change of variables

v(x) = u(x)
√
x

in Bessel’s equation of the order zero. Then, after straightforward manipulations, I find that

v′′ = −
(
1 +

1

4x2

)
v,

that is, when x is large, then the equation is approximately v′′ + v = 0, and hence for large x Bessel’s
equation has an approximate solution

u(x) =
A cos(x− ϕ)√

x
,

for some constants A and ϕ, which indicates that Bessel’s functions approach zero as x → ∞ and that
Bessel’s functions have infinitely many real positive roots.

Let me introduce the inner product

⟨f, g⟩B =

ˆ 1

0
xf(x)g(x) dx.
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Note that the functions J0(ζkx), k = 1, 2, 3, . . . are orthogonal on [0, 1] with respect to this inner
product. Here ζk is the k-th root of J0(x). It can be proved that any “nice” function f can be
represented as a convergent series

f(x) = c1J0(ζ1x) + c2J0(ζ2x) + c3J0(ζ3x) + . . . .

This expansion is called the Fourier–Bessel expansion, and the coefficients can be found, from the
proved formulas above, as

ck =
⟨f, J0(ζkx)⟩B

⟨J0(ζkx), J0(ζkx)⟩B
=

2

J2
1 (ζk)

ˆ 1

0
xf(x)J0(ζkx) dx.

23.4 Summary about Bessel’s functions

In a way similar to the above one can show that the following theorem holds.

Theorem 23.3. Consider Bessel’s ODE of the order m, where m = 0, 1, 2, . . .:

x2u′′ + xu′ + (x2 −m2)u = 0.

The general solution to this equation can be written as

u(x) = AJm(x) +BYm(x),

where Jm is Bessel’s function of the first kind of order m and Ym is Bessel’s function of the second
kind of order m. J0(0) = 1, Jm(0) = 0,m = 1, 2, . . .. Bessel’s functions of the second kind have a
singularity at x = 0 for any m. In particular, limx→0+ Ym(x) = −∞.

Both Jm and Ym approach zero as x → ∞, both Jm and Ym have infinitely many positive roots.
Let ζk,m denote the k-th root of Jm. Then

ˆ 1

0
xJm(ζk,mx)Jm(ζl,mx) dx =

{
0, l ̸= k,
1
2J

2
m+1(ζk,m), l = k.

Any sufficiently nice function f can be represented as Fourier-Bessel series

f(x) =

∞∑
k=1

ckJm(ζk,mx),

where the explicit form of the coefficients can be inferred from the relation above.

7



Figure 1: Graphs of several Bessel’s functions of the the first kind

Figure 2: Graphs of several Bessel’s functions of the the second kind
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