
25 Solving the wave equation in 2D and 3D space

’No,’ replied Margarita, ’what really puzzles me is where you have found the space for all
this.’ With a wave of her hand Margarita emphasized the vastness of the hall they were in.
Koroviev smiled sweetly, wrinkling his nose. ’Easy!’ he replied. ’For anyone who knows
how to handle the fifth dimension it’s no problem to expand any place to whatever size
you please.’

Mikhail Bulgakov, The Master and Margarita

The goal of this concluding section is to find the solution to the initial value problem for the wave
equation

utt = c2∆u, x ∈ Rk,

u(0,x) = g(x),

ut(0,x) = h(x),

(25.1)

with k = 2, 3. Recall that in the case k = 1 we already know that the solution is given by d’Alembert’s
formula

u(t, x) =
g(x− ct) + g(x+ ct)

2
+

1

2c

ˆ x+ct

x−ct
h(s) ds.

It turns out that for the case k = 2, 3 it is also possible to find an explicit solution.
First, I will prove an auxiliary fact, which will help to reduce the number of computations.

Lemma 25.1. Let vh denote the solution to the problem.

vtt = c2∆v, x ∈ Rk,

v(0,x) = 0,

vt(0,x) = h(x).

(25.2)

Then function

w =
∂

∂t
vg

solves

wtt = c2∆w, x ∈ Rk,

w(0,x) = g(x),

wt(0,x) = 0.

(25.3)

Proof. Indeed, since vg satisfies the wave equation, taking the derivatives with respect to time on
both left and right hand sides and exchanging the order of operators implies that w solves the wave
equation. Moreover, w(0,x) = ∂

∂tvg(0,x) = g(x) due to the definition of vg. Finally, I need to show
that wt(0,x) = 0. Consider

∂

∂t
w(0,x) =

∂2

∂t2
vg(0,x) = c2∆vg(0,x) = 0,

since, by definition vg(0,x) = 0. �
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Corollary 25.2. Any solution to (25.1) can be written as

u =
∂

∂t
ug + uh,

where uh solves (25.2).

Proof. The proof follows from the linearity of the original problem. �

Therefore, all I need to do is to solve problem (25.2). The lemma above holds for any dimension k.
From now on, however, I will stick to the case k = 3, i.e., I will consider our familiar Euclidian space.

To find a solution to (25.2), I first will find the fundamental solution to the three dimensional wave
equation. This solution, by definition, solves problem (25.2) with h replaced by δ(x), which is three
dimensional delta-function, and which models an unit impulse (disturbance) applied at the point 0.
To do this I will use a three dimensional Fourier transform, which is defined for any f(x), x ∈ R3 as

f̂(k) =
1

(
√
2π)3

˚
R3

f(x)e−ik·x dx,

where k ·x = k1x1+ k2x2+ k3x3 in the usual scalar product. The inverse Fourier transform is defined
in a similar way with minus replaced by the plus. Denoting v̂ the Fourier transform of my unknown
function, I get, similarly to one dimensional case

v̂tt = −c2|k|2v̂, v̂(0) = 0, v̂t(0) =
1

(
√
2π)3

,

where
|k|2 = k · k = k21 + k22 + k23

is the usual Euclidian norm. Solving this simple ODE I find that

v̂(t,k) =
1

(
√
2π)3c|k|

sin(ct|k|).

Hence my solution is given by

v(t,x) =
1

8π3c

˚
R3

sin(ct|k|)eik·x dk

|k|
.

To evaluate this integral I switch to spherical coordinates, chosen such that polar axis coincides with
the direction of vector x. My spherical coordinates are k = |k|, θ, φ. I also denote |x| = r. I have,
since k · x = kr cosφ, due to the choice of the polar axis. Hence my integral is now

v(t,x) =
1

8π3c

ˆ 2π

0

ˆ π

0

ˆ ∞

0
sin(ctk)eikr cosφk2 sinφ dk dφdθ.

Evaluating the integral for θ and φ, I find (left as an exercise)

v(t,x) =
1

2π2cr

ˆ ∞

0
sin kct sin kr dk.
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The last integral should be understood in terms of generalizer functions and the inverse Fourier
transform. Using the complex exponent to represent sines I end up with

v(t,x) =
1

8π2cr

ˆ
R

(
eik(ct−r) − eik(ct+r)

)
dk =

1

4πcr
(δ(ct− r)− δ(ct+ r)) .

I am looking only in the future t > 0, and hence δ(ct+ r) = 0. Finally, I get

δ(ct− r)

4πcr

is the fundament solution to the three dimensional heat equation. By a translation argument I get
that if my initial velocity would be

vt(0,x) = δ(x− ξ),

then my solution is

K(t,x, ξ) =
δ(ct− |x− ξ|)
4πc|x− ξ|

.

Thus the fundamental solution is a traveling wave, initially concentrated at ξ and afterwards on

∂Bct(ξ) = {x : |x− ξ| = ct},

which is the boundary of the ball with the center at ξ and radius ct. This means, among other things,
that the wave originates at time t = 0 at the point ξ will be felt at the point η only at the time
|η − ξ|/c, which is called the strong Huygen’s principle and gives a mathematical explanation why
sharp signals propagate from a point source. Using the superposition principle I can represent the
sought solution to (25.2) as

v(t,x) =

˚
R3

K(t,x, ξ)h(ξ) dξ.

The last integral in spherical coordinates takes the form

v(t,x) =

ˆ ∞

0

δ(ct− r)

4πcr

ˆ 2π

0

ˆ π

0
h(r, θ, φ) dφdθ dr.

The double integral inside is the integral over the surface of the sphere of radius r with the center at
the point x: ˆ 2π

0

ˆ π

0
h(r, θ, φ) dφ dθ =

¨
∂Br(x)

h(σ) dσ,

therefore, using the main property of the delta function I finally get

Theorem 25.3 (Kirchhoff’s formula). The unique solution to the problem (25.1) with k = 3 is given
by

u(t,x) = th+
∂

∂t
(tg) ,

where f is the average value of function f over the sphere of radius ct centered at x,

f(t,x) =
1

4πc2t2

¨
∂Bct(x)

f(σ) dσ.
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Kirchhoff’s formula also emphasizes the strong Huygen’s principle. To see this (see the figure)
assume that the initial disturbance h has a small compact support (that means that it is nonzero only
for some small region U ⊆ R3). I am interested in observing the signal at the point x. Initially, for
small t1 the sphere ∂Bct1 will not touch U and hence there will no signal at x. At some time t2 finally
the sphere will touch U , and this means that I hear the signal. I continue to experience the signal at
x up to the time t3, when the whole domain U will be inside Bct3 . And since I am integrating over
the surface of my ball, after that time, for any t > t3, I will have no indication of the signal at x. In
other words, the traveling wave in three dimensions has both the leading and the trailing edges sharp.

Figure 1: The spread of waves in three (left) and two (right) dimensional spaces. On the left I integrate
over the surface of my ball, and on the right I integrate over the whole shaded area

Now I will use the method of descent to obtain the explicit solution in the case R2. The key idea
is to consider the problem

utt = c2∆u, x ∈ R2, ut(0,x) = h(x)

as three dimensional and write the points inR3 as (x, x3) and set h(x, x3) = h(x). Then by Kirchhoff’s
formula the solution is given by

U(t,x, x3) =
1

4πc2t

¨
∂Bct(x,x3)

h(σ) dσ.

I claim that this solution is independent of x3 and hence gives me the solution to the two-dimensional
problem for any choice of x3, for example, x3 = 0. Indeed, I have that my surface consists of two
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hemispheres defined explicitly as

ξ3 = x3 ±
√

c2t2 − r2 = F±(ξ), r2 = (ξ1 − x1)
2 + (ξ2 − x2)

2.

Taking integral by any of these hemispheres and using the fact that h does not depend on x3 I get

u(t,x) =
1

4πc2t

¨
∂Bct(x,x3)

h(σ) dσ

=
1

2πc2t

¨
Bct(x)

h(ξ)
√

1 + |(∂ξ1F±)2 + (∂ξ2F±)|2 dξ

=
1

2πc2t

¨
Bct(x)

h(ξ) dξ√
c2t2 − |x− ξ|2

.

This yields

Theorem 25.4 (Poisson’s formula). The unique solution to the problem (25.1) with k = 2 is given by

u(t,x) =
1

2πc2t

(
∂

∂t

¨
Bct(x)

g(ξ) dξ√
c2t2 − |x− ξ|2

+

¨
Bct(x)

h(ξ) dξ√
c2t2 − |x− ξ|2

)
.

The key fact here is that the integration now not over the surface but over the whole ball itself.
That is, the traveling wave has the sharp leading edge but not sharp trailing edge, our integral will
always be nonzero for any time t > t2 (see the right panel in the figure) since the initial disturbance
will be always inside the ball. The same holds for any space of even dimension. You can observe
actually this effect experimentally by putting a cork on water surface and dropping a stone nearby.
You will see how, after some initial time, the cork will feel the disturbance, but it will not stop and
continue to oscillate later.

Returning back to the quotation for this lecture, in even dimensions there is no possibility to talk
since the sound ways have no sharp trailing edge. In dimension five, however, the conversations can
be made the same way how we talk in our familiar three dimensions.
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