
1 Mathematical models of the population growth

1.1 How many people can the Earth support? (Or a quick refresher on the least
square method)

I would like to start with a very simple and yet interesting example of biological data that cry out for
mathematical analysis. Consider the following numbers:

Year 1900 1920 1930 1940 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
Population 1625 1813 1987 2213 2516 2752 3020 3336 3698 4079 4448 4851 5292 5700 6100

These numbers provide (quite accurate) estimates of the total Earth population during the 20th
century (and I purposely did not include any data on the years after 2000). I can also represent them
graphically, as follows.
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Figure 1: The total world population during the 20th century, millions versus years

Since not every year given a specific value it is very natural to ask the following question: Given
the data, determine some function f , such that f(t) gives the world population at the year t. I can fix
the qualitative form of function f , e.g., straight line, parabola, exponent and so on, which depends on
some free parameters, and determine, given the data, the “best” possible such function (i.e., determine
the actual values of these parameters). This is called approximation, and this is what I will discuss in
some detail.

Let f(t, a1, a2, . . . , am) be a family of functions of a specific form that depend on the parameters
a1, . . . , am. To proceed I need to determine what it means “the best possible such function,” because
different choices are possible. It turns out that one that is working good is to minimize the sum of
squares of deviations of f from the observed values xj , j = 0, . . . , n.

To make this general discussion precise, consider a specific example, e.g.,

f(t, a, b) = at+ b,
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which is the equation of the straight line with parameters a, b. Also consider some abstract data set:

t0 t1 · · · tn
x0 x1 · · · xn

At each point tj the square of the deviation is

(xj − f(tj , a, b))
2,

and therefore my ultimate task is to find the values of a and b that minimize the following sum

g(a, b) =

n∑
j=0

(xj − f(tj , a, b))
2 =

n∑
j=0

(xj − atj − b)2.

To find the minimum of a function, I need to find two partial derivatives

∂g

∂a
(a, b) = −2

n∑
j=0

(xj − atj − b)tj = −2
( n∑
j=0

xjtj − a

n∑
j=0

t2j − b

n∑
j=0

tj

)
,

∂g

∂b
(a, b) = −2

n∑
j=0

(xj − atj − b) = −2
( n∑
j=0

xj − a
n∑

j=0

tj − bn
)
,

and equal them to zero, which yields a linear algebraic system

a

n∑
j=0

t2j + b

n∑
j=0

tj =

n∑
j=0

xjtj ,

a
n∑

j=0

tj + bn =
n∑

j=0

xj ,

which can be readily solved for the unknown a and b.
For example for the data on the world population I find, after some calculations, that

f(t) = −90402 + 48t,

i.e., a = 48 and b = −90402. You can compare the data with the found best linear approximation in
the figure below.

You may see that agreement is not very good, and probably the straight line should be replaced
by something else. It can also be seen by calculating the value of

g(a, b) = 3060000.

It seems that a parabola would approximate the data better:

f(t, a, b, c) = at2 + bt+ c.

Indeed, repeating exactly the same calculations, I will find a system of three linear equations with
three unknowns, which again can be solved by the standard methods. After some calculations (for
which it is probably better to use a computer) I find

f(t) = 0.54t2 − 2047t+ 1954510.
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Figure 2: The total world population during the 20th century, millions versus years, and the best
linear approximation f(t) = 48t− 90402

You can see in the figure that agreement now is quite good, moreover

g(a, b, c) = 47273,

which is significantly better than for the linear case. Now I can use the found formula to interpolate
the data, e.g., find the value f(1910) = 1652. Did I solve my problem? Not really. First, the choice
of parabola was quite arbitrary, maybe a cubic parabola would do better. Second, if I put t = 0
(extrapolate, i.e., go beyond the given range of the data), I get f(0) = 1954510 million people at the
year 0 A.D., which is clearly a ridiculous estimate.
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Figure 3: The total world population during the 20th century, millions versus years, and the best
quadratic approximation f(t) = 0.54t2 − 2047 + 1954510

At this point I would like to stop discussing the data (and the method of least squares, that is used
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to find a best possible f among a given family of functions depending on free parameters) and switch
to the ordinary differential equations (ODE).

1.2 ODE models of population growth

The usual process of mathematical modeling goes in several stages: First, we start with the situation
at hands and formulate the main features of the considered system (physical, chemical, biological,
etc), which we would like to retain in our mathematical model. At the same stage we disregard many
unimportant for us details. After this first stage we formulate a mathematical model, which is built
on our simplifying assumptions. If we have the model, we can forget about the original system and
perform an analysis of the obtained mathematical problem. Finally, the solutions to this model should
be interpreted in terms of the original system. Of course, the whole process is usually much more
involved, but the outlined above line of reasoning can be found in many real world modeling situations.
I will present a great number of examples in this course.

As a very basic example of the modeling approach, let me introduce the so-called Malthus equation.
A very simple biological process of a population growth is considered. Let N(t) denote the number of
individuals in a given population (for concreteness you can think of a population of bacteria) at the
time moment t. In this course the variable t will almost exclusively denote time. Now I calculate how
the population number changes during a short time interval h. I have

N(t+ h) = N(t) + bhN(t)− dhN(t).

Here I used the fact that the total population at the moment t+h can be found as the total population
at the moment t plus the number of individuals born during time period h minus the number of died
individuals during time period h. b and d are per capita birth and death rates respectively (i.e., the
numbers of births and deaths per one individual per time unit respectively). From the last equality I
find

N(t+ h)−N(t)

h
= (b− d)N(t).

Next, I postulate the existence of the derivative

dN

dt
= lim

h→0

N(t+ h)−N(t)

h
,

assume for simplicity that both b and d are constant, and hence obtain an ordinary differential equation

dN

dt
= (b− d)N,

which is usually called in the biological context the Malthus equation (I will come back to Malthus).
Finally, I rewrite the equation in the form

Ṅ = mN, N(0) = N0, (1.1)

where N(t) is the population size at the time moment t, m is the parameter of the model, m = b− d.
How did Malthus arrived at this mathematical model? Obviously, the process of the population growth
or decline is very intricate, which is subject to many important factors, such as weather, temperature,
diseases, religion and so on. Malthus stated his simplifying assumption that the population growth
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is “geometric,” by this he meant that the population size increases in a geometric progression, which
can be described as the relation N(t+h) = wN(t), where w is the parameter of the geometric growth.
In the terms of the continuous time, this means exactly the equation (1.1). So, he had a simplifying
assumption, and his mathematical model — (1.1). Now I analyze the mathematical model, in this
case I can simply solve it:

N(t) = N0e
mt, (1.2)

which predicts the exponential growth if m > 0. At the same time Malthus argued that the goods
increase in the world linearly. Exponential population growth plus linear increase of food and similar
things together mean, by Malthus, a catastrophe. Here is what Malthus wrote

A man who is born into a world already possessed, if he cannot get subsistence from his parents

on whom he has a just demand, and if the society do not want his labour, has no claim of right to

the smallest portion of food, and, in fact, has no business to be where he is. At nature’s mighty

feast there is no vacant cover for him. She tells him to be gone, and will quickly execute her own

orders, if he does not work upon the compassion of some of her guests. If these guests get up and

make room for him, other intruders immediately appear demanding the same favour. The report

of a provision for all that come, fills the hall with numerous claimants. The order and harmony of

the feast is disturbed, the plenty that before reigned is changed into scarcity; and the happiness of

the guests is destroyed by the spectacle of misery and dependence in every part of the hall, and

by the clamorous importunity of those, who are justly enraged at not finding the provision which

they had been taught to expect. The guests learn too late their error, in counter-acting those strict

orders to all intruders, issued by the great mistress of the feast, who, wishing that all guests should

have plenty, and knowing she could not provide for unlimited numbers, humanely refused to admit

fresh comers when her table was already full.

Thomas Robert Malthus (13 February 1766 — 23 December 1834)
An Essay on the Principle of Population, Second edition

(this quotation was removed from the text in the subsequent editions)

It is interesting to note that actually Malthus was wrong. Ok, I hope that it is not surprising at
this point that Malthus was wrong, given the number of the simplifying assumptions put in the model,
but what I call “interesting” is that the human population actually grew faster than the exponential
growth predicts. Consider this in some details.

First, I would like to see how my exponential function approximates the data I have. In my case
I have, recall the least square method I used in the first subsection in this lecture,

f(t, a, b) = aebt.

However, (the student must convince himself that my statement is correct) the system for the partial
derivatives

∂g

∂a
= 0,

∂g

∂b
= 0

is no longer linear! and hence cannot be easily solved without applying specific numerical procedures.
One can avoid this obstacle by noticing that log f is a linear function of a and b:

log f(t, a, b) = log a+ bt = A+ bt.
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Figure 4: The total world population during the 20th century, millions versus years, in logarithmic
coordinates

This transformation is also often useful for presenting the data in logarithmic coordinates, see the
figure. Anyway, I find that

f(t, a, b) = 1.15× 10−9e0.01462t, g(a, b) = 1600000,

which is better than the linear approximation but worth than the quadratic one, see the graphical
comparison.
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Figure 5: The total world population during the 20th century, millions versus years, and the best
exponential approximation of the data, in logarithmic coordinates

If I consider available estimates of the world population for the last 2000 years, not just a century,
the disagreement with the exponential function is even worth. Note that I again use the logarithmic
coordinates to plot the population numbers. I.e., instead of N(t) I actually plotted logN(t). If the
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Figure 6: World population versus time, in millions, in logarithmic coordinates

population growth was exponential, given by N(t) = N0e
mt, then in the logarithmic coordinates I

would get the straight line. It turns out actually that a much better fit can be obtained if I assume
that the function N has the hyperbolic form

N(t) =
C

T − t
, (1.3)

where C ≈ 2× 1011, T ≈ 2026 can be found by the same method of least squares (but here one must
to solve a nonlinear system of equations). This formula is very precise if I consider only 400-500 years
of the population estimates up to 1960. Note that when t → T , the population blows up.

However, if I consider the population growth only during the last 100 years or so (the original
data plus the last 15 years), I will see that the population actually stabilizes. And this conclusion
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Figure 7: World population versus time, in millions, for the last 65 years
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should be quite obvious from a common sense. Therefore, Malthus’ interpretation of his mathematical
model (1.1) and its solutions is clearly wrong; however, even from such a simple and unrealistic
mathematical model can be made a very far reaching conclusion, which was made by Charles Darwin,
who put together the underlying law of the geometric (or exponential) growth and clear impossibility
of the infinite human population. Darwin wrote:

In October 1838... I happened to read for amusement Malthus on Population... it at once struck me
that under these circumstances favourable variations would tend to be preserved, and unfavourable
ones to be destroyed. The result of this would be the formation of new species.

Hence even very simple models can lead to very important and nontrivial conclusions!
The fact that no population can grow to infinity should be included in our mathematical models

if we would like to consider predictions of the population size in the future times.
Very general, I can assume that the law of growth has the general form

Ṅ = NF (N),

where F (N) is some function, which has to be negative for sufficiently large values of N (do you see
why it is important?). If this function is smooth enough, I can represent it with the help of the Taylor
formula around N = 0:

F (N) = F (0) +
F ′(0)

1!
N +

F ′′(0)

2!
N2 + o(N2).

Here the notation f(N) = o(g(N)) when means that

lim
N→0

f(N)

g(N)
= 0,

and I also assume that this term is negligible when N → ∞.
Note that if in the Taylor formula I keep only the constant term, I obtain exactly the Malthus

equation
Ṅ = mN,

where m = F (0). If I keep two terms, I obtain the equation

Ṅ = NF (N) = N
(
F (0) + F ′(0)N

)
= mN

(
1− N

K

)
,

where I used another parametrization (do you see how F (0) and F ′(0) are connected to m and K?),
which is the logistic equation, and the parameter K is the carrying capacity. Therefore, I presented a
mechanistic argument in favor of the logistic equation as the simplest first order differential equation
describing the population growth apart of the Malthus equation. I hope that at this point you already
know that, given N(0) = N0, the logistic equation has the solution

N(t) =
N0K

N0 + (K −N0)e−mt
→ K, t → ∞.

Again, using the available data and the method of the least squares, I can estimate the three parameters
of the logistic curve, and find, e.g., that K = 11740, that is, the world population will stabilize at
approximately 12 billion people, see the comparison of the data with the best logistic fit in the figure
below.
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Figure 8: World population versus time, in millions, for the last 65 years and the best logistic fit
together with prediction of the increase of the world population

There are a great number of different population models in the literature. To give just one more
example, I can consider the model of the form

Ṅ = mN

(
1− N

K
− b

1 + aN

)
,

where in addition to the usual logistic equation, another mortality term is added, and a and b are
positive parameters. This last equation actually describes an important ecological phenomenon of
Allee’s effect, which states that the maximal per capita population growth occurs at some intermediate
values of N , whereas for both large and small values of N it becomes smaller or even probably negative
(for the large values we have, as we discussed, depletion of resources, and for small values of N you
can think of the chance of finding a mate).

Anyway, I hope at this point it is clear that it would be beneficial to treat first order ODE, since
they can describe, as a first approximation, the population growth. I will also use the mathematical
theory of first order ODE (which is not very complex, let me put it this way) to introduce the language
of nonlinear dynamics, which we will use throughout the course. Finally, you already noted that our
models depend on parameters, and if the parameters change, sometimes sudden changes in the system
behavior occur. These changes are called bifurcations, and I will also introduce some bifurcation
analysis, which will be very handy the whole semester.
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