
11 Ecological interactions

11.1 General Lotka–Volterra model on a plane and types of ecological interactions

Finally I am in a position to start discussion of simple mathematical models of species interactions in
a uniform fashion. For this let me start the discussion with the general form of the Lotka–Volterra
model for two interacting species. Let N1(t) and N2(t) denote the species population sizes at time t,
and all the interactions are modeled using the law of mass action. This implies that I can write

Ṅ1 = N1(b1 + a11N1 + a12N2),

Ṅ2 = N2(b2 + a21N1 + a22N2),

where b1, b2, a11, a12, a21, a22 are constants (non necessarily positive). The constants b1, b2 describe
the Malthusian growth (bi > 0) or decay (bi < 0), the constants a11 and a12 refer to the intraspecific
competition in the case aii < 0, and constants a12 and a21 describe the species interactions (interspecific
competitions in a broad sense). In particular, two species can be in the following relationships:

• Neutralism. This corresponds to the case a12 = a21 = 0, i.e., there is no direct influence of any
of the species on the other one.

• Amensalism is an interaction when one of the species clearly has a negative effect on another
without getting any significant influence back. For the parameters of the system this means
that, say, a12 < 0 and a21 = 0.

• Commensalism. Here one species benefits without affecting the other. It implies that, e.g.,
a12 > 0 and a21 = 0 (in this case species 1 is a commensal, the one that benefits, and species 2
is a host).

• Competition is a mutually detrimental interaction, a12 < 0, a21 < 0.

• Antagonism. In antagonism one species benefits at the expense of the other, a12 < 0, a21 > 0.
Different terms can be used in this case, e.g., consumer–resource interaction, or host–parasite
interaction, or prey–predator interaction.

• Mutualism leads to mutual benefit of interacting species (symbiosis, which is sometimes consid-
ered as a synonym, is a more general term, which may refer to any mutual interaction of two
species), and hence a12 > 0, a21 > 0.

Sometimes matrix A = (aij)2×2 of the parameters describing the intra- and interspecific interac-
tions is called the interaction matrix. I already discussed at length the predator–prey Lotka–Volterra
model, in which, b1 > 0, b2 < 0, a11 = a22 = 0, a12 < 0, a21 > 0. In this lecture I will look at some
other interesting cases. It should be clear how to extend the system for the case of three, four, or
more interacting species.
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11.2 Lotka–Volterra predator–prey model with intraspecific competition

Recall that Lotka–Volterra predator–prey model that I analyzed is structurally unstable, i.e., a small
perturbation of this system would lead to a topologically nonequivalent system (this phrase means
“would lead to a system that possesses a topologically nonequivalent phase portrait, no matter how
small perturbation is”). Consider a modification of this model that includes both prey and predator
intraspecific competitions:

Ṅ = aN

(
1− N

K1

)
− bNP,

Ṗ = −dP

(
1 +

P

K2

)
+ cNP,

where a, b, c, d,K1,K2 > 0 and N(t) and P (t) are prey and predator populations at time t respectively
(actually, the predator intraspecific competition is redundant here, the same result is obtained putting
formally K2 = ∞). By switching to non-dimensional variable, I find that

ẋ = x(1− αx− y),

ẏ = y(−γ − βy + x),
(1)

where

N(t) =
ax(τ)

c
, P (t) =

ay(τ)

b
, τ = at, γ =

d

a
, α =

a

cK1
, β =

d

aK2
.

For the biologically motivated models the phase space is R2
+ = {(x, y) : x ≥ 0, y ≥ 0}, therefore I do

not consider the orbit structure in other parts of the plane. An important point, however, is to show
that the chosen biologically realistic state space is positively invariant, i.e., if the initial conditions
belong to our state space, then the positive semi-orbit starting at this point will stay in the phase
space for any t → +∞ (I can similarly define a negatively invariant set). In my case it is a simple
matter since the axis are invariant and consist of the orbits. This follows from the fact that x = 0 is a
solution (plug it in the first equation) and y = 0 is a solution (plug it in the second equation). Since
the axis are composed of the orbits and other orbits cannot intersect them I can conclude that R2

+ is
both positively and negatively invariant, and hence simply invariant.

In R2
+ system (1) can have up to three equilibria:

x̂0 = (0, 0), x̂1 =

(
1

α
, 0

)
, x̂2 =

(
γ + β

1 + αβ
,
1− γα

1 + αβ

)
,

and x̂2 ∈ R2
+ only if γα < 1.

The Jacobi matrix of (1) has the form

f ′(x, y) =

[
1− y − 2αx −x

y −γ − 2βy + x

]
.

By analyzing eigenvalues of the Jacobi matrix, I find that x̂0 is always a saddle point, with x-axis
being the unstable manifold, and y-axis being the stable manifold. For x̂1 one has

f ′(x̂1) =

−1 − 1

α

0
1− γα

α

 ,
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therefore this point is a saddle if αγ < 1 and stable node if αγ > 1, for αγ = 1 I have one eigenvalue
equal to zero, and therefore a bifurcation occurs, the exact type of this bifurcation will be determineed
by looking at the third equilibrium. Note that when x̂1 is a saddle then the stable manifolds are on
the x-axis, and the unstable manifold is tangent to straight line with the direction (1, γα − 1 − α),
i.e., has a negative slope.

Now assume that x̂2 = (x̂2, ŷ2) be the coordinates of the third equilibrium in case αγ < 1. That
is, they solve the system

αx+ y = 1,

x− βy = γ,

and I know that x̂2 > 0, ŷ2 > 0. Using the fact that, e.g.,

∂f1
∂x

= (1− αx− y)− αx,

I find that
trf ′(x̂2) = −αx̂2 − βŷ2 < 0,

and
detf ′(x̂2) = x̂2ŷ2(1 + αβ) > 0,

which implies that x̂2 is asymptotically stable and either stable node or stable focus depending on the
exact parameter values. I also notice that if αγ = 1 then the coordinates of x̂2 are precisely (α−1, 0),
i.e., they coincide with the coordinates of x̂1. This implies, given that both x̂1 and x̂2 exist for any
parameter values (but not always in R2

+) that the local bifurcation that occurs for αγ = 1 is exactly
the transcritical bifurcation, at which these two equilibria collide and exchange the stability properties.

To figure out the global behavior of the orbits I need to look at the mutual positioning of the
null-clines, which are given here as

x = 0, y = 0, l1 = {(x, y) : y = 1− αx}, l2 = {(x, y) : βy = x− γ},

where I named only those different from the coordinate axis. I will use the proposition from the
previous lecture, in which it was stated that the monotone orbits in a bounded open set either approach
the boundary of this set or converge to an equilibrium.

Consider first αγ > 1. l1 has a negative slope and intersect x-axis at the equilibrium with x = 1/α,
l2 has a positive slope and intersects x-axis at x = γ > 1/α due to the assumption. Therefore these
null-clines divide R2

+ into three sets, let me call them U1, U2, U3 starting from left to right (see the
figure). Assume that x0 ∈ U3. According to the proposition the orbit γ(x0) has to cross l2, because in
this set ẋ < 0 and there are no equilibria to converge to. In U2 I have that ẋ < 0, ẏ < 0, therefore the
only two possibilities are to converge to x̂1 or to cross l1. Finally, in U2 there is no other option for the
orbits other than converge to x̂1, and I conclude that for the case αγ > 1 the equilibrium x̂1 is globally
asymptotically stable, meaning that for almost all initial conditions from R2

+ I have x(t;x0) → x̂1.
Now let αγ < 1. Then l1 and l2 intersect at x̂2, and R2

+ is divided into four sets U1, U2, U3, U4

going in a clockwise fashion. Now I can argue that the orbits either approach x̂2 or cross boundaries
of our sets in the order U4 → U3 → U2 → U1 → U4. This means that there is a theoretical possibility
to have a closed orbits that corresponds, as I discussed earlier for Lotka–Volterra model, to periodic
oscillations in prey and predator populations. At this point I am just going to state that there are
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Figure 1: Topologically non-equivalent phase portraits of the prey–predator model with intraspecific
competition. The left one corresponds to αγ > 1, and the right one corresponds to the case αγ < 1

no closed orbits in this system, a proof will be given later. Therefore, I conclude that in case αγ < 1
equilibrium x̂2 is globally asymptotically stable.

As a general conclusion I have that system (1) allows two structurally stable topologically non-
equivalent phase portraits, the transcritical bifurcation occurs when αγ = 1, and each of these pa-
rameters can be taken as a bifurcation parameter. Parameter β does not influence the topological
picture.

In biological terms I have two very different outcomes:

• If αγ > 1, i.e., when
d

cK1
> 1,

which corresponds to a high mortality rate for the predator, or a low carrying capacity for the
prey, or a low effectiveness of the predator to transform prey biomass into predator biomass,
then the predator goes extinct whereas the prey population stabilizes at N(t) = K1.

• If αγ < 1, i.e., when
d

cK1
< 1,

which means that either prey has a large carrying capacity, or the predator has a low mortality
rate, or a high effectiveness in prey consumption, then the prey and predator coexist at the
equilibrium x̂2, whose coordinates should be written in the original dimensional parameters.

Finally, it is not necessary for this example, but usually very useful to do is to sketch in the
parameter space the domains of topologically non-equivalent behaviors. Here is how it look for our
case, where β does not change anything, and hence there are only two parameters changes in which
lead to bifurcations:
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Figure 2: Parametric portrait of the predator–prey system with intraspecific competition. There is
only one bifurcation boundary on which transcritical bifurcation of x̂1 occurs

The parametric portrait as shown above together with phase portraits for each domain in the
parametric portrait as shown in the previous figure constitute together a bifurcation diagram of the
system, obtaining which is the ultimate goal of analysis of nonlinear parameter dependent autonomous
ODE systems. Unfortunately in many many cases, only partial information about the corresponding
bifurcation diagram is available.
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