
4.3 Preferential attachment model

Both inhomogeneous random graphs and configuration model are static in the sense that, given the
sequences w or d, we can produce a realization of a random graph with the required degree distribution.
They do not explain why this degree distribution appear, what are the internal laws that force the degree
distribution to take the required form. In this section I will study a model that is actually given in
the form os a random graph process, which results in the power law degree distribution. I start with a
heuristic derivation of this law in terms of number of species per genera, that was originally analyzed by
Yule2.

4.3.1 A heuristic derivation of Yule’s distribution

A genus is a taxonomic unit in biology that consists of several species. If we have k species in some genus,
then at the speciation even one of them can become 2, hence k + 1 species within the same genera, or, a
rarer event, a completely new species in a completely new genus appear (say, once per every m speciation
events). Let the unit of time in this model be exactly the event of appearance of a new genus, and let
nk,t denote the number of genera with k species when there at the time moment t, that is when there
are t genera, t =

∑∞
k=1 nk,t. Every time unite there are 30 speciation events that lead to an increase of

some genus by 1 and one speciation event that leads to a new genus. It is reasonable to assume that the
probability that a speciation even happens in a genus with k species is proportional to k:

km∑∞
k=1 knk,t

=
km

(m+ 1)t
,

where the factor m comes from the fact that m such events happens independently. Now we can produce
simple bookkeeping

nk,t+1 = nk,t −
km

m+ 1

nk,t
t

+
(k − 1)m

m+ 1

nk−1,t

t
= nk,t +

m

m+ 1

(
(k − 1)

nk−1,t

t
− k

nk,t
t

)
,

which simply counts how the number of genera with k species can change during one time unit. The last
equality holds for any k except for k = 1, where we have

n1,t+1 = n1,t + 1− m

m+ 1

n1,t
t
.

Now I assume (this requires proof, of course) that there are limits

lim
t→∞

nk,t
t

= pk,

independent of t. I also have

lim
t→∞

(nk,t+1 − nk,t) = lim
t→∞

(
t
nk,t+1

t+ 1
− t

nk,t
t

+
nk,t+1

t+ 1

)
= pk,

which implies that for the sequence (pk)k≥1, I find

p1 = 1− m

m+ 1
p1 =⇒ p1 =

m+ 1

2m+ 1
,

and

pk =
m

m+ 1

(
(k − 1)pk−1 − kpk

)
=⇒ pk =

k − 1

1 + k + 1/m
pk−1 .

2Yule, G. U. (1925). A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FRS. Philosophical
Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character, 21-87.
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This yields that

pk =
(k − 1)(k − 2) . . . 1

(k + 1 + 1/m)(k + 1/m) . . . (3 + 1/m)
p1

=

(
1 +

1

m

)
(k − 1) . . . 1

(k + 1 + 1/m) . . . (2 + 1/m)

=

(
1 +

1

m

)
Γ(k)Γ(2 + 1/m)

Γ(2 + k + 1/m)
,

where

Γ(x) =

∫ ∞

0

tx−1e−1dt

is the gamma-function, which generalized the notion of the factorial for non-integer values.

Problem 4.14. Show that
Γ(x) = (x− 1)Γ(x− 1), Γ(1) = 1.

Therefore
Γ(k + 1) = k!

for integer k.

Euler’s beta function is defined

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

and hence I finally get my solution

pk =

(
1 +

1

m

)
B(k, 2 + 1/m).

For large values of x Stirling’s approximation

Γ(x) ∼
√
2πe−xxx−1/2

can be used to show that
B(x, y) ∼ x−yΓ(y),

that is it has a power law tail with exponent y.
This finishes the proof that our model of speciation produces a power law distribution with exponent

α = 2 +
1

m
.

Note that the main component that allowed to get a power law distribution was the principle that
in a genus with many species it is much probable to have a speciation event. This principle of “rich get
richer” was also used by Barabási and Albert3, which (again in a heuristic manner) I will present next.

3Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509-512.
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4.3.2 Preferential attachment model for the WWW

Here I present a heuristic derivation of the power law distribution via the so-called principle of preferential
attachment (in this and the following subsections I follow mainly this paper4). Consider the World Wide
Web, with can be represented as a directed graph, where the vertices correspond to the web pages and
there is an edge from vertex i to vertex j if there is a hyperlink from page i to page j. Now each page can
be characterized by the number of hyperlinks to this page, in the graph theoretic language this number
is called the in-degree. Therefore, we can talk about the in-degree distribution and it turns out that this
distribution can be closely approximated by a power law. Assume that a new web page is created. It is
reasonable to expect that this new page will link to some popular web pages, i.e., the chance that a new
web page is connected to a web-page with in-degree k should be proportional to k, and this is what is
usually called the preferential attachment principle.

Here is an informal argument to formalize the preferential attachment. Let xj(t) be the number of
web pages with in-degree j when there are t pages total. Then, for j ≥ 1 the probability that xj(t)
increases is simply

α
xj−1(t)

t
+ (1− α)

(j − 1)xj−1(t)

t
,

if we assume that new web page appears with only one link to existing pages, and this one link is
chosen randomly among all t pages with probability α and with probability 1− α this one link is chosen
randomly but with probabilities proportional to the existing in-degrees. Similarly, the probability that
xj(t) decreases is

α
xj(t)

t
+ (1− α)

jxj(t)

t
.

Therefore, for j ≥ 1,

ẋj =
α(xj−1 − xj) + (1− α)

(
(j − 1)xj−1 − jxj

)
t

.

The case j = 0 should be treated differently since each new web page has in-degree 0, and therefore

ẋ0 = 1− αx0
t
.

We obtained a non-autonomous system of linear ordinary differential equations. Since time unit in the
model is appearance of one new web page, we can assume that the limiting stationary state should have
the form

xj(t) = cjt,

where cj is a constant, which specifies which fraction of the total number of pages the pages with in-degree
j constitute.

We have for x0

ẋ0 = c0 = 1− αc0 =⇒ c0 =
1

1 + α
.

For general j
cj(1 + α+ j(1− α)) = cj−1(α+ (j − 1)(1− α)).

We can determine cj exactly using the above recurrence, but for our goal it is enough to note that

cj
cj−1

= 1− 2− α

1 + α+ j(1− α)
∼ 1−

(
2− α

1− α

)
1

j
.

This yields that asymptotically

cj ∼ Cj−
2−α
1−α ,

4Mitzenmacher, M. (2004). A brief history of generative models for power law and lognormal distributions. Internet
mathematics, 1(2), 226-251.
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for some constant C. To see this, note that the last expression means

cj
cj−1

∼
(
j − 1

j

) 2−α
1−α

∼ 1−
(
2− α

1− α

)
1

j
,

as required.

4.3.3 Conditional expectations

To rigorously analyze preferential attachment model I will need the notions of conditional expectation.
In this section I discuss the necessary theory. Actually, we will need only one small instance of this

notion, but it is very advisable, going into research literature on the random graphs, to be aware of the
conditional expectation and its properties.

Recall that with a random experiment associated a probability space (Ω,F ,P), here Ω is a finite set
of outcomes, F is an algebra of events, and P is a probability measure. We discussed Ω and P, but almost
nothing was said about F . The notion of algebra means that if A,B ∈ F then A∩B,A∪B,A \B,B \A
are also in F , and also Ω ∈ F . Here are some examples of algebras on Ω:

1. {∅,Ω};

2. {∅, A,A,Ω};

3. The set of all subsets of Ω, this is sometimes called the power set and denoted 2Ω.

Problem 4.15. Can you construct an algebra that includes two events A and B such that B ̸= A?

Consider a decomposition D of Ω, i.e., a set of events D = {D1, . . . , Dn} such that Dj are pairwise
disjoint, all together they sum to Ω = D1 ∪ . . . ∪ Dn, and P(Dj) > 0. Events Dj are sometimes called
atoms of D for all j. If we consider the unions of the sets in D , the resulting collection of sets, together
with the empty set, forms an algebra (why?), which is called the algebra induced by D and denoted α(D)
(for example, the algebra from example 2 above induced by decomposition {A,A}; which decomposition
induce algebra in point 3?). Hence, if we have a decomposition D , then we have an algebra associated
with it. The converse is also true. Let B be an algebra of subsets of finite sample space Ω. Then there
exists a unique decomposition D , whose atoms are the elements of B such that B = α(D) (prove it. A
good idea is to start thinking about the the problem above and the decomposition that can generate an
algebra containing two sets A and B).

Let D1 and D2 be two decompositions. We say that D2 is finer than D1 and denote D1 4 D2 if
α(D1) ⊆ α(D2).

Let (Ω,F ,P) be a probability space, and let D be a decomposition such that Di ∈ F for each i. Let
A ∈ F be an event. Then we can consider conditional probabilities P(A | Di), i = 1, . . . , n, of the event
A with respect to events Di. Now consider a random variable X, which takes the values P(A | Di) with
probabilities P(Di). Formally,

X(ω) =

n∑
i=1

P(A | Di)1Di(ω).

This random variable is denoted as P(A | D) to emphasize that it is associated with the decomposition
D and called conditional probability with respect to decomposition D .

Problem 4.16. Show that if A ∩B = ∅, then

P(A ∪B | D) = P(A | D) + P(B | D).

Also show that if D = {Ω} (the trivial decomposition) then

P(A | {Ω}) = P(A).
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Show that using the notion of the conditional probability with respect to a decomposition, the formula
of total probability can be written as

E(P(A | D)) = P(A).

Now assume that we start with a random variable Y that takes values y1, . . . , yn:

Y (ω) =
n∑

i=1

yi 1Di(ω),

where Di = {ω : Y (ω) = yi} is the decomposition induced by the random variable Y , which I will denote
as DY (you should actually prove that for any surjective function f : V → W the operation f−1 defined
as f−1(w) = {v ∈ V : f(v) = w} induces a decomposition of the set V ). Hence, we can actually consider
the conditional probability with respect to random variable Y :

P(A | Y ) := P(A | DY ),

where D is the decomposition induced by Y .
By analogy we can consider

P(A | Y1, . . . , Ym),

as the conditional probability with respect to decomposition induced by the random variables Y1, . . . , Ym.

Problem 4.17. Show that if X and Y are two independent identically distributed random variables,
each taking values 0 and 1 with probabilities q and p, then

P(X + Y = k | Y ) =


q(1− Y ), k = 0,

p(1− Y ) + qY, k = 1,

pY, k = 2.

Recall that if we are given a random variable

X(ω) =
k∑

i=1

xi 1Ai(ω),

then its expectation is

EX =
k∑

i=1

xi P(Ai).

Here Ai = {ω ∈ Ω: X(ω) = xi}. If, additionally, a decomposition D = {D1, . . . , Dn} is given, then it is
natural to define the conditional expectation with respect to decomposition D :

E(X | D) :=
k∑

i=1

xi P(Ai | D) =

=
k∑

i=1

xi

n∑
j=1

P(Ai | Dj)1Dj =

=

n∑
j=1

1Dj

k∑
i=1

xi P(Ai | Dj).

67



According to this definition the conditional expectation E(X | D) is a random variable, which at the

sample points belonging to the set Dj takes the values
∑k

i=1 xi P(Ai | Dj). This shows that we could
have defined first the conditional expectations with respect to Dj :

E(X | Dj) =
k∑

i=1

xi P(Ai | Dj) =
E(X 1Dj )

P(Dj)
,

and then define

E(X | D)(ω) :=
n∑

j=1

E(X | Dj)1Dj (ω).

Problem 4.18. Show that

1. E(aX + bY | D) = aE(X | D) + bE(Y | D), a, b ∈ R.

2. E(X | Ω) = E(X).

3. E(C | D) = C, C ∈ R.

4. If X = 1A then E(X | D) = P(A | D).

5. E(E(X | D)) = EX.

Similarly to the conditional probability with respect to decomposition D , if D is induced by the
random variables Y1, . . . , Ym, then we have the conditional expectation

E(X | Y1, . . . , Ym) := E(X | DY1,...,Ym)

with respect to the random variables Y1, . . . , Ym.
Sometimes the conditional expectation with respect to a random variable is defined in the following

way. Consider two random variables X and Y , and their probability mass function

pXY (xi, yj) = pij := P(X = xi, Y = yj), i = 1, . . . , k , j = 1 . . . , n.

Then the marginal distributions are

pX(xi) := P(X = xi) =
n∑

j=1

pij , pY (yj) := P(Y = yj) =
k∑

i=1

pij .

The conditional probability mass function of X given Y = yj is defined as

pX|Y (xi | yj) = P(X = xi | Y = yj) =
pij

pY (yj)
.

Therefore the conditional expectation E(X | Y = yj) =
∑k

i=1 xipX|Y (xi | yj). Note that we can write the
last formula as

u(y) = E(X | Y = y) =
k∑

i=1

xipX|Y (xi | y).

If y = Y then we obtain the random variable u(Y ), which, by definition, is the conational expectation of
X given Y , written E(X | Y ).

A random variable X is called D-measurable if DX 4 D , i.e., if it can be represented as

X =
n∑

i=1

xi 1Di ,

where some xi can be equal.
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Problem 4.19. For which random variable X, it is Ω-measurable?

Obviously, any X is DX -measurable.

Problem 4.20. Show that if X is D-measurable, then

E(Y X | D) = X E(Y | D).

Problem 4.21. Prove that if D1 and D2 are two decompositions, such that D1 4 D2, then

E(E(X | D2) | D1) = E(X | D1).

Note that the special case is
E(E(X | Y1, Y2) | Y1) = E(X | Y1).

Problem 4.22. Show that
E(X | Y ) = EX,

if X and Y are independent. Also show
E(X | X) = X.

Note that the first equality can be generalized in the following way: We say that X is independent of D
if X and 1Di are independent for any i, then

E(X | D) = X.

Problem 4.23. Let X and Y be i.i.d. r.v., each of which takes values 0 and 1 with probabilities q and
p. Show that

E(X + Y | Y ) = p+ Y.

To conclude, in literature the notion of the conditional expectation with respect to sigma algebra is
used. For us sigma algebra is the same as algebra (as far as we are dealing only with finite sample spaces).
Recall that for each decomposition D there exists algebra B = α(D). And the conditional expectation
with respect to algebra B should be understood as

E(X | B) = E(X | D).

Problem 4.24. Let X and Y be random variables. Show that inff E (X − f(Y ))2 is attained for f(Y ) =
E(X | Y ). This means that conditional expectation of X given Y is the best mean square estimator of
X in terms of Y .

4.3.4 Preferential attachment model and its rigorous analysis

Preferential attachment model

The first difference with the random graph models which we considered5 before is that now we will study
a random graph process: i.e., a sequence of random graphs indexed by a “time” variable t. I will denote
this sequence (Gt)t∈N. Explicit evolution of the random graph with time is therefore included in the
definition of the model. Sometimes such models of random graphs are called on-line, opposite to the
off-line or static random graphs such as Erdős–Rényi model, the configuration model, or the small world
model.

Hence we are studying the sequence G0, G1, . . . , Gt, . . . To define the model we need to specify the
rules 1) how this sequence starts, and 2) how we can obtain Gt+1 provided that Gt is given. Let G0 be an

5Jordan, Jonathan. “The degree sequences and spectra of scale-free random graphs.” Random Structures & Algorithms
29.2 (2006): 226-242.
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initial arbitrary finite graph with n0 vertices and e0 edges. If we are given Gt, then Gt+1 is constructed
by adding one additional vertex v to the graph and connecting it to m vertices from Gt, the probability
of connection being proportional to the degrees of vertices in Gt. This is what is called the preferential
attachment. Formally, the probability to connect to vertex w is given by

degw∑
u∈V (Gt)

deg u
,

and all the connections are independent. Note that this means that it is possible to have multiple edges.
We have that

|V (Gt)| = n0 + t, |E(Gt)| = mt+ e0,

therefore ∑
u∈V (Gt)

deg u = 2(mt+ e0) = ctt,

where ct → 2m as t→ ∞.
This description fully specifies the model, which has two parameters: initial graph G0 and the number

m of connections of the new vertex. It turns out that the initial graph is not important for the major
conclusion, hence I will use only the parameter m to denote the model: G(m) = (Gk)k≥0.

Let Nk,t be the random variable that is equal to the number of vertices of degree k in Gt. The goal of
this section is to prove that the degree distribution of Nk,t follows the power law. For this it is convenient
to consider the scaled random variable Nk,t/t, which basically gives us the proportion of the vertices
of degree k (to get the exact proportion we would need to divide by t + n0, but since our results are
asymptotical, n0 will not play any role). The usual strategy to prove that we have asymptotically power
law degree distribution is

1. Show that the expectations of Nk,t/t converge to the power law.

2. Show that Nk,t concentrate around ENk,t.

Before starting the main proof, I consider a useful axillary lemma.

Lemma 4.4. Let xt, yt, ηt, rt be real numbers satisfying

xt+1 − xt = ηt+1(yt − xt) + rt+1, t ∈ N,

and

1. limt→∞ yt = x;

2. ηt > 0, t ∈ N, and ηt < 1 for sufficiently large t;

3.
∑∞

t=1 ηt = ∞;

4. limt→∞
rt
ηt

= 0.

Then
lim
t→∞

xt = x.

Proof. First note that due to 4. we have

ηt+1

(
(yt − xt) +

rt+1

ηt+1

)
→ ηt+1(yt − xt), t→ ∞,

therefore we can consider
xt+1 − xt = ηt+1(yt − xt),
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from where
xt+1 = xt(1− ηt+1) + ηt+1yt.

Now assume that we chose such large N that |yt − x| < ϵ/2 for an arbitrary ϵ > 0 (we can do this due to
1 ). Let xt > x− ϵ and consider

xt+1 = xt(1− ηt+1) + ηt+1yt > x− ϵ+ ηt+1(ϵ+ yt − x) > x− ϵ,

where I used 2. Analogously, assuming that xt < x+ ϵ, we can show that it implies that

xt+1 < x+ ϵ.

If xt < x− ϵ, then

xt+1 − xt > ηt+1(yt − x+ ϵ) > ηt+1
ϵ

2
,

therefore
∞∑

t=N

(xt+1 − xt) >
∞∑

t=N

ηt+1
ϵ

2
= ∞

due to 3. But the partial sum on the left hand side is given by xN+k − xN , therefore xt → ∞ which
contradicts the assumption that xt < x − ϵ. Similarly, we can arrive to contradiction starting from
xt > x+ ϵ. Therefore, putting everything together, for sufficiently large t,

|xt − x| ≤ ϵ,

which finishes the proof. �

Proof that (ENk,t)k∈N converges to the power law distribution

Theorem 4.5. In the random graph process G(m)

E

(
Nk,t

t

)
→ 2m(m+ 1)

k(k + 1)(k + 2)
, when t→ ∞,

for k ≥ m ≥ 1.

Note that this theorem gives the power law degree distribution with the exponent α = 3.

Proof. Consider the sequence of random graphs (G0, G1, . . . , Gt). This sequence is an event in the algebra
Gt = α(G0, . . . , Gt). Therefore, we can consider the conditional expectation of Nk,t+1 with respect to
Gt, for which there is a unique decomposition Dt. This algebra is also generated by the decomposition
Dt = D(Nk,l)k∈N,l=1,...,t

, because of the model definition. Thence, the conditional expectation with respect
to Gt can be expressed as

E(Nk,t+1 | Gt) =

m∑
d=0

Nk−d,t

(
m

d

)(
1− k − d

ctt

)m−d(
k − d

ctt

)d

+ δm,k.

This formula can be explained as follows: Given the graph Gt with Nk−d,t vertices of degree k − d, the
expected number of vertices of degree k in Gt+1 is

Nk−d,t

(
m

d

)(
1− k − d

ctt

)m−d(
k − d

ctt

)d

,

we need to sum though all possible d, and δm,k is the Kronecker delta, which is equal to 1 if m = k and
to 0 if m ̸= k. This term accommodates one additional vertex that we add to our graph at the each step.
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Next, consider the expression

E

(
Nt,k+1

t+ 1
| Gt

)
− Nk,t

t
,

which is given by

1

t+ 1

(
m∑

d=0

Nk−d,t

t
t

(
m

d

)(
ctt− k + d

ctt

)m−d(
k − d

ctt

)d

+ δm,k(t+ 1)− Nk,t

t
(t+ 1)

)
.

The idea now is to consider only those terms in this expression, which do not approach zero. This means,
e.g, that we need to keep track of mostly d = 0 and d = 1 hence, as it should be intuitively obvious, the
chance to have two edges that connect the new vertex to the same vertex in Gt are very small. After
some rearrangements and using the binomial formula, we find

m

(t+ 1)ct

Nk−1,t

t
(k − 1) +

ct
m
δm,k − Nk,t

t

(
k +

ct
m

)
+

m∑
j=1

t−j

j∑
d=0

Ck,j,d,t
Nk−d,t

t

 ,

where Ck,j,d,t are bounded in t. Now we can use the properties of the conditional expectation (specifically

property 5 in Problem 4.18), and linearity of the expectations to find, writing xk,t = E
(

Nk,t

t

)
, that

xk+1,t+1 − xk,t =
m

ct(t+ 1)

(
k +

ct
m

)( k − 1

k + ct/m
xk−1,t +

ct/m

k + ct/m
δmk − xk,t

)
+ rt+1,

where the form rt+1 should be clear.
There are three cases to consider. If k < m and since each new vertex has degree m, there are at

most |V (G0)| vertices of degree k, therefore, when t→ ∞,

xk,t → 0, 0 ≤ k ≤ m− 1.

Second case: k = m, here we have δmm = 1. Consider

xt = xm,t = E

(
Nm,t

t

)
,

yt =
m− 1

m+ ct/m
xm−1,t +

ct/m

m+ ct/m
,

ηt+1 =
m

ct(t+ 1)

(
m+

ct
m

)
.

Note that all the conditions of the lemma in the previous subsection are fulfilled (check them all carefully),
and yt → 2

m+2 , therefore,

xm,t →
2

m+ 2
.

Finally consider case k > m. Here we have δmk = 0 and the expression for yt will change to

yt =
k − 1

k + ct/m
xk−1,t .

Now we can proceed by induction. Note that we obtain

lim
t→∞

xk,t =
2

m+ 2

k∏
l=m+1

l − 1

l + 2
=

2m(m+ 1)

k(k + 1)(k + 2)
,

since the product is telescoping. This finishes the proof. �
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Concentration result for the degree distribution

Theorem 4.6. In preferential attachment model G(m),

Var

(
Nk,t

t

)
→ 0, as t→ ∞.

Proof. See, e.g., A. Bonato, A Course on the Web Graph, AMS, 2008 �

Generalizations

The analysis above shows that for G(m) we obtain the power law distribution with the exponent α = 3.
It would be desirable to modify the model to accommodate a range of exponents. It can be done by
using the following modification. We chose a fixed q ∈ (−m,∞) and redefine the probability that the
new vertex is connected by one of m edges to the vertex w as

q + degw∑
u∈V (Gt)

(q + deg u)
.

Call this model now G(q,m).

Theorem 4.7. In G(q,m) model for t→ ∞

1.

E

(
Nk,t

t

)
→ (2 + q/m)Γ(3 + q/m+m+ q)

Γ(2 + q/m+ q +m)Γ(m+ q)

Γ(k + q)

Γ(3 + q/m+ k + q)
,

2.

Var

(
Nk,t

t

)
→ 0 .

In the statement of the theorem Γ(x) is the gamma function.

Problem 4.25. Two special functions often appear in analysis of power law distributions: the gamma
function

Γ(x) =

∫ ∞

0

tx−1e−tdt ,

and Euler’s beta function

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

• Show that Γ(x+ 1) = xΓ(x), hence showing that the gamma function generalizes the definition of
factorial to non integer values.

• Show that (using the Stirling’s formula)

Γ(x+ α)

Γ(x)
= xα(1 + o(x))

• From the previous point find that

B(x, y) = x−yΓ(y)(1 + o(x)).
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Aiello, Chung, and Lu model

Consider a sequence of random graphs that can be generated using the following algorithm6. Let G0 be a
graph consisting of 1 vertex and one self-loop. Define a vertex step as adding a new vertex v and adding
a new edge uv so that u is chosen from the existing vertices by the preferential attachment. An edge-step
consists of adding an edge rs, where r and s are randomly chosen from the existing vertices by means
of preferential attachment (i.e., r and s can coincide). To form Gt+1 with probability p (this is the only
parameter of the model) take a vertex step, and with probability 1−p take an edge-step. We obtain that
the number of edges in Gt is t and the number of vertices is a random variable with the average 1 + pt.
Denote this model as G(p).

Theorem 4.8. In G(p) model

•
E

(
N1,t

t

)
→ 2p

4− p
,

• For k > 1

E

(
Nk,t

t

)
→ 2p

4− p

Γ(k)Γ(2 + 2/(2− p))

Γ(k + 1 + 2/(2− p))
.

•
Nk,t = Lkt+O(2

√
k3t log t) a.a.s.,

where

Lk =
2p

4− p

Γ(k)Γ(2 + 2/(2− p))

Γ(k + 1 + 2/(2− p))
.

This theorem shows that in G(p) model we observe that the sequence of degree distribution concen-
trates around the power law with the exponent α = 1 + 2/(2− p), hence α ∈ [2, 3].

Bollobás–Riordan model

Here I briefly describe one of the first preferential attachment model that has been rigorously analyzed7.
First consider the dynamical picture.

Let G1
1 be the initial graph that consists of unique vertex and one self-loop. Now to build G1

t from
G1

t−1 we add a vertex t and one edge connecting vertices i and t with probability

P(t ∼ i) =


deg i

2t− 1
, i ̸= t,

1

2t− 1
, i = t.

(4.2)

The first line describes the preferential attachment principle, and the probabilities are chosen in a way
to guarantee a proper normalization:

t−1∑
i=1

deg i

2t− 1
+

1

2t− 1
=

2t− t

2t− 1
+

1

2t− 1
= 1.

At step t our random graph G1
t has exactly t vertices and t edges. How to obtain a graph Gm

t such that
at each step m edges are added? Consider G1

tm and partition its vertices into t sets with m elements
each:

{1, . . . ,m}, {m+ 1, . . . , 2m}, . . . , {m(t− 1), . . . ,mt} .
6Aiello, William, Fan Chung, and Linyuan Lu. ”Random evolution in massive graphs.” Foundations of Computer Science,

2001. Proceedings. 42nd IEEE Symposium on. IEEE, 2001.
7Bollobá s, Béla, and Oliver Riordan. Mathematical results on scale-free random graphs. Handbook of graphs and

networks 1 (2003): 34.
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Now each of these sets is defined to be a vertex of new graph, which has exactly t vertices and tm edges,
which all kept intact. Hence as a result we obtain a multigraph with possible self loops whose evolution
is governed by the preferential attachment principle.

Now to present the static incarnation of the same problem, consider a combinatorial object called
linearized chord diagram. Assume that we have 2t points:

1, 2, 3, . . . , 2t− 1, 2t.

Consider all the possible pairing of these points, the total number is

(2t− 1)!! =
(2t)!

2tt!
.

Now to choose one random realization, pick uniformly one of these (2t− 1)!! pairings. To build a graph,
imagine these 2t points on a straight line, and those that are paired connect with a chord. Now move
in the direction from 1 to 2t (from left to right) until we find the right end of one of the chords, these
points that we passed form the first vertex, then we again move to the right until we find next right
end of a cord, and so on. Hence we get exactly t vertices (since there are t right ends), and each chord
denotes an edge in this graph. The key observation here is that random graph, obtained in such a way
has probabilities for existence of edges exactly as in (4.2).

Problem 4.26. Give a formal proof of the last statement.

Analyzing the linearized chord diagram, it is possible to obtain some important results. In particular,

Theorem 4.9. For any m ≥ 2 and any ε > 0

P

(
(1− ε)

log t

log log t
≤ diamGm

t ≤ (1 + ε)
log t

log log t

)
→ 1.

Theorem 4.10. For any m ≥ 1 and any k ≤ t1/15

(1− ε)αm,k ≤ Nk,t

t
≤ (1 + ε)αm,k,

where

αm,k =
2m(m+ 1)

(k +m)(k +m+ 1)(k +m+ 2)
∼ Ck−3.

Proof. �

The copying model

For full details see the paper8.
One of significant disadvantages of the preferential attachment principle is that it requires the global

knowledge of the current network structure to decide to which vertices a new vertex will be connected.
This is of course not realistic.

Let α ∈ (0, 1) and fix d ≥ 2, d ∈ N. For the initial graph in our random graph process consider any
d-regular graph. Let us have Gt = (Vt, Et), where the set of vertices is Vt = {v1, . . . , vs}. To construct
Gt+1 we add one vertex and d edges. The exact rules as follows: We pick a uniformly random vertex, let
us call it w. w has at least d neighbors. After this with probability α we connect vs+1 with a random
vertex from Gt and with probability 1− α with one of the neighbors of w. Hence we actually need only
local structure of w. Here is the main result.

8Kumar, Ravi, et al. ”Stochastic models for the web graph.” Foundations of Computer Science, 2000. Proceedings. 41st
Annual Symposium on. IEEE, 2000.
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Theorem 4.11. If k > 0, then
Nk,t

t
= Θ

(
k−

2−α
1−α

)
a.a.s.

Hence we obtain the power law distribution with the exponent 2−α
1−α . It is important to understand

that despite the fact that this model also produces a power law graph, its structure is very different from
the models produced with the preferential attachment principle.

4.4 Small world model
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