ANALYSIS OF MT. EREBUS VOLCANICS: A POSSIBLE ANORTHOCLASE PHONOLITE WITH MELT INCLUSIONS

NDSU Geosciences

Gabriel Ferragut

Context

- Discovered in 1841 by James Ross
- Mt. Erebus is the largest active volcano on Ross Island
- Resides over Terror Rift and Erebus hotspot
- Namesake of the Erebus Volcanic Province and member of McMurdo Volcanic Group

Hg, II. Schematicillustration of the Erebus shallow magmatic system, detailing compositional constraints, model parameters and assumptions

Context

- Mt. Erebus is located on Ross Island near McMurdo Station
- Ross Island also boasts three other extinct volcanoes: Mt. Terror, Mt. Bird, and Mt. Terra Nova
 The island is composed largely of silica undersaturated phonolite
 - porphyry and basanite

Photo Credit: British Antarctic Survey

Photo Credit: USGS Photo Archive

Motivation

This sample has yet to be analyzed

- Beyond the allure of a brand new sample, there are also abundant and often euhedral crystal inclusions.
- Within these crystals there are a large number of amorphous inclusions
- These elements make the sample noteworthy and open up questions

Guiding Questions

□ Is this sample a cooled phonolite lava?

Are the numerous inclusions in the otherwise perfect phenocrysts examples of preserved melt?

Are the phenocrysts the so called anorthoclase "Erebus Crystals"

Volcanic Samples

- Samples collected by Dr. Ashworth at Cape Royds, Ross Island.
- Porphyritic with phenocrysts, black and porous in hand sample
- Fine matrix, composition not discernable
- Weak structure, easily broken

Photo Credit: Gabriel Ferragut

Photo Credit: Gabriel Ferragut

Volcanic Samples

- Samples collected by Dr. Ashworth at Cape Royds, Ross Island.
- Unknown age and origin Derivative of lava flow or lava bomb? 1 Ma or 20k Ma?

□GPS- 77° 33' S, 166° 10' E

Photo Credit: USGS Photo

Archive

Sample Location, Cape Royds, Ross Island Photo Credit: U of M Polar Geospatial Center

Methods-XRF

- Sample was inherently weak and porous
- Crushed to ~ 1 cm scale using ceramic jaw crusher
- Sample was then ground to fine powder in puck mill
- Powder combined with volatile polyvinyl binder and compressed in cylinder at 15 kPa for 1.5 minutes and analyzed via x-rays

Photo Credit: 911Metallurgist

□ A series of four thin sections were made

- Thin Section #1:
 - Sample cut with rock saw (NDSU Geosciences) to appropriate size
 - Glued to slide with epoxy (10:3 ratio)
 - Further cut and ground to 0.25 mm with Buehler PetroThin saw (NDSU Soil Sciences)
 - Ground with #600 grit and then polished with #1000 grit
 - Inadvertently polished to oblivion

□ A series of four thin sections were made

- Thin Section #2:
 - Same preparation as thin section #1
 - Ground with #600 grit and then GENTLY polished with #1000 grit
 - Inadvertently polished to oblivion

Monty Python and the Holy Grail From fanpop.com Listen, lad. I built this kingdom up from nothing. When I started here, all there was was swamp. Other kings said I was daft to build a castle on a swamp, but I built it all the same, just to show 'em. It sank into the swamp. So, I built a second one. That sank into the swamp. So I built a third one. That burned down, fell over, then sank into the swamp. But the fourth one... stayed up! And that's what you're gonna get, lad: the strongest castle in these islands.

QUOTEHD.COM

Monty Python

- □ A series of four thin sections were made
 - Thin Section #3 and 4:
 - Sample cut with rock saw (NDSU Geosciences) to appropriate size
 - Embedded in thermo-epoxy
 - Sample placed in 33mL uncured epoxy/hardener
 - Exposed to 105 °C for 5 min to reduce viscosity
 - Placed in vacuum with "Irrometer" gauge
 - 5 minutes at a reading of 16
 - 2.5 minutes at a reading of 25
 - 2.5 minutes at a reading of 30
 - Sample cured for 10 minutes at 140 °C to harden
 - Cut and glued to slide with epoxy (10:3 ratio)
 - Further cut and ground to 0.25 mm with Buehler PetroThin saw (NDSU Soil Sciences)
 - Ground with #600 grit and then polished with #1000
 - **NOT** polished to oblivion, both polished to 30 microns

Photo Credit: Gabriel Ferragut

Photo Credit: Gabriel Ferragut

- Thin section #3 was further polished with 1 micron grit for around 10 minutes before breaking in the mechanical polisher
- This polish was luckily sufficient to move on to SEM
- Coated with carbon with Cressington carbon coater

Photo Credit: Gabriel Ferragut

Photo Credit: Gabriel Ferragut

Methods-Microscopy

Thin section #4 was used as a microscopy sample for context

Phenocryst and inclusions, XP, FOV: 2mm Photo Credit: Gabriel Ferragut

Phenocryst and inclusions, PPL, FOV: 2mm Photo Credit: Gabriel Ferragut

Prepared thin section Photo Credit: Gabriel Ferragut

Results-XRF

Sample	EL-1_18768
Date	4/15/2016
SIO2 (%)	59.9
Al2O3 (%)	18.1
Fe2O3 (%)	5.3
CaO (%)	3.3
MgO (%)	1.0
MnO (%)	0.2
Na2O (%)	6.3
K2O (%)	4.4
P2O5 (%)	0.4
TiO2 (%)	1.1

XRF Results, wt. % oxides

XRF Results, TAS Diagram (alkali composition on y-axis, silica composition on x-axis)

Whole rock chemistry gave a composition of Trachyandesite-Trachyte.

Results-XRF

Sample	EL-1_18768
Date	4/15/2016
SIO2 (%)	59.9
Al2O3 (%)	18.1
Fe2O3 (%)	5.3
CaO (%)	3.3
MgO (%)	1.0
MnO (%)	0.2
Na2O (%)	6.3
K2O (%)	4.4
P2O5 (%)	0.4
TiO2 (%)	1.1

XRF Results, wt. % oxides

XRF Results, TAS Diagram (alkali composition on y-axis, silica composition on x-axis)

- Due to sample contamination? Likely not
- Nepheline Benmoreite, a variety of trachyandesite, is believed to be the parental source for the differentiation of anorthoclase phonolites at Mt. Erebus

Results-SEM

- Initially difficult to identify location
- Matrix and crystals vary minimally in culture, mostly texture
- Pt.1/2 glass matrix
- Pt.3 phenocryst

Compound %

Pt.4 - inclusion within phenocryst

		Na2O	MgO	Al2O3	SiO2	Cl	K20	CaO	TiO2	MnO	Fe2O3
169285 EB-1(1)_pt1	0.00	10.78	0.38	18.92	55.92	0.28	5.73	1.62	1.09		5.26
169285 EB-1(1)_pt2	0.00	9.18	0.30	18.83	56.43	0.25	5.98	1.67	1.20		6.16
169285 EB-1(1)_pt3	0.00	8.24		22.51	61.95		2.50	4.79			
169285 EB-1(1)_pt4	0.00	1.16	3.54	2.14		0.22			26.53	1.72	64.69

Results-SEM

- Pt.1 Melt inclusion in (presumed) anorthoclase crystal
- Pt.2 Mixture of epoxy and silicon carbide grit

Compound %

		Na2O	MgO	Al2O3	SiO2	Cl	К2О	CaO	TiO2	Fe2O3
169285 EB-1(2)_pt1	0.00	9.62	0.37	19.28	57.11	0.24	6.04	1.68	1.17	4.50
169285 EB-1(2)_pt2	0.00					87.09				12.91

Results-SEM

- Pt.1 Boxed average of crystal composition
- Pt.2 Boxed average of matrix composition
- Pt.3 Likely unreliable

Compound	%
----------	---

		Na2O	MgO	Al2O3	SiO2	P205	Cl	K20	CaO	TiO2	Fe2O3
169285 EB-1(3)_pt1	0.00	8.81		21.89	62.07			2.95	4.28		
169285 EB-1(3)_pt2	0.00	8.67	0.76	18.86	55.40	0.60	0.17	8.03	1.74	0.98	4.78
169285 EB-1(3)_pt3	0.00	10.47	0.42	18.40	55.57		0.38	6.33		1.83	6.60

Comparison

The microprobe analysis of Kyle, 1992 show good agreement with the results of this project

Compound %

Project Analyses (1st Set)

			Na2O	MgO	Al203	SiO2	Cl	K20	CaO	TiO2	MnO	Fe2O3
~	169285 EB-1(1)_pt1	0.00	10.78	0.38	18.92	55.92	0.28	5.73	1.62	1.09		5.26
S	169285 EB-1(1)_pt2	0.00	9.18	0.30	18.83	56.43	0.25	5.98	1.67	1.20		6.16
	169285 EB-1(1)_pt3	0.00	8.24		22.51	61.95		2.50	4.79			
	169285 EB-1(1)_pt4	0.00	1.16	3.54	2.14		0.22			26.53	1.72	64.69

TABLE 1—Precision of electron microprobe analyses based on repeated analyses of glass samples.

Previous

Work

	wt. percent	1σ	Relative std.dev. %
\$10 ₂	55	0.30	0.55
A12 ⁰ 3	19	0,12	0.63
Ti0 ₂	1.0	0,02	2.0
Fe0*	5.4	0.07	1.3
MnO	0.3	0.015	5.0
MgO	0.8	0.02	2.5
CaO	2.0	0.07	3.5
Na ₂ 0	9.0	0.20	2,2
к ₂ 0	5.4	0.04	0.75

The above image is this project's SEM data. Below this is the Average from Kyle, 1992.

Comparison

Compound %

The microprobe analysis of Kyle, 1992 show good agreement with the results of this project

Project			Na2O	MgO	Al2O3	SiO2	P2O5	Cl	к20	CaO	TiO2	Fe2O3
Analyses	169285 EB-1(3)_pt1	0.00	8.81		21.89	62.07			2.95	4.28		
(3 nd Set)	169285 EB-1(3)_pt2	0.00	8.67	0.76	18.86	55.40	0.60	0.17	8.03	1.74	0.98	4.78
	169285 EB-1(3)_pt3	0.00	10.47	0.42	18.40	55.57		0.38	6.33		1.83	6.60

TABLE 1—Precision of electron microprobe analyses based on repeated analyses of glass samples.

Previous Work

wt. percent 1σ Relative std.dev. % \$10, 0.55 55 0.30 A1203 19 0,12 0.63 1.0 0,02 2.0 Ti0, FeO* 5.4 0.07 1.3 0.3 0.015 5.0 MnO Mg0 0.8 0.02 2.5 2.0 0.07 3.5 CaO 9,0 0.20 2,2 Na₂0 5.4 0.04 0.75 к₂0

The above image is this project's SEM data. Below this is the Average from Kyle, 1992.

Comparison- Matrix vs. Melt Inclusion

- Both point source data and boxed averages for glass matrix are close to the inclusions
- Based on the closeness of these results I believe that the experimental data agrees with the widespread notion that melt is included within the crystals during formation

Comparison-Phenocryst composition

- Chemical Recalculation on 8 O basis
 - Anorthoclase: (Na,K) AlSi₃O₈
 - □ Na+K = 0.859 ~ 1
 - □ AI = 1.190 ~ 1

□ Si = 2.778 ~3

Analysis	title	Phenocryst			Oxygens per	r			
					formula =				
				Oxy =	8				
			Mole	Oxygen	Normaliz.	Atom	105		
Oxide	GFW	Wt.%	Units	Units	Ox Units	Units			
SiO2	60.084	61.95	1.03106	2.06211	5.55576	2.778	Si	Si~3	
TiO2	79.866	0.00	0.00000	0.00000	0.00000	0.000	Ti	Al+Na+K	
A12O3	101.961	22.51	0.22077	0.66231	1.78441	1.190	Al		2.049
Cr2O3	151.99	0.00	0.00000	0.00000	0.00000	0.000	Cr		
Fe2O3	159.688	0.00	0.00000	0.00000	0.00000	0.000	Fe+3		
FeO	71.844	0.00	0.00000	0.00000	0.00000	0.000	Fe+2		
MnO	70.937	0.00	0.00000	0.00000	0.00000	0.000	Mn		
MgO	40.304	0.00	0.00000	0.00000	0.00000	0.000	Mg		
CaO	56.077	4.79	0.08542	0.08542	0.23013	0.230	Ca		
Na2O	61.979	8.24	0.13295	0.13295	0.35819	0.716	Na		
K2O	94.196	2.50	0.02654	0.02654	0.07151	0.143	K		
H2O	18.015	0.00	0.00000	0.00000	0.00000	0.000	H		
Totals		99.99	1.49673	2.96933	8.00000	5.057			

Recalculation based on SEM (1 $^{\rm st}$ Set) Template Credit: John Brady, Smith College and Dexter Perkins, UND

Comparison-Phenocryst composition

- Chemical Recalculation on 8 O basis
 - Anorthoclase: (Na,K) AlSi₃O₈
 - □ Na+K = 0.937 ~ 1
 - □ AI = 1.161 ~ 1

□ Si = 2.792 ~3

Analysis	title	Phenocryst	(90 - E	Oxygens per	r		
		8			formula =			
				Oxy =	8			
			Mole	Oxygen	Normaliz.	Atom		
Oxide	GFW	Wt.%	Units	Units	Ox Units	Units	2	
SiO2	60.084	62.07	1.03305	2.06611	5.58414	2.792	Si	Si ~3
TiO2	79.866	0.00	0.00000	0.00000	0.00000	0.000	Ti	Al+Na+K
A1203	101.961	21.89	0.21469	0.64407	1.74075	1.161	AI	2.098
Cr2O3	151.99	0.00	0.00000	0.00000	0.00000	0.000	Cr	
Fe2O3	159.688	0.00	0.00000	0.00000	0.00000	0.000	Fe+3	
FeO	71.844	0.00	0.00000	0.00000	0.00000	0.000	Fe+2	
MnO	70.937	0.00	0.00000	0.00000	0.00000	0.000	Mn	
MgO	40.304	0.00	0.00000	0.00000	0.00000	0.000	Mg	
CaO	56.077	4.28	0.07632	0.07632	0.20628	0.206	Ca	
Na2O	61.979	8.81	0.14214	0.14214	0.38418	0.768	Na	
K2O	94.196	2.95	0.03132	0.03132	0.08464	0.169	K	
H2O	18.015	0.00	0.00000	0.00000	0.00000	0.000	H	
Totals		100.00	1.49753	2.95996	8.00000	5.097		

Recalculation based on SEM (3 $^{\rm rd}$ Set) Template Credit: John Brady, Smith College and Dexter Perkins, UND

Comparison-End Member Calculation

□ From 1st SEM Set (Mol. Prop.) \Box CaO: 0.08542 \rightarrow 34.9% An □ Na₂O: 0.13295 \rightarrow 54.3% Ab \square K₂O: 0.02654 \rightarrow 10.8 % Or Total: 0.24491 □ From 3rd SEM Set (Mol. Prop.) □ CaO: 0.07632 → 30.6% An □ Na₂O: 0.14214 \rightarrow 56.9% Ab □ K₂O: 0.03132 → 12.5 % Or Total: 0.24979

Comparison-End Member Calculation

- End member calculations in anorthite, albite, and anorthclase yield a phenocryst composition of anorthoclase that is borderline with andesine.
- Samples used in this project appear to have slightly higher calcium values

Conclusion

- A first analysis of Mt. Erebus volcanics has been conducted
- Based on glass matrix and inclusion chemistry, this is a solidified porphyritic phonolite lava
- Comparisons of glass matrix and phenocryst inclusions indicate that they are phonolite melt inclusions
- Analyses of phenocrysts places them in an anorthoclase or anorthoclase-andesine feldspar composition

Acknowledgements

- Dr. Hopkins of NDSU Soil Sciences for allowing student use of Buehler PetroThin thin section saw.
- Dr. Saini-Eidukat of NDSU Geosciences for allowing use of lab equipment and mentorship on the project.
- Scott Payne and Jayma Moore of the Electron Microscopy Lab for their help in analyses
- Dr. Ashworth of NDSU Geosciences for collecting the samples used in the experiments
- Special thanks to Dr. Philip R. Kyle for his research on the Erebus Volcanic Province and supplying literature for this project

References

- Kyle, P.R., 1977, Mineralogy and glass chemistry of recent volcanic ejecta from Mt Erebus, Ross Island, Antarctica: New Zealand Journal of Geology and Geophysics, v. 20, p. 1123–1146.
- Kyle, P.R., Moore, J.A., and Thirlwall, M.F., 1992, Petrologic Evolution of Anorthoclase Phonolite Lavas at Mount Erebus, Ross Island, Antarctica: Journal of Petrology, v. 33, p. 849–875.
- Sims, K.W.W., Pichat, S., Reagan, M.K., Kyle, P.R., Dulaiova, H., Dunbar, N.W., Prytulak, J., Sawyer, G., Layne, G.D., Blichert-Toft, J., Gauthier, P.J., Charette, M.A., and Elliott, T.R., 2013, On the Time Scales of Magma Genesis, Melt Evolution, Crystal Growth Rates and Magma Degassing in the Erebus Volcano Magmatic System Using the 238U, 235U and 232Th Decay Series: Journal of Petrology, v. 54, p. 235–271.

Supplementary Resources

- Boudette, E.L., and Ford, A.B., 1966, Physical properties of anorthoclase from Antarctica: The American mineralogist, v. 51, p. 1374.
- Goldich, S.S., Treves, S.B., Suhr, N.H., and Stuckless, J.S., 1975, Geochemistry of the Cenozoic Volcanic Rocks of Ross Island and Vicinity, Antarctica: The Journal of geology, v. 83, p. 415–435.