Chemical Analysis of the Igneous Intrusion at Bridal Veil Falls

Brady Folkestad NDSU Petrology Geology 422 April 28th, 2016

Photograph by Brady Folkestad

Igneous Intrusion at Bridal Veil Falls

 $https://www.google.com/maps/@44.4176226, -103.8810965, 3a, 64.4y, 296.18h, 92.91t/data = !3m6! te1! 3m4! ts1DjK_v6kbDiTbzAog_otLw! 2e0! 7i13312! 8i6656! 6m1! te1 3m4! te1 3m4! ts1DjK_v6kbDiTbzAog_otLw! 2e0! 7i13312! 8i6656! 6m1! te1 3m4! t$

Locality

- Located in western South Dakota almost on the South Dakota and Wyoming border
- In the Spearfish Canyon
- Northwest of Deadwood and South of Spearfish, SD
- Coordinates 44°25'3.33"N

103°52'51.63"W

Background of Sedimentary Rocks at Bridal Veil Falls, SD

- Late Cambrian to Early Ordovician (497 to 480 Ma)
- Rests upon an unconformity of Precambrian metamorphic rock
- Consists mainly of conglomerate and sandstones
- Deposited by an ancient sea

Background of the Igneous Intrusion at Bridal Veil Falls, SD

- Occurred ~40 to ~60 Ma (K-Ar dating method)
- Underlies the Deadwood formation
- Some describe the rock as a phonolite porphyry, some describe it as a nepheline syenite
- There are many other intrusions similar

ttps://sites.google.com/site/geologyofspearfishcanyon/bridal-veil-falls

(Basset, 1961)

Guiding Question/Goal

- Create XRF and SEM data to support or rebuttal previous ideas.
- What should the rock be identified as?

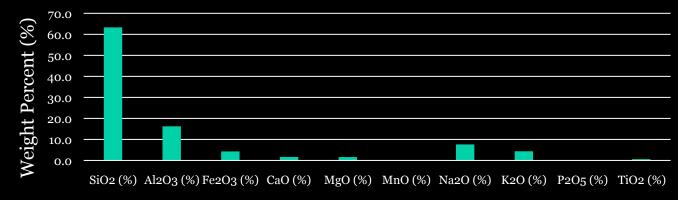
Hand Sample

- Fine-grained, gray-green and white mottled with a phaneritic texture
- Some biotite present
- Collected at a road cut on the opposite side of the falls

Photograph by Brady Folkestad

Methods: XRF (X-Ray Fluorescence)

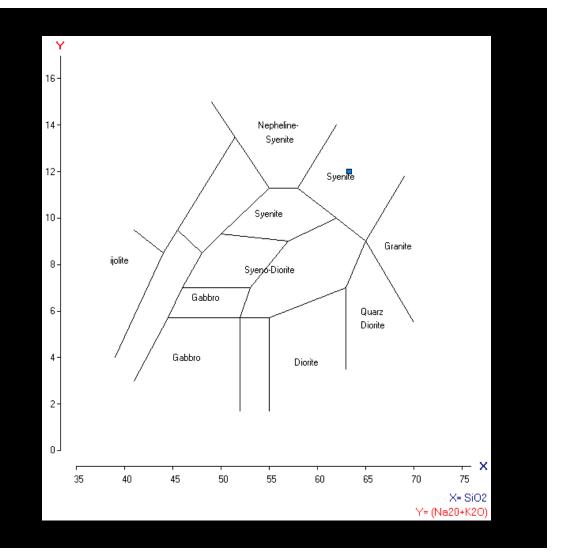
Preparations


- Crushed sample
- Added 10mL of vertel to 30 grams of the crushed sample, then powdered the sample (using a TM Swing Mill)
- Used polyvinyl in alcohol solution to cement the powder
- Pressed powder into disk at 15 tonnes for 1.5 minutes
- Ran Sample through XRF machine

Photograph by Brady Folkestad

XRF Results

Weight Percent of Oxides

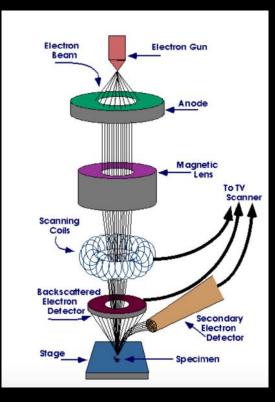


Oxide

		Fe2O3							
SiO2 (%)	Al2O3 (%)	(%)	CaO (%)	MgO (%)	MnO (%)	Na2O (%)	K2O (%)	P2O5 (%)	TiO2 (%)
63.3	16.2	4.3	1.7	1.6	0.1	7.6	4.4	0.2	0.6

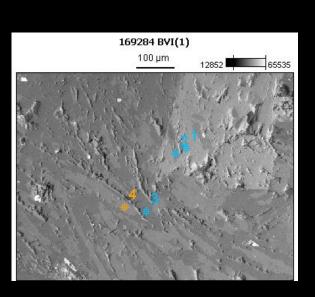
XRF Results

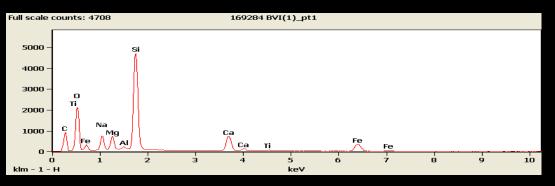
- TAS diagram plotted using PetroGraph
- Cox-Bell-Pank methods

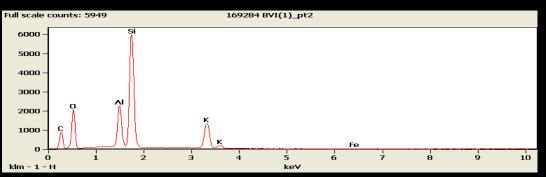


Thin Section for SEM

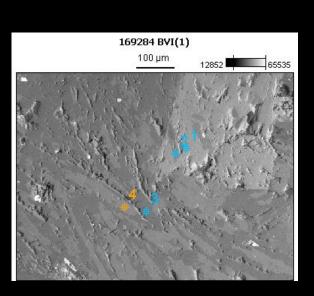
• Sample was already prepared for SEM

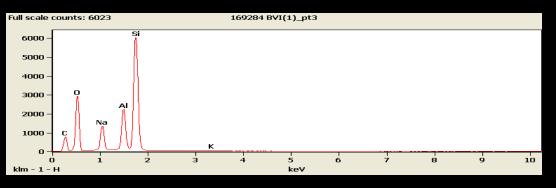

Methods: SEM (Scanning Electron Microscope)

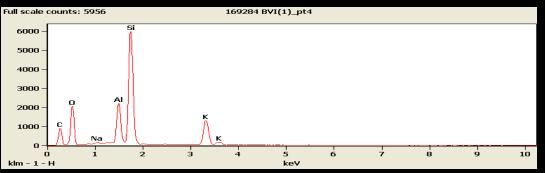



https://www.ndsu.edu/em_lab/instrumentation/jeoljsm_6490lv/

http://1.bp.blogspot.com/-kjXMtQPFKtw/VWMRyjOEpCI/AAAAAAAADrk/ 2PoxQ2ptZQY/s1600/Screen%2BShot%2B2015-05-25%2Bat%2B8.12.12%2Bpm.png


SEM Results



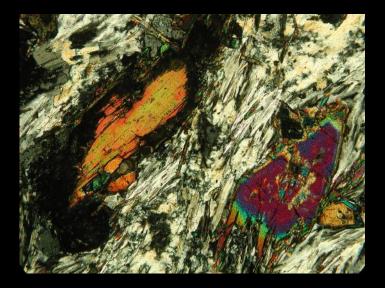


SEM Results

SEM Mineral Identification

	Na2O	MgO	Al2O3	SiO2	K2O	CaO	TiO2	Fe2O3
169284 BVI	 7.61	5.19	0.70	51.87		11.59	1.52	21.52
(1)_pt1								
169284 BVI			18.10	64.53	16.63			0.74
(1)_pt2								
169284 BVI	 13.31		18.65	67.83	0.21			
(1)_pt3								
169284 BVI	 0.68		17.86	65.64	15.83			
(1)_pt4								

• BVI-1


- Aegirine-augite (Na,Ca)(Fe³⁺,Fe²⁺,Mg,Al)Si₂O₆
- BVI-2
 - Orthoclase KAlSi₃O₈
- BVI-3
 - Albite NaAlSi₃O₈
- BVI-4
 - Orthoclase KAlSi₃O₈

Thin Section

Photograph by Brady Folkestad

FOV 2mm 10X zoom

Alkali feldspar laths, hornblende (surrounded by Aegirine-augite), Aegirineaugite

Conclusion

- The minerals identified fit into an alkali rich system
- The rock seems to be a syenite
 - Could be due to deuteric reaction
- More samples need to be taken from different areas of the intrusion.
- More XRF and SEM data collection for comparison

Acknowledgments

I'd like to thank Dr. Saini-Eidukat for all of his help with the project, as well as the folks that helped me operate the SEM machine.

References

- Basset, W.A., 1961, Potassium-argon age of Devil's Tower, Wyoming, Science, v. 134, p. 1373
- Kirchner, J.G., 1971, The Petrography and Petrology of the phonolite Porphyry Intrusions of the Northern Black Hills, South Dakota, p. 87-172