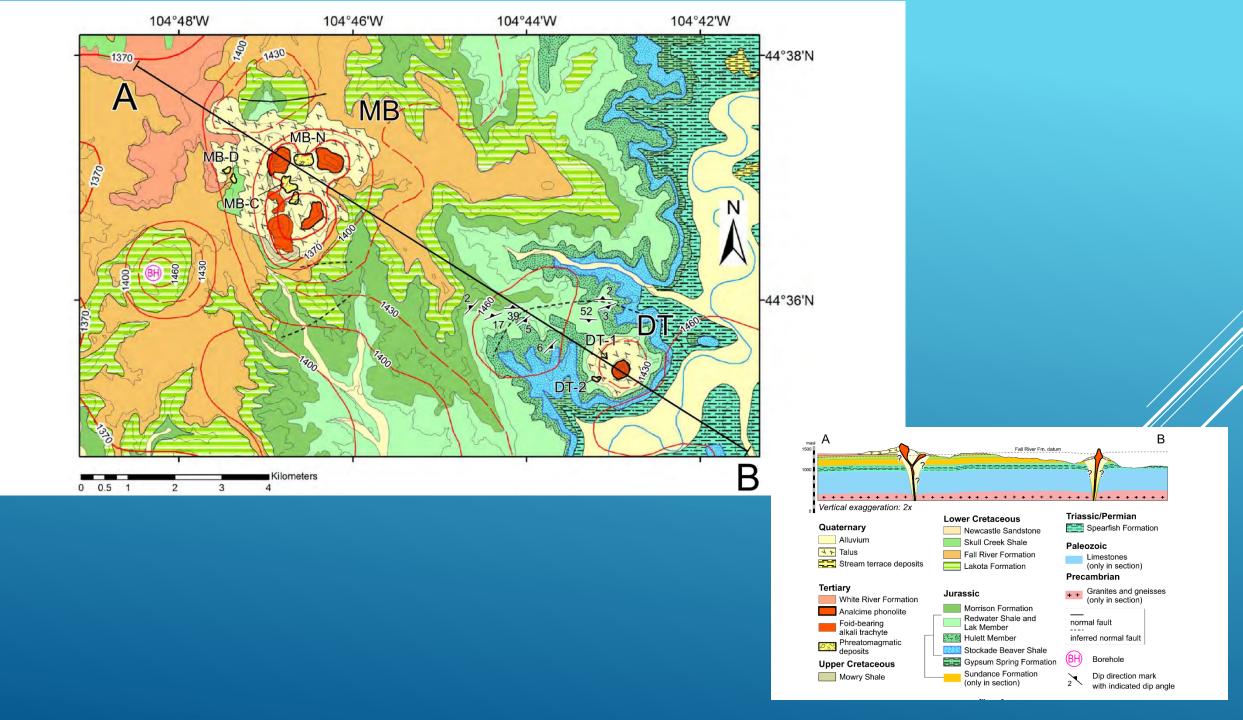
DEVILS TOWER PHONOLITE

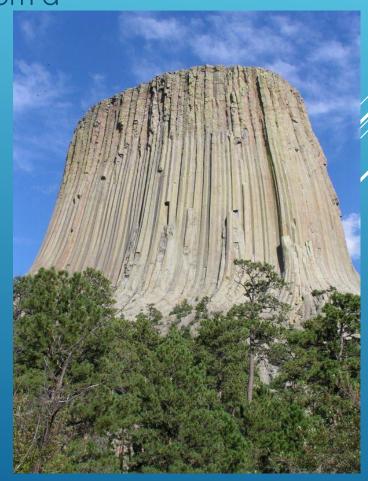
By: Devin Foster

DEVILS TOWER LOCATION

Located in Northeastern Wyoming



- Made up of a Phonolite Porphyry monolith
- The analcime phonolite forming Devils Tower is holocrystalline and coarsely porphyritic with a gray to olive-gray aphanitic and trachytic groundmass around phenocrysts of anorthoclase as much as 16 mm long (average 30 vol%), aegirine-augite (6 vol%) zoned to aegirine, sphene (1.2 vol%), and rare amphibole. (Zavada, 2015)
- Cenozoic in age roughly 50 mya
- Part of the Black Hills uplift
- Rises almost 250m above the underlying sedimentary strata which sits in a basin


DEVILS TOWER IGNEOUS COMPLEX

- Shows exceptional columnar jointing in phonolite
- "Previous studies concluded that Devils Tower was formed from a remnant of an intrusive body in the form of a magmatic stock" (Zavada, 2015)

DEVILS TOWER IGNEOUS COMPLEX CONT.

How does the phonolites found at Devils Tower compare to Phonolites found elsewhere in the world?

GUIDING QUESTION

- Thin section BH-18 collected under permit.
- Sample shows Devils Tower phonolite with "alloclastic breccia (xenoliths)"

THIN SECTION IMAGES

- Aegirine is an interesting pyroxene.
- ► Chemical formula NaFe⁺³(SiO₃)₂ to (Na,Ca) (Fe+3,Fe⁺²,Mg,Al) (SiO₃)₂
- Exhibits Pleochroism in PPL fading from bright green to yellow in color.

AEGIRINE AUGITE IN THIN SECTION

- This hand sample is of the alloclastic breccia showing xenoliths of carbonate
- Collected under same permit

HAND SAMPLE

- Using point count analysis as well as gathering other research on phonolite chemical compositions.
- Looked at data from three different localities, Devils Tower,
 Canary Islands, as well as Western Antarctica

METHODS

TABLE 2

Sample Number	Т16	T31	T32	T26	T14	T122	T112	T101	T23	T115	Tll	Tļ2	Т13
Phenocrysts						-							
Anorthoclase	31.2	23.4	24.4	37.2	36.0	17.5	29.3	33.6	32.4	21.6	34.9	26.9	28.5
Aegirine-augite	5.4	7.0	5.2	2.8	6.6	4.2	9.2	8.0	6.4	7.1	5.6	6.5	7.4
Sphene Nepheline Nosean Groundmass and microphenocrysts	0.6 0.5 0.8	0.2 X X	1.2 X X	X X X	x x x	0.8 X X	0.4 X X	x x x	0.4 X X	x x x 62.5	x x x	x x x	0.3 X X
Albite and	43.5	30.0	0214	43.0		2017	33.3			02.5	4,15	33.0	22.4
microcline	17.4	x	×	x	x	×	x	x	x	x	×	x	×
Analcime	19.7	x	×	×	×	x	х.	×	×	x	×	x	x
Aegirine	12.8	x	x	x	x	x	x	x	x	x	x	x :	x
Veins, pore-filling, and replacement				*		-						-	
Analcime	9.2	10.0	4.0	12.0	5.8	11.2	14.8	8.0	12.8	7.2	10.2	6.0	6.9
Calcite	2.2	0.6	×	-	0.6	3.2	0.8	0.4	4.0	0.4	1.0	×	4.3
Zeolite		4.4	x	0.8		1.6	0.4	2.4		0.6	0.6	0.8	×
Hematite	0.2	0.6	2.0		1.4		×	x	0.4	0.6	0.2		0.2
Clay		3.4	0.8	1.0		4.8	5.6	3.2	1.2			-	

X present but not point-counted.

DEVILS TOWER PHONOLITE ANALYSIS

- The basanite to phonolite lava suite found at Erebus volcano and termed the "Erebus Lineage" (EL), is alkaline and strongly Siundersaturated (Kyle et al., 1992).
- ➤ This undersaturation matches what we see in the Devils Tower phonolites as well.

PHONOLITE ANALYSES AT MOUNT EREBUS IN ANTARCTICA

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sample: Unit:	T1-17-12 pv ⁵	T5-16-7 pv ⁶	T1-17-2 t ²	T1-27-4 tf ¹	T1-21-0 t ³	T1-18-9 t ¹	T1-29-6 t ²	TPVG-1	T1-18-10b t ^{1b}
101 0.5 0.50 0.00 0.00 0.75 0.05	SiO_2 AI_2O_3 TiO_2 $Fe_2O_3^*$ MgO CaO Na_2O K_2O	54-95 18-83 1-70 6-05 1-71 3-93 7-61 3-80	57·20 19·62 1·12 4·92 0·96 2·06 7·96 4·80	58-97 18-82 0-68 3-78 0-40 0-84 9-80 5-43	60-42 19-01 0-75 3-40 0-53 1-28 8-31 5-19	18·60 0·75 3·82 0·55 1·22 9·04 5·16	18-90 1-22 4-45 1-13 2-56 7-88 4-87	19·14 0·77 3·50 0·51 1·02 8·09 5·36	18-95 1-59 5-82 1-80 3-47 7-22 4-62	49.60 17.11 2.73 9.64 3.51 7.73 5.49 2.37 0.22
0.38	LOI	0-05	0.76	0.38	0.38	0.23	0-26 0-38	0.75	0.25	1⋅13 0⋅08 99⋅45

PHONOLITE ANALYSIS OF TEIDE-PICO VIEJO VOLCANIC COMPLEX, TENERIFE, CANARY ISLANDS

- Perform XRD or XRF to determine exact chemical make up at Devils Tower
- Collect samples at two other localities and run them through XRD analysis to see if they match the data viewed in the papers.

FUTURE WORK

- Halvorson, D., 1980, Geology and Petrology of the Devils Tower, Missouri Buttes, and Barlow Canyon Area, Crook County, Wyoming: University of North Dakota Dissertation, p. 1-123.
- Závada, P., DČdeþek, P., Lexa, J., and Keller, G.K., 2015, Devils Tower (Wyoming, USA): A lava coulée emplaced into a maar-diatreme volcano?: Geosphere, p. 1-22.
- Kelley, P., Kyle, P., Dunbar, N., and Simms, K., 2007, Geochemistry and mineralogy of the phonolite lava lake, Erebus volcano, Antarctica: 1972 2004 and comparison with older lavas: Erebus Volcano, Journal of Volcanology and Geothermal Research, p. 1-55.
- Ablay, G., Carroll, M., Palmer, M., Marti, J., and Sparks, R., 1998, Basanite— Phonolite Lineages of the Teide—Pico Viejo Volcanic Complex, Tenerife, Canary Islands: Journal of Petrology, v. 39, p. 905-936.

RESOURCES