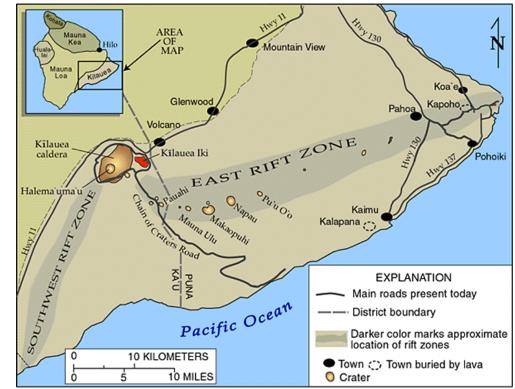
GEOCHEMICAL ANALYSIS OF FRESH KĪLAUEAN BASALT


Tyler Kuehn Petrology 422 NDSU April 27, 2016

 Stationary mantle plume

 Hawaiian Emperor-Seamount Chain

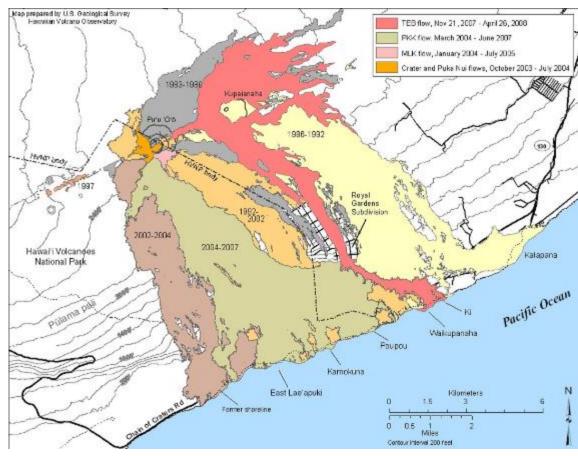
Kīlauea

- 1 of 5 on the Big Island
- 300,000 to 600,000 years old
- Most active
- Current eruptive center
 of mantle plume
- Pu'u O'o
 - Erupting since 1983

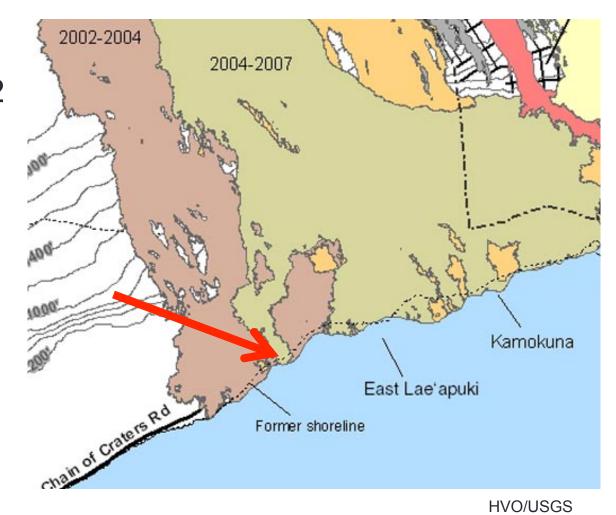
HVO/USGS

Pu'u Ö'ō - Kūpa'ianahā Eruption

• Pu'u O'o


- Started erupting in 1983
- High fountaining
 - 460m
- Kupa'ianaha
 - Conduit ruptured in 1986
 - Allowed for a lava lake and tube to form
 - Quiet lava flows ever since
 - Died in 1992
- Flank vents

Prince Kuhio Kalaniana'ole


- Renewed activity in Pu'u
 O'o
 - March 2004
 - June 2007
 - Another breakout
- PKK event
 - Sample taken

HVO/USGS

Sample Information

- Collected in 2006
- Approximately 1-2 months old
- Side note: Pele's curse

Sample Information

- Displays 3 zones as outlined by Winter, 2004
 - Outer glass selvage (1)
 - Transition zone (2)
 - Interior zone (3)
 - Bottom (4)

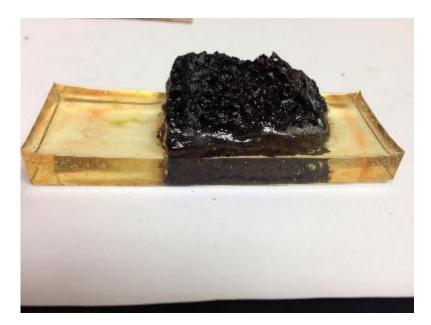
- Pahoehoe
 - Thin ropy surface flow lava
 - Less viscous than A'a flows
- 4.5 cm thick
- Displays iridescence at glassy surface
- S-type pahoehoe
 - spongy

Sample Information

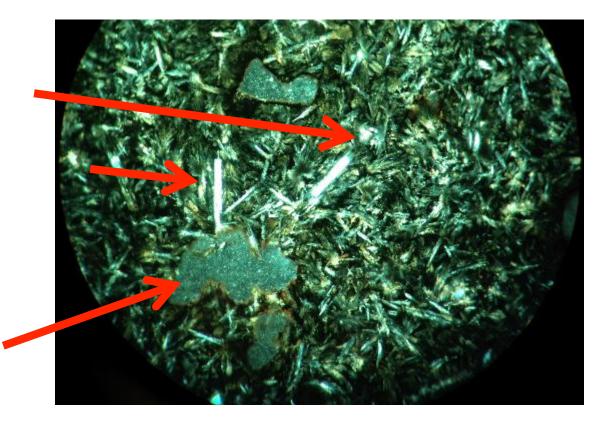
- Part of a gas blister
- Fourth zone
- Zoning relates to Cooling rates

Fig. 5. Giant gas blister forming just within the outer glassy selvage of the dense pahoehoe near the terminus of a sheet flow.

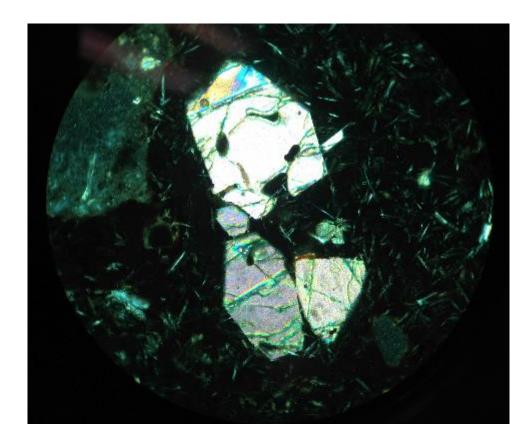
Winter, 2004

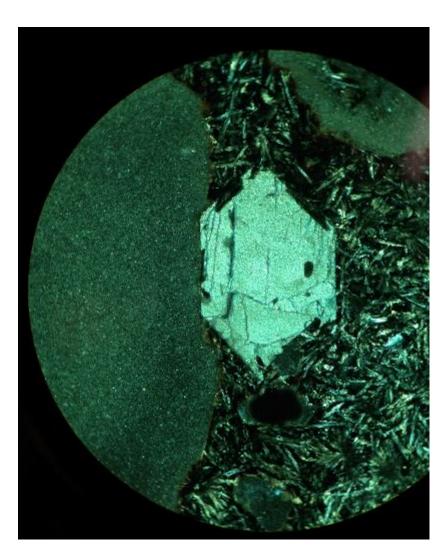

Questions

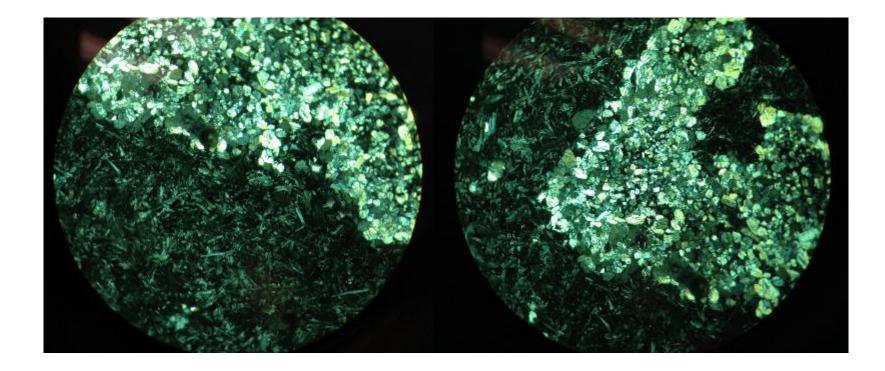
- What is the cause of the iridescence at the glassy surface?
 - Winter proposed that a higher concentration of Fe-Mg oxides could be the cause (2004)
- At what temperatures did the zones cool?
 - Geothermometry methods outlined by Winter (2004)


• Determine the mineral composition of the sample

Methods


- Prepared a thin section to determine the mineral composition
 - First attempt was a failure
 - Porous, friable nature
 - 2nd attempt by impregnation of the sample of epoxy
 - Filled in void space


- Groundmass composed almost entirely out of plagioclase laths
- Some minor olivine crystals
- Opaque areas likely magnetite
- FOV: 2mm


- Large Hornblende phenocrysts present
- FOV: 2mm

- No Spatial relationship with pore space or the 4 zones
- FOV: 2mm

Large cluster of smaller hornblende crystals

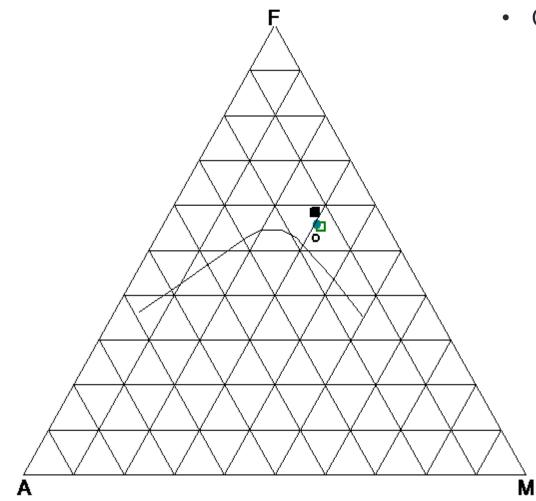
Thin Section Summary

- Composed almost entirely out of plagioclase ~75%
- Small olivine crystals present ~5%
- Magnetite present ~5%
- Large and small prismatic hornblende crystals ~15%

XRF Analysis

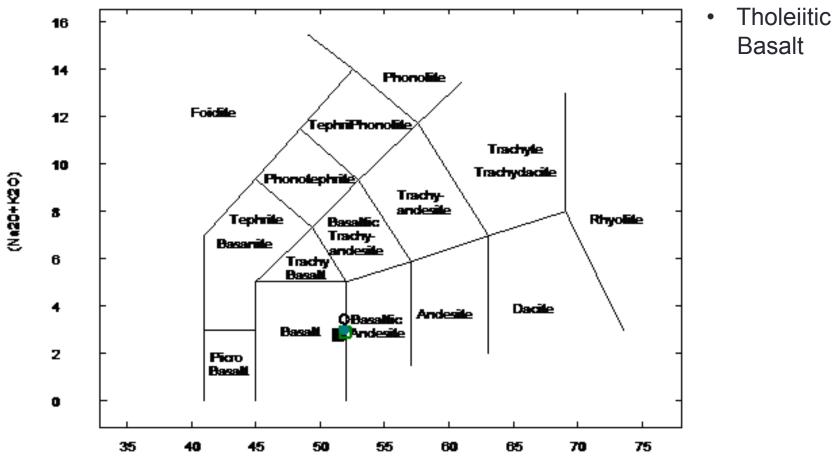
 Conducted XRF to determine the cause of iridescence and geothermometry

Sample	KPP-118777 KPP-2187	778 KPP-3_	18779 KPP-4_	_18780
Date	4/20/16	4/20/16	4/20/16	4/20/16
SiO2 (%)	51.4	51.9	51.9	51.9
Al2O3 (%)	11.5	11.9	12.2	12.2
Fe2O3 (%)	12.8	12.1	12.0	11.6
CaO (%)	12.6	11.8	11.8	11.5
MgO (%)	6.3	6.9	6.6	7.0
MnO (%)	0.2	0.1	0.1	0.1
Na2O (%)	2.3	2.5	2.6	2.9
K2O (%)	0.5	0.4	0.4	0.5
P2O5 (%)	0.2	0.2	0.2	0.2
TiO2 (%)	2.3	2.2	2.2	2.1


XRF Data Trends

- Difference of composition between layers is negligible
 - Glass layer was around 1% more concentrated in iron and calcium oxides compared to the bottom layer
 - Glass and bottom layer most similar in K₂O composition
 - Transition zone and Interior zone most similar

Iridescence


- After the observed XRF data, the glassy layer:
 - Insignificant amount of more Iron oxides
 - Actually had less Mg oxides than the rest
 - So concentration of Fe-Mg oxides is likely not the cause
 - Still a mystery

AFM Diagram

Classified as Tholeiitic

TAS Diagram

Geothermometer

- Basaltic glass geothermometer by Helz and Thornber (1987)
 - Mg and Ca oxides have a linear relationship with temperature
 - Glass needs to coexist with olivine and plagioclase

- $T_{Ca} = 1177.2^{\circ}C \pm 5^{\circ}$
- Range for eruptive temperatures
- Winter observed that these temperatures were 23 degrees above measured values

Conclusions

- Sample was determined to be a tholeiitic basalt
- Had an eruptive temperature between 1140 -1177°C
- Cause of iridescence is still unknown

Acknowledgements

- The assistance of Dr. Eidukat for sample preparation and project guidance
- Dr. Hopkins for providing access to the thin section equipment