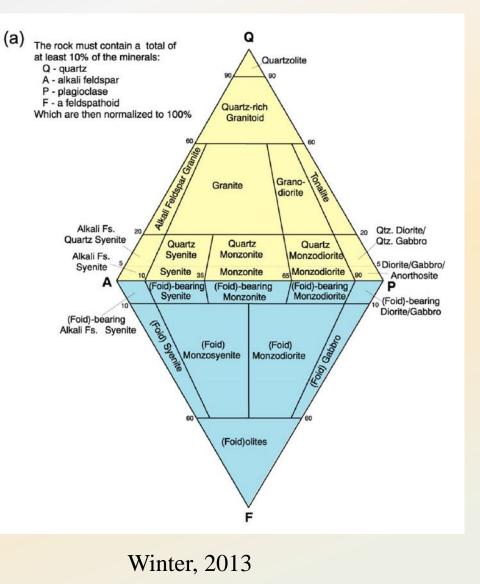
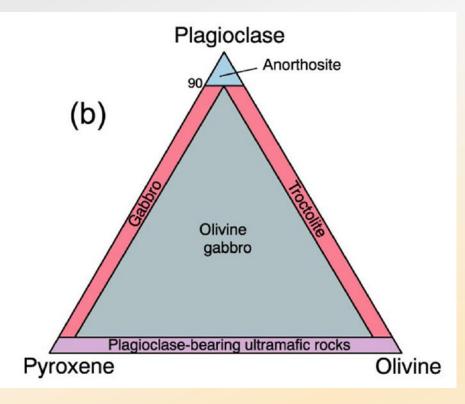
Chemical Analysis of Anorthosites near Silver Bay, MN

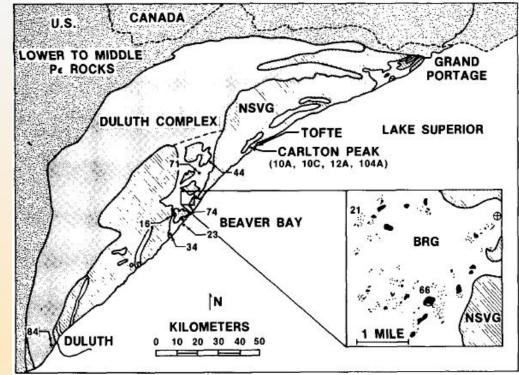

Andrea Oswald Petrology 422, NDSU Spring 2016

Outline


- Background
- Location
- Previous work
- Hypothesis
- Methods
- Results
- Discussion
- Conclusion

Anorthosite

- Phaneritic
- Intrusive igneous rock


Anorthosite

- 90-100% plagioclase
- 0-10% mafic minerals (pyroxene, ilmenite, magnetite, and olivine)

Regional Setting

- Mid-continent rift system
- Keweenawan
 Supergroup
 - Intrusive & extrusive
 - ~1.1 Ga ago
 - North Shore Volcanic Group (extrusive), Duluth Complex (intrusive), Beaver Bay Complex (intrusive)

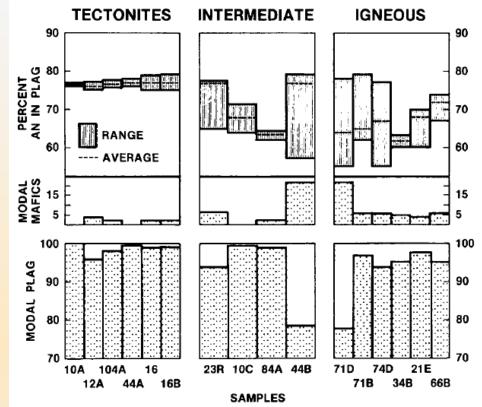
Morrison et. al, 1983

Silver Bay, MN

- Diabase/anorthosite outcrop
- Beaver Bay Complex

Courtesy of Google Maps, 2016

Beaver Bay Complex


- Consists of three gabbroic plutons (oldest to youngest)
 - Beaver River gabbro
 - Beaver Bay ferrogabbro
 - Black Bay gabbro
- Beaver River gabbro is the largest and hosts all of the anorthosite inclusions

Previous Work

- Morrison *et al.*, 1983
 - Extensively sampled & analyzed anorthosites along North Shore
 - Grouped inclusions into four types based on texture & structure:
 - Tectonites, igneous, intermediate, & breccia w/ cataclastic textures
- Researchers studied the chemistry and isotopic data as to whether the xenoliths formed along with the diabase or at a much greater depth

Previous Work

 Morrison and others determined the anorthosites were based on variations in mode & plagioclase composition

Morrison, et al, 1983

Leading Question

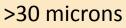
• How do my chemical analyses of plagioclase crystals, in anorthosites, compare to the relevant scientific literature?

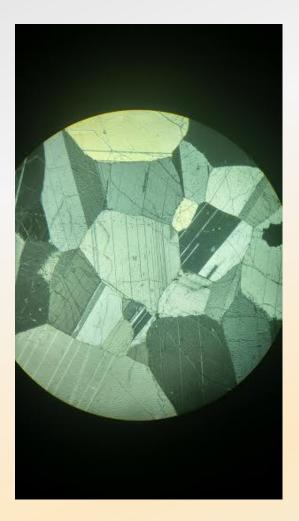
Methods

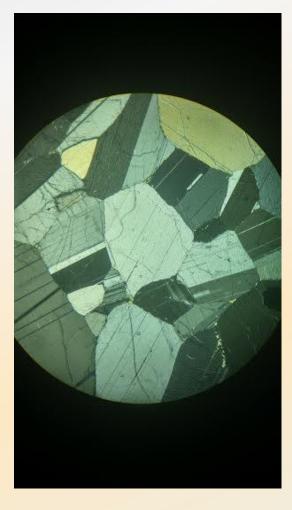
- Collection
 - March 18th, 2016
- Thin section
 Michel-Levy method
- XRF
 - Chemical analysis

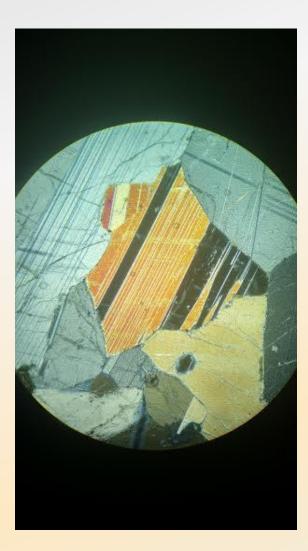
Collection in Silver Bay, MN

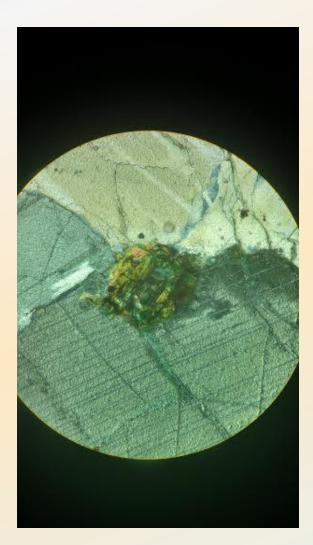
Sample-BRA



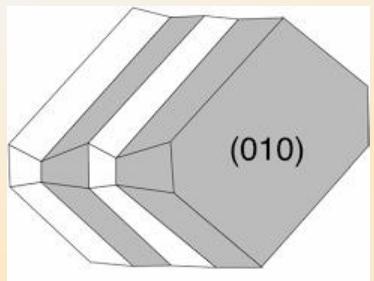

Courtesy of Kayleigh Alme



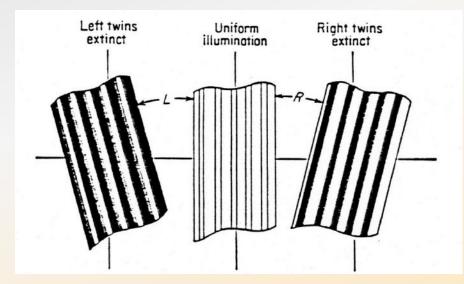

=30 microns



FOV 4.7mm, cross polarized



FOV 4.7mm, cross polarized


Michel-Levy Method

- Approximate plagioclase composition
- Measure extinction angles of albite twins in thin section
 - Cleavage parallel to (010)
 - Uniform illumination
 - Equality of angles from left and right

Multiple albite twins

Michel-Levy Method

- Take measurement of uniform angle
 - Rotate left until extinction - measure
 - Rotate right until extinction – measure
- Difference of measurements must not exceed 6°
- Calculate average

http://faculty.uml.edu/nelson_eby/89.506/IMAGES/Michel-Levy%20plag%20comp.jpg

Michel-Levy Method

- Estimate composition by taking average of the three largest averages
- Plot onto graph

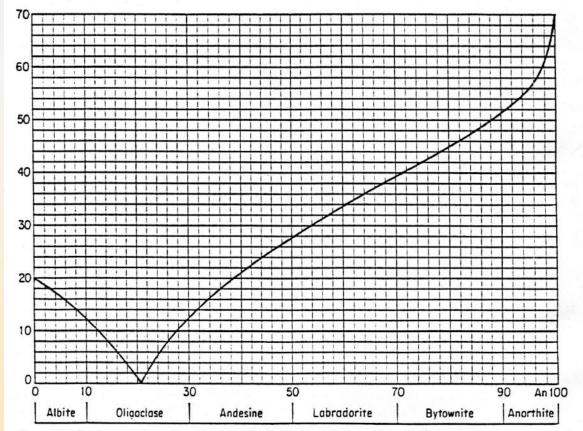
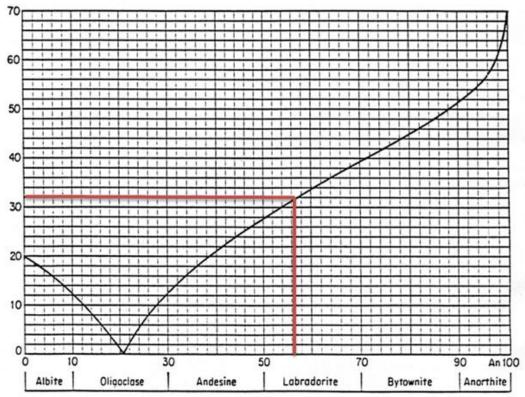


FIG. 13-26. Curve showing the maximum extinction angle of albite twins cut normal to (010) for the plagioclase feldspars (Michel-Lévy's method).


http://faculty.uml.edu/nelson_eby/89.506/IMAGES/Michel-Levy%20plag%20comp.jpg

X-Ray Fluorescence (XRF)

- A bombardment of high-energy X-rays onto a sample that results in secondary emissions from electrons transitioning an orbital shell
- Results in an elemental data

Michel-Levy Results

- Overall average 32.17°
- $An_{58} = Labradorite$

Right Left Initial Avg. 29.5 20.5

FIG. 13-26. Curve showing the maximum extinction angle of albite twins cut normal to (010) for the plagioclase feldspars (Michel-Lévy's method).

XRF Analysis

Oxide	Wt. %	Mol. Prop	Cation Prop	# of O	Cations Basis of 8 O	End Member Recalc.	%
SiO ₂	52.1	0.87	0.87	1.73	2.39		
TiO ₂	0	0	0	0	0		
Al_2O_3	27	0.26	0.53	0.79	1.46		
Fe ₂ O ₃	0.7	0.004	0.009	0.013	0.024		
MnO	0	0	0	0	0		
MgO	1.4	0.03	0.03	0.03	0.089		
CaO	15.7	0.28	0.28	0.28	0.77	0.77	75%
Na ₂ O	2.9	0.047	0.09	0.047	0.26	0.26	25%
K ₂ O	0.2	0.002	0.004	0.002	0.012		
P_2O_5	0.1	0.0003	0.0007	0.0018	0.0019		
Total	100.1	1.50	1.82	2.9		1.03	

Discussion

XRF Analysis

- $An_{75} = Bytownite$
 - More calcic

Michel-Levy Results

- $An_{58} = Labradorite$
 - About 50/50 Ca & Na

Mindat.org

Discussion

- Why don't my two analyses (Michel-Levy & XRF) correlate?
 - Michel-Levy analysis from a small section of rock
 - XRF analysis from whole rock
 - Better average
- Ideally, researchers make multiple thin sections & analyses, like Morrison & others did
 - Ensure more accurate results
- Anorthosites in this region can have more than one texture & composition

Discussion

- Morrison and others concluded the plagioclase crystal compositions ranges from An₅₅ – An₇₉
- My results were similar to Morrison and others findings although I strictly focused on one locality, Silver Bay, whereas they were all along the shore
- A scientific paper by Miller and Green, 2002 supported the evidence that the inclusions were a mixture of labradoric and bytownitic plagioclase

Further Discussion

- The anorthosites in this region are of particular interest due to their complexity of textures and formation
- Researchers hypothesize the anorthosites formed at a much greater depth than the diabase
- The internal structure of plagioclase suggests the anorthosites originated in a large crystal mush

Conclusion

- Anorthosites make up a large part of the Keweenawan region due to their intrusive nature
- There are four basic textural types of anorthosites

 My data, along with Morrison and others, and Miller & Green, concluded the plagioclase composition to vary from An₅₅-An₇₉ (labradorite-bytownite)

Thank you

To Dr. Hopkins of the Soil Science department for use of his thin section equipment

&

Dr. Eidukat for his perpetual quest to teach students about minerals and rocks