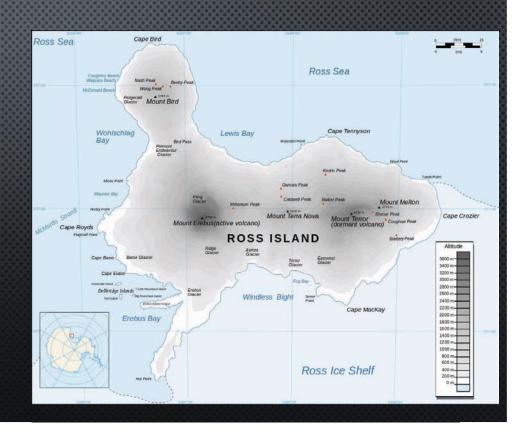
ANTARCTICA XENOLITHS: ANALYSES OF VOLCANIC HOST ROCK

NOAH STROM



LOCALITY

- MCMURDO VOLCANIC GROUP COMPOSED

 OF FOUR DIFFERENT PROVINCES
- BALLENY VOLCANIC, HALLETT VOLCANIC,
 MELBOURNE VOLCANIC, EREBUS VOLCANIC
- ROSS ISLAND
- MT. EREBUS PROVINCE
- RIFT SYSTEM

(ORLANDO ET AL., 2000)

LOCAL GEOLOGY

- Series of Faults between Transarctic Mountains and Ross Sea.
- ALKALI VOLCANICS FOUND IN INTRA-PLATE ENVIRONMENTS
- CONTINENTAL RIFT SYSTEM
- ACTIVE VOLCANISM AT MOUNT EREBUS TODAY
- Ultramafic Xenoliths common in the Erebus Province
- COMPOSED OF THE MINERAL OLIVINE

(KYLE ET AL., 1987) (KYLE AND COLE, 1974)

GUIDING QUESTION

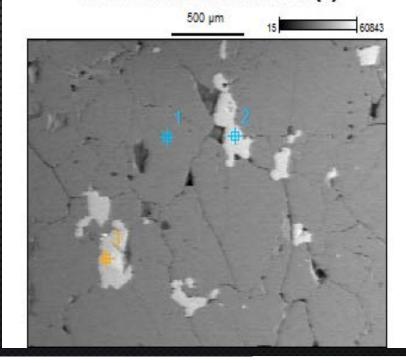
• What is the composition of the matrix that these oliving xenoliths are found?

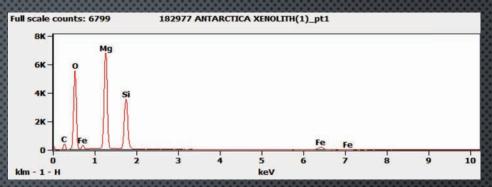
SAMPLES

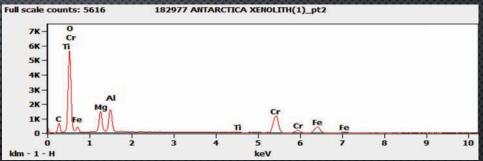
- COLLECTED BY ALLAN ASHWORTH AND SPENCER SALMON
- Ross Island, Antarctica
- LATE CENOZOIC
- NEAR MCMURDO RESEARCH STATION
- GPS: 77.84° S 166.67° E
- HAND SAMPLES: LARGE GREEN XENOLITHS IN BLACK POROUS MATRIX

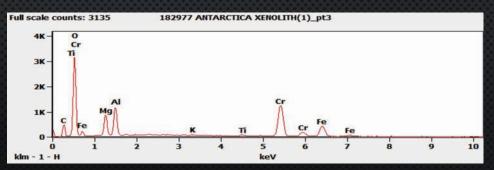
PHOTOS OF THE THIN SECTION AND HOST SAMPLE

METHODS - PREPARATION FOR SEM

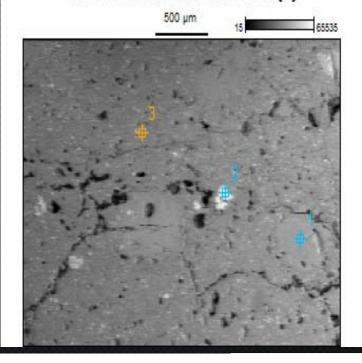

- 1 THIN SECTION WAS MADE
- SAMPLE WAS CUT WITH THE NDSU ROCK SAW
- IMPREGNATED WITH EPOXY
- HEATED TO 105° C TO REDUCE VISCOSITY FOR 5 MINUTES
- PLACED IN A VACUUM TO SATURATE THE SAMPLE FURTHER
- Glued onto a thin section slide with epoxy (10:3 ratio)

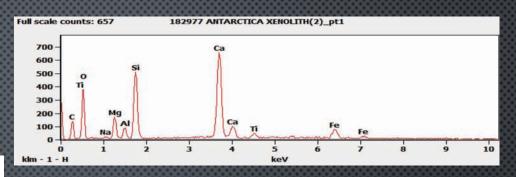

METHODS - PREPARATION FOR SEM

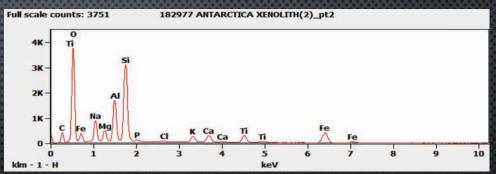

- Was cut and grounded down even further with the Buehler machine at NDSU Soil Sciences
- Polished with 600 grit and 1000 grit
- Polished even further to 1 micron and 0.25 microns with water and diamond grit added
- CLEANED WITH THE ULTRA SONIC MACHINE
- THIN SECTION WAS POLISHED ENOUGH TO MOVE ON TO THE SEM MACHINE
- CARBON COATED WITH COATING MACHINE

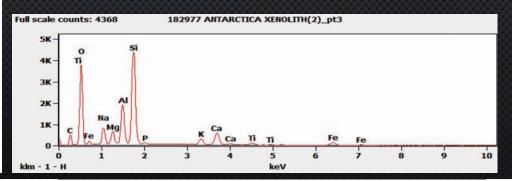

SEM DATA - XENOLITH

182977 ANTARCTICA XENOLITH(1)

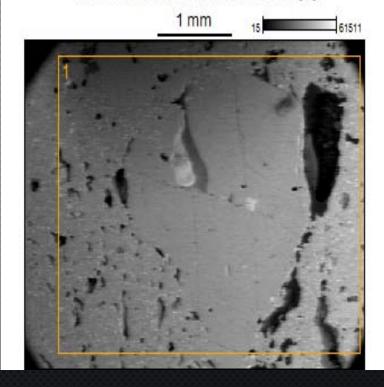


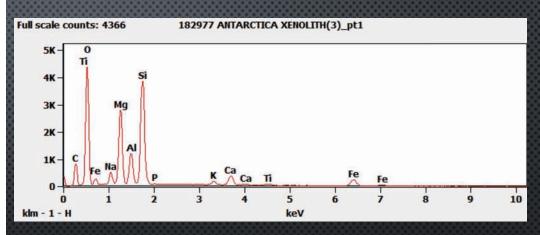




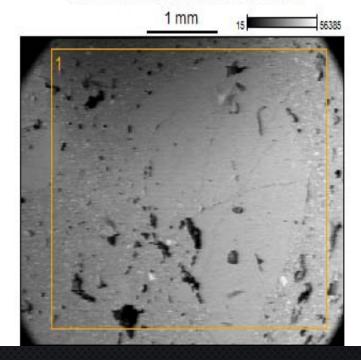

SEM DATA - MATRIX

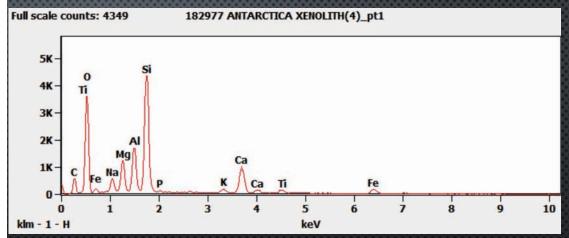
182977 ANTARCTICA XENOLITH(2)





SEM DATA – CRYSTAL AND MATRIX


182977 ANTARCTICA XENOLITH(3)



SEM DATA – CRYSTAL AND MATRIX

CALCULATIONS

- XENOLITH POINT 1
- OLIVINE (MG_2SIO_4)

	Atomic %	Ideal
Mg	26.72	2/7 = 28%
Fe	3.56	2/7 = 28%
Si	15.01	1/7 = 14.3%
0	54.71	4/7 = 57.1%

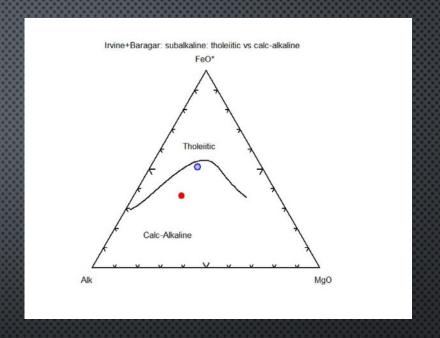
ANALYSES

		Volcanic	Granulite xenoliths			
wt%	BUH	HM34A	SC21A	FOC71B	HM31B	МН31С
SiO ₂	43.17	43.34	42.28	43.29	48.36	47.58
TiO ₂	3.45	3.74	4.36	3.74	0.25	0.41
Al ₂ O ₃	13.98	15.26	15.36	14.39	13.85	21.20
FeO*	11.56	12.48	13.05	11.98	4.79	3.74
MnO	0.19	0.26	0.22	0.19	0.10	0.07
MgO	9.42	5.11	5.84	8.63	14.88	8.33
CaO	11.48	9.60	9.84	11.19	16.23	15.71
Na ₂ O	3.17	4.62	4.20	3.00	1.07	2.41
K ₂ O	1.04	2.24	2.15	1.24	0.07	0.15
P2O05	0.66	1.52	1.36	0.56	0.01	0.035
l.o.i.	0.04	-0.58	-0.57	0.13	-0.06	0.08
Total	98.16	97.59	98.09	98.34	99.55	99.74

- Samples from Hut Point Peninsula
- XRF Data (Kyle et al., 1987)
 Analyses of volcanic host rocks to granulite xenoliths from McMurdo Sound, Antarctica.

CALCULATIONS

Element	Weight %	Atomic Weig	Moles/ElemeRa	tio	Moles/Oxy	Grams Oxy	Wt % Oxide	Oxide
Na	4.66	22.99	0.2026968	0.50	0.1013484	1.6215746	6.2815746	Na2O
Mg	2.93	24.305	0.1205513	1	0.1205513	1.9288212	4.8588212	MgO
Al	8.74	26.98	0.3239437	1.50	0.4859155	7.7746479	16.514648	Al2O3
Si	23.78	28.09	0.8465646	2	1.6931292	27.090068	50.870068	SiO2
P	0.64	30.97	0.0206652	2.50	0.0516629	0.8266064	1.4666064	P2O5
K	2.86	39.1	0.0731458	0.50	0.0365729	0.5851662	3.4451662	K2O
Ca	6.51	40.08	0.1624251	1	0.1624251	2.5988024	9.1088024	CaO
Ti	2.1	47.87	0.0438688	2	0.0877376	1.403802	3.503802	TiO2
Fe	6.51	55.845	0.1165727	1	0.1165727	1.8651625	8.3751625	Feo

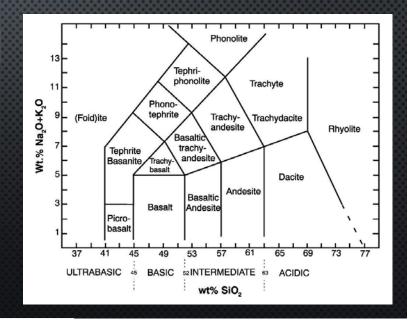

Weight % / Atomic Weight

Moles * Ratio

Moles O * 16.00 Weight % + Grams

AFM DIAGRAM

- Red Dot: SEM data from Ashworth sample
- Blue Dot: Kyle and others (1987) sample
- Magma series that is high in Mg and Fe and as it fractional crystallizes becomes lower in these
- Calc-Alkaline are rich in MgO and CaO


Comparison of Oxide Weight %

Sample#	SiO2	TiO2	Al2O3	FeO	MgO	CaO	Na2O	K2O	P2O5	TOTAL
red	50.8700676	3.50380196	16.5146479	8.3751625	4.85882123	9.1088024	6.2815746	3.44516624	1.46660639	104.424651
blue	43.34	3.74	15.26	12.48	5.11	9.6	4.62	2.24	1.52	97.91

SOURCE OF VOLCANIC HOST ROCK

- ALKALI MAGMAS FORM MUCH DEEPER IN THE MANTLE
- Contain a higher amount of K₂O and Na₂O
- RISING MAGMA INTERACTS WITH CONTINENTAL CRUST THROUGH ASSIMILATION
- Continental crust contains K and Na
- COMMON AT INTRA CONTINENTAL RIFT SYSTEMS
- KYLE AND OTHERS (1987) LABEL THIS TO BE A BASANITE
 AT THE HUT POINT PENINSULA
- THROUGH MICROPROBE ANALYSES THE OLIVINE

XENOLITHS AND BASANITE DID NOT HAVE SAME HOST MAGMA (KYLE ET AL., 1987)

FUTURE WORK

- XRF ANALYSES OF A BULK POWDER SAMPLE OF THE MATRIX
- GET MORE DATA POINTS TO PLOT ON THE AFM DIAGRAM
- Learning Experience: Would have done more point and box analyses on the xenoliths

ACKNOWLEDGEMENTS

- DR. HOPKINS AND NDSU SOIL SCIENCES
- Dr. Ashworth for samples
- NDSU ELECTRON MICROSCOPY LAB
- Dr. Saini-Eidukat for tremendous amount of guidance

REFERENCES

- KYLE, P., AND COLE, J., 1974, STRUCTURAL CONTROL OF VOLCANISM IN THE MCMURDO VOLCANIC GROUP, ANTARCTICA: BULLETIN VOLCANOLOGY, V. 38, P. 16-25.
- KYLE, P., WRIGHT, A., KIRSCH, I., 1987, ULTRAMAFIC XENOLITHS IN THE LATE CENOZOIC

 MCMURDO VOLCANIC GROUP, WESTERN ROSS SEA EMBAYMENT, ANTARCTICA: MANTLE XENOLITHS, V. 21, p. 287-293.
- Orlando, A., Conticelli, S., Armienti, P., Borrini, D., 2000, Experimental study on
 A BASANITE FROM THE MCMURDO VOLCANIC GROUP, ANTARCTICA: INFERENCE ON ITS MANTLE SOURCE: ANTARCTIC SCIENCE, V. 12, p. 105-116.
- ZIPFEL, J., AND WORNER, G., 1992, FOUR AND FIVE PHASE PERIDOTITES FROM A CONTINENTAL RIFT SYSTEM:

 EVIDENCE FOR UPPER MANTLE UPLIFT AND COOLING AT THE ROSS SEA MARGIN (ANTARCTICA): CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, V. 111, p. 24-36.