A multi-rail module having mutually exclusive outputs. The module includes first and second-rail logic circuits, first and second-rail driver circuits, and a PMOS transistor sourcing V_DD to both the first and second driver circuits. The first-rail logic circuit is coupled to V_DD and ground and has a first logic input and a first logic output. The second-rail logic circuit is coupled to V_DD and ground and has a second logic input and a second logic output. The first-rail driver circuit is coupled to ground, receives the first logic output, and has a first-rail output Q_1. The second-rail driver circuit is coupled to ground, receives the second logic output, and has a second-rail output Q'_2. The PMOS transistor has a gate driven by a SLEEP signal.

17 Claims, 9 Drawing Sheets
References Cited

U.S. PATENT DOCUMENTS

* cited by examiner
Fig. 2
Fig. 5
Fig. 6A
Fig. 7A
Fig. 7B
SINGLE COMPONENT SLEEP-CONVENTION LOGIC (SCL) MODULES

BACKGROUND

The present invention relates to Sleep-Convention Logic (SCL) modules, particularly SCL modules designed as single components. Present SCL modules are designed using multiple individual SCL gates. Individual gates are combined to form larger modules (e.g., adders, registers, etc.). While this is an easy way to design these modules, penalties in size, speed, and power are incurred.

SUMMARY

The invention improves upon the Multi-Threshold NULL Convention Logic (MTNCL) disclosed in U.S. Pat. No. 7,977,972 (the ’972 patent), filed on Apr. 30, 2010, and U.S. patent application Ser. No. 13/739,778, filed on Jan. 11, 2013, the entire content of each are hereby incorporated by reference. SCL and MTNCL are equivalent logic schemes.

In one embodiment, the invention provides a multi-rail module having mutually exclusive outputs. The module includes first and second-rail logic circuits, and a PMOS transistor sourcing V_{DD} to both the first and second driver circuits. The first-rail logic circuit is connected to V_{DD}, and ground and has a first logic input and a first logic output. The second-rail logic circuit is connected to V_{DD}, and ground and has a second logic input and a second logic output. The first-rail driver circuit is connected to ground, receives the first logic output and has a first-rail output Q^1. The second-rail driver circuit is connected to ground, receives the second logic input, and has a second-rail output Q^2. The PMOS transistor has a source coupled to V_{DD}, a drain coupled to the first-driver circuit and the second driver circuit, and a gate driven by a SLEEP signal. When the SLEEP signal is low, the PMOS transistors sources V_{DD} to the first driver circuit and the second driver circuit.

In another embodiment, the invention provides a method of designing a multi-rail module. The method includes coupling a logic output of a first-rail logic circuit to an input of a first-rail driver circuit, coupling a logic output of a second-rail logic circuit to an input of a second-rail driver circuit, and sourcing V_{DD} to the first-rail driver circuit and the second-rail driver circuit via a single PMOS transistor.

In one embodiment, the invention provides a Sleep-Convention Logic (SCL) module having mutually exclusive outputs. The module includes first and second-rail logic circuits, and a PMOS transistor sourcing V_{DD} to both the first and second driver circuits. The first-rail logic circuit is connected to V_{DD}, and ground and has a first logic input and a first logic output. The second-rail logic circuit is connected to V_{DD}, and ground and has a second logic input and a second logic output. The first-rail driver circuit is connected to ground, receives the first logic output and has a first-rail output Q^1. The second-rail driver circuit is connected to ground, receives the second logic output, and has a second-rail output Q^2. The PMOS transistor has a source coupled to V_{DD}, a drain coupled to the first-driver circuit and the second driver circuit, and a gate driven by a SLEEP signal. When the SLEEP signal is low, the PMOS transistors sources V_{DD} to the first driver circuit and the second driver circuit.

Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of an SCL register with SLEEP and NSLEEP inputs.

FIG. 2 is a schematic diagram of an SCL register without an NSLEEP input.

FIG. 3 is a schematic diagram of a single-rail SCL AND gate.

FIG. 4 is a schematic diagram of a prior art Dual-rail SCL Full-Adder.

FIG. 5 is a schematic diagram of a Dual-rail Output driver.

FIG. 6A is a schematic/block diagram of an SCL register with a Dual-rail Output driver.

FIG. 6B is a schematic diagram of an SCL register with a Dual-rail Output driver.

FIG. 7A is a schematic/block diagram of a settable SCL register with a Dual-rail Output driver.

FIG. 7B is a schematic diagram of a settable SCL register with a Dual-rail Output driver.

DETAILED DESCRIPTION

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.

In the specification and claims the use of the term coupled refers to a direct connection or an indirect connection (i.e., from a transistor lead to ground or connected through one or more additional components, e.g., a circuit connected to ground through another transistor).

The invention creates standard Sleep-Convention Logic (SCL) modules (e.g., register, multiplexer, half adder, full adder) as single components, versus modules designed using multiple SCL gates. This allows some SLEEP transistors to be shared such that each component requires fewer SLEEP transistors than if the component is comprised of individual SCL gates. Additionally, other transistors within a component can be shared. Using SCL components instead of only SCL gates yields a circuit that is smaller, faster, and utilizes less energy per operation and less leakage power than the current patented SCL methodology.

The invention is used as an alternative method to design computer chips, especially when power usage is a major concern. Potential applications that benefit from the SCL circuit design methodology include cell phones, smart phones, PDAs, pagers, MP3 players, hand-held GPSs, walkie-talkies, wireless sensor networks, smart cards, laptop computers, any type of mobile electronics, microcontrollers, microprocessors, and 3D ICs.

An output driver for multiple-rail (SCL) cells is disclosed as an example of the invention. The driver shares the pull-up circuitry between the multiple output rails to minimize area and Sleep control input capacitance. Various configurations and functional expansions are described below which enhance the functionality of the driver while maintaining the shared pull-up in a power, area, and timing in an efficient manner.

FIG. 1 shows an example of a dual-rail SCL register, with both SLEEP and NSLEEP (inverted SLEEP). The SCL register is designed as an SCL component so as to share SLEEP transistors 101 and 102. FIG. 2 shows another example of a...
The multi-rail output driver accomplishes the same goals as the single-rail output driver (signal inversion, buffering, adding sleep functionality) for multi-rail cells, but without duplicating all of the output driver circuitry for each of the outputs on the multi-rail cell. The avoidance of this duplication results in significant improvements in power, area, and timing, all of which are first order design metrics.

The existing state of the art in dual-rail (and multi-rail) SCL design is to form multi-rail logic functions out of single-rail logic functions (such as that shown in FIG. 3). FIG. 4 below illustrates a dual-rail Full-Adder cell that is constructed out of two STH622 gates and two STH64W2 gates.

The schematic illustrates that two output pins are implemented for each output function: C0 and C1 for the carry-out output and S0 and S1 for the Sum output. Commensurately, two SCL cells are used to drive each output pair, each cell with its own single-rail output driver stage.

The multi-rail output driver improves upon this situation by sharing transistors and functions between two dual-rail outputs. This sharing improves several first order design metrics: area is reduced, SLEEP pin capacitance is significantly reduced, and the power consumption incurred in putting the cell to sleep is also significantly reduced. The latter metric is of particular importance as SCL technology is targeted at low power systems.

Layout and power efficiency of multi-rail SCL circuits are improved by taking advantage of the mutually-exclusive state characteristics of the multi-rail outputs. In particular, the pull-up circuitry used to force a multi-rail output high is shared amongst all the related multi-rail outputs since, in SCL design, no two multi-rail outputs can be high at the same time.

A dual-rail output driver is illustrated in FIG. 5. A dual-rail driver, instead of a multi-rail driver, is described below for simplicity's sake, since the operation of multi-rail driver is identical to that of a dual-rail driver except for the fact that more outputs share the common shared circuitry.

Transistors M0, M2, and M0, 4 comprise the rail 0 circuitry, transistors M1, 2, M1, 3, and M1, 4 comprise the rail 1 circuitry, and transistor M2 is the shared circuitry. As shown in Table 1, when a dual-rail value of DATA0 is asserted, the Q2 output is driven high (through transistors M0 and M2) while the Q output is driven low (through transistor M1). Similarly, when a dual-rail value of DATA1 is asserted, the Q0 output is driven low (through transistor M0) while the Q1 output is driven high (through transistor M1 and M2). A dual-rail value of NULL is asserted by driving both the Q0 and Q1 outputs low through transistors M0, 4 and M1, 4 while transistor M2 is off, isolating both outputs from the logic stage, or from propagating a NULL from the logic stage through transistors M0, 3 and M1, 3.

The key element here is the sharing of the pull-up transistor M2 amongst multiple outputs that are all mutually exclusive with each other in regards to their ability to be driven to a high state. This is the simplest form of a multi-rail driver and can be applied to a wide variety of logic functions such as the full adder (shown in FIG. 4), half adder, multiplexer, register, decoder, and so forth. An SCL register 600 with a dual-rail output driver is shown in FIGS. 6A and 6B.

The SCL register 600 includes a first-rail logic circuit 605, a second-rail logic circuit 610, a first-rail driver circuit 615, a second-rail driver circuit 620, and a SLEEP circuit including a first PMOS transistor M2, a first NMOS transistor M0, 4, and a second NMOS transistor M1, 4.

Careful analysis of this register design shows that this circuit has a noteworthy characteristic which is important for satisfying logic architecture requirements: the outputs of this
cell can be driven high by the inputs D^0 and D^1, but cannot be
driven low. Only the SLEEP input can drive the output low.
This characteristic impacts design considerations for cells
with multiple functions and leads to the requirement for a
more complex output driver.
More complex forms of the driver include logic functions
with direct set or direct reset capabilities. For example, regis-
ters often contain such set or reset capabilities in addition to
their primary function of storing data. In such cases, the
register must be able, upon assertion of the set or reset input
control pin, to force the register state and the register outputs
to the appropriate state such as $DATA\overline{0}$ or $DATA\overline{1}$. Since, as
noted above, the input logic cannot force an output low, this
must be accomplished in the output driver.

FIGS. 7A and 7B illustrate a Settable version of the basic
dual-rail register shown in FIGS. 6A and 6B. Transistors
MS_1, MS_2, MS_3, and MS_4 comprise the circuitry added to
the base register to implement the Set function. As can be
seen, a portion of the Set function is implemented within
the logic section of the register and a portion is implemented
within the driver section. When the SETB input is asserted
high, the Q^0 output is forced to the low state and the Q^1 output
is forced to the high state; in other words the dual-rail output
is forced, or set, to the $DATA\overline{1}$ state.

Implementing the Set function in this manner, modify-
ing both the logic and driver, has several advantages over
implementing the Set function in the output driver only. One
advantage is that the transistors added to the logic section
(transistors MS_3 and MS_4 in FIG. 7) can be sized much
smaller than transistors that might be added to the driver
section since the load driven by the logic section is much
smaller than the load driven by the output driver transistors.
Smaller transistor sizes, in this case, result in less layout area
and less power consumption. Additionally, the mixed
implementation avoids the need to invert the SETB input which
otherwise would be required if all of the reset functionality
was implemented in either the logic section or the driver
section.

Another beneficial attribute of this implementation is the
choice of active low set. While SCL is a positive logic system,
using an active low reset avoids the need to place a PMOS
transistor in series with the shared pull-up transistor M2. Use
of a series transistor in series with M2 would result in both
increased area and degraded switching performance. In
particular, series, or stacked PMOS transistors, have significa-
cantly degraded switching performance. Counter the
degraded switching performance typically requires increased
sizing of M2 and other transistors, resulting in further
increases in area and dynamic power.

Similar circuit concepts can also be employed to create a
Resetable Dual-Rail register, in which case the same con-
cepts and circuit techniques used for the Settable Dual-Rail
register are used. A minor difference between the two is that
with a Resetable register the additional transistors are added
to the D^1 logic section and Q^0 output section instead of the D^0
logic section and the Q^1 output section, respectively.
The register is used as an example, and these concepts,
sharing the output pull-up transistor and adding set, reset, or
similar functionality in such a way as to avoid the use of a
PMOS series transistor in the output driver, can also be
applied to other functions.
The invention is part of a set of essential design techniques
needed to design complete System-on-Chips (SoC), as most
registers within an SoC must be Settable or Resetable. As the
target usage for SCL is Ultra-Low Power Design, power-
efficient circuit design techniques are highly valued. This
invention enables the design of power-efficient dual-rail SCL
circuits, especially when applied to circuit functions that
involve a secondary control such as Set or Reset. The invention
raises the technological barrier for metrics of power
efficiency and area.

PMOS Sleep transistors must be sized to discharge all rail
outputs within a given time constraint. With multi-rail cir-
cuits, at most a single rail output is logic high. Therefore, the
drive strength of the PMOS Sleep transistor can be sized to
discharge only a single rail output, as opposed to being sized
to discharge the outputs of all rails within a given time
constraint. With SCL, logic must be kept once per operation,
since energy usage is related to the input capacitance of the
sleep transistors, significant energy and area savings are
achieved due to the reduced sleep current capacitance by sizing
the PMOS Sleep transistor to discharge only a single rail
output.

What is claimed is:

1. A multi-rail module having mutually exclusive outputs,
the module comprising:
a first-rail logic circuit coupled to V_{DD} and coupled to
ground and having a first logic input and a first logic
output;
a second-rail logic circuit coupled to V_{DD} and coupled to
ground and having a second logic input and a second
logic output;
a first-rail driver circuit coupled to ground, receiving the
first logic output, and having a first-rail output Q^1;
a second-rail driver circuit coupled to ground and receiving
the second logic output and having a second-rail output Q^1;
a PMOS transistor having a source coupled to V_{DD}, a drain
coupled to the first driver circuit and the second driver
circuit, and a gate driven by a SLEEP signal; and
a SET circuit, the SET circuit driving the first-rail logic

circuit such that the first-rail output Q^0 output is low
when a SETB input is asserted low, and driving the
second-rail driver circuit such that the second-rail output
Q^1 output is high when the SETB input is asserted low;
wherein when the SLEEP signal is low, the PMOS trans-
istor sources V_{DD} to the first driver circuit and the second
driver circuit.

2. The multi-rail module of claim 1, further comprising a
first SLEEP NMOS transistor having a source coupled to the
first-rail output, a drain coupled to ground, and a gate driven
by the SLEEP signal, and a second SLEEP NMOS transistor
having a source coupled to the second-rail output, a drain
coupled to ground, and a gate driven by the SLEEP signal.

3. The multi-rail module of claim 2, further comprising a
SET circuit including
a first set PMOS transistor having a source coupled to V_{DD}
a drain coupled to the first logic output, and a gate
coupled to a SETB input;
a first set NMOS transistor coupled between the first-rail
logic circuit and ground, the first set NMOS transistor
having a source coupled to the first-rail logic circuit, a

drain coupled to ground, and a gate coupled to the SETB
input,
a second set PMOS transistor having a source coupled to V_{DD},
a drain coupled to the second-rail output Q^1, and a

gate coupled to a SETB input, and
a second set NMOS transistor coupled between the second-rail
driver circuit and ground, and between the second
SLEEP NMOS transistor and ground, the second set
NMOS transistor having a source coupled to the second-rail
driver circuit and the drain of the second SLEEP
NMOS transistor, a drain coupled to ground, and a gate
coupled to a SETB input.
The multi-rail module of claim 3, wherein the first set PMOS transistor and the first set NMOS transistor are small and use less power than the second set PMOS transistor and the second set NMOS transistor.

The multi-rail module of claim 1, wherein it is illegal for both the first logic input and the second logic input to be a logic one.

The multi-rail module of claim 1, wherein the PMOS transistor sources V_{DD} to both the first-rail driver circuit and the second-rail driver circuit.

A method of designing a multi-rail module, the method comprising:
coupling a logic output of a first-rail logic circuit to an input of a first-rail driver circuit;
coupling a logic output of a second-rail logic circuit to an input of a second-rail driver circuit;
sourcing V_{DDP} to the first-rail logic circuit and the second-rail logic circuit via a single PMOS transistor;
driving the logic output of the first-rail logic circuit and the output of the second-rail driver Q by a SET circuit, and driving the first-rail logic circuit such that the first-rail output Q' output is low when a SETB input is asserted low, and driving the second-rail driver circuit such that the second-rail output Q' output is high when the SETB input is asserted low.

The method of claim 7, further comprising coupling a gate of the PMOS transistor to a SLEEP input.

The method of claim 8, further comprising coupling a source of a first SLEEP NMOS transistor to an output of the first-rail driver Q', coupling a drain of the first SLEEP NMOS transistor to ground, and coupling a gate of the first SLEEP NMOS transistor to the SLEEP input, and coupling a source of a second SLEEP NMOS transistor to an output of the second-rail driver Q', coupling a drain of the second SLEEP NMOS transistor to ground, and coupling a gate of the second SLEEP NMOS transistor to the SLEEP input.

The method of claim 9, further comprising coupling a first set PMOS transistor between V_{DDP} and the logic output of the first-rail logic circuit, coupling a first set NMOS transistor between the first-rail logic circuit and ground, coupling a second set PMOS transistor between V_{DDP} and the output of the second-rail driver Q', and coupling a second set NMOS transistor between the second-rail logic circuit and ground and the second set SLEEP NMOS transistor and ground.

The method of claim 7, further comprising coupling a gate of the first set PMOS transistor, a gate of the second set PMOS transistor, a gate of the first set NMOS transistor, a gate of the second set NMOS transistor to a SETB input.

A Sleep-Convention Logic (SCL) module having mutually exclusive outputs, the module comprising:
a first-rail logic circuit coupled to V_{DDP} and coupled to ground and having a first logic input and a first logic output;
a second-rail logic circuit coupled to V_{DDP} and coupled to ground and having a second logic input and a second logic output;
a first-rail driver circuit coupled to ground, receiving the first logic output, and having a first-rail output Q';
a second-rail driver circuit coupled to ground and receiving the second logic output and having a second-rail output Q'.
a PMOS transistor having a source coupled to V_{DDP}, a drain coupled to the first driver circuit and the second driver circuit, and a gate driven by a SLEEP signal; and
a SET circuit, the SET circuit driving the first-rail logic circuit such that the first-rail output Q' output is low when a SETB input is asserted low, and driving the second-rail driver circuit such that the second-rail output Q' output is high when the SETB input is asserted low, wherein when the SLEEP signal is low, the PMOS transistor sources V_{DDP} to the first driver circuit and the second driver circuit.

The Sleep-Convention Logic (SCL) module of claim 12, further comprising a first SLEEP NMOS transistor having a source coupled to the first-rail output, a drain coupled to ground, and a gate driven by the SLEEP signal, and a second SLEEP NMOS transistor having a source coupled to the second-rail output, a drain coupled to ground, and a gate driven by the SLEEP signal.

The Sleep-Convention Logic (SCL) module of claim 13, further comprising a SET circuit including:
a first set PMOS transistor having a source coupled to V_{DDP}, a drain coupled to the first logic output, and a gate coupled to a SETB input,
a first set NMOS transistor coupled between the first-rail logic circuit and ground, the first set NMOS transistor having a source coupled to the first-rail logic circuit, a drain coupled to ground, and a gate coupled to the SETB input,
a second set PMOS transistor having a source coupled to V_{DDP}, a drain coupled to the second-rail output Q', and a gate coupled to a SETB input, and
a second set NMOS transistor coupled between the second-rail driver circuit and ground, and between the second SLEEP NMOS transistor and ground, the second set NMOS transistor having a source coupled to the second-rail driver circuit and the drain of the second SLEEP NMOS transistor, a drain coupled to ground, and a gate coupled to a SETB input.

The Sleep-Convention Logic (SCL) module of claim 14, wherein the first set PMOS transistor and the first set NMOS transistor are small and use less power than the second set PMOS transistor and the second set NMOS transistor.

The Sleep-Convention Logic (SCL) module of claim 12, wherein it is illegal for both the first logic input and the second logic input to be a logic one.

The Sleep-Convention Logic (SCL) module of claim 12, wherein the PMOS transistor sources V_{DDP} to both the first-rail driver circuit and the second-rail driver circuit.

* * * * *