A local ring has only finitely many semidualizing modules up to isomorphism

Saeed Nasseh Sean Sather-Wagstaff

Department of Mathematics
North Dakota State University

31 March 2012
2012 Spring AMS Central Section Meeting
University of Kansas
Special Session on Singularities in Commutative Algebra and Algebraic Geometry
Semidualizing Modules

Assumption

\((R, m, k)\) is a local ring

Definition (Foxby ’72, Vasconcelos ’74)

A finitely generated \(R\)-module is **semidualizing** if \(R \cong \text{Hom}_R(C, C)\) and \(\text{Ext}^i_R(C, C) = 0\) for all \(i \geq 1\).

Example

1. \(R\) is a semidualizing \(R\)-module.
2. \(D\) is dualizing for \(R\) if and only if it is semidualizing for \(R\) and \(\text{id}_R(D) < \infty\).

Notation

\(\mathcal{S}(R) = \{\text{isomorphism classes of semidualizing } R\text{-modules}\}\).
A Conjecture and Partial Solution

Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathcal{G}(R) \hookrightarrow \mathcal{G}(S)$ by $C \mapsto S \otimes_R C$.

Conjecture (Vasconcelos ’74)

If R is Cohen-Macaulay, then $\mathcal{G}(R)$ is finite.

Theorem (Christensen and Sather-Wagstaff ’08)

If R is Cohen-Macaulay and contains a field, then $\mathcal{G}(R)$ is finite.

Outline of Proof.

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \bar{k})$. Let $x \in \mathfrak{m}R'$ be a maximal R'-sequence. Then $R'/\langle x \rangle$ is artinian and $\mathcal{G}(R) \hookrightarrow \mathcal{G}(R') \hookrightarrow \mathcal{G}(R'/\langle x \rangle)$. A result of Happel essentially shows that $\mathcal{G}(R'/\langle x \rangle)$ is finite.
Definition

A commutative differential graded (DG) R-algebra is

1. a graded commutative R-algebra $A = \oplus_{i=0}^{\infty} A_i$ with
2. a differential, i.e., a sequence of R-linear maps $\partial^A_i : A_i \to A_{i-1}$ such that $\partial^A_i \partial^A_{i+1} = 0$ for all i, such that
3. ∂^A satisfies the Leibniz Rule: for all $a_i \in A_i$ and $a_j \in A_j$

$$\partial^A_{i+j}(a_ia_j) = \partial^A_i(a_i)a_j + (-1)^i a_i \partial^A_j(a_j).$$

Example (The ground ring)

R is a DG R-algebra

Example (The Koszul complex)

$K = K^R(x)$ is a DG R-algebra for each sequence $x \in R$.

Saeed Nasseh, Sean Sather-Wagstaff

A local ring has only finitely many semidualizing modules
Definition

A DG A-module is a graded A-module $M = \bigoplus_{i=-\infty}^\infty M_i$ with a differential $\partial_i^M : M_i \to M_{i-1}$ that satisfies the Leibniz Rule.

Example (The ground ring)

A DG R-module is a bounded below R-complex, e.g., a projective resolution of an R-module.

Example (The Koszul complex)

$K \otimes_R M$ is a DG K-module for each DG R-module M.
Semi-free DG Modules

Definition

Let A be a DG R-algebra. A DG A-module M is **semi-free** if the underlying A^\natural-module M^\natural has a graded basis.

Note

The boundedness condition on M is important here.

Example (The ground ring)

A semi-free DG R-module is a bounded below complex of free R-modules.

Example (The Koszul complex)

$K \otimes_R M$ is a semi-free DG K-module for each semi-free DG R-module M.

Saeed Nasseh, Sean Sather-Wagstaff
A local ring has only finitely many semidualizing modules
A semi-free DG A-module C is **semidualizing** if it is homologically finite and the natural map $A \to \text{Hom}_A(C, C)$ is a quasi-isomorphism.

Notation

$\mathcal{S}_{\text{dg}}(A)$ is the set of shift-quasiisomorphism classes of semidualizing DG A-modules.

Example (The ground ring)

A projective resolution of a semidualizing R-module is a semidualizing DG R-module: $\mathcal{S}(R) \hookrightarrow \mathcal{S}_{\text{dg}}(R)$.

Example (The Koszul complex)

$K \otimes_R C$ is a semidualizing DG K-module for each semidualizing DG R-module C: $\mathcal{S}_{\text{dg}}(R) \hookrightarrow \mathcal{S}_{\text{dg}}(K)$.
Theorem (Nasseh and Sather-Wagstaff ’12)

The sets $\mathcal{S}(R)$ and $\mathcal{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathcal{S}_{dg}(R)$ is finite since $\mathcal{S}(R) \hookrightarrow \mathcal{S}_{dg}(R)$.

\[
R \to R' \to K \cong R' \otimes_Q \tilde{K} \leftarrow \tilde{A} \otimes_Q \tilde{K} \to \tilde{A} \otimes_Q k
\]

There is a flat local ring homomorphism $R \to (R', mR', \bar{k})$ such that R' is complete.

Let $\mathfrak{x} \in mR'$ be minimal generating sequence and $K = K^{R'}(\mathfrak{x})$.

Let Q be a regular local ring surjecting onto R'.

Let $\tilde{\mathfrak{x}} \in Q$ be a lift of \mathfrak{x}, and set $\tilde{K} = K^Q(\tilde{\mathfrak{x}})$.

Let A be a DG algebra resolution of R' over Q.

\tilde{K} is a minimal Q-free resolution of \bar{k}.

$A \otimes_Q \bar{k}$ is a finite dimensional DG \bar{k}-algebra, and $\mathcal{S}_{dg}(A \otimes_Q \bar{k})$ is finite.